1
|
Li D, Xu T, Wang X, Xiao Q, Zhang W, Li F, Zhang H, Feng B, Zhang Y. Enhanced osteo-angiogenic coupling by a bioactive cell-free fat extract (CEFFE) delivered through electrospun fibers. J Mater Chem B 2025; 13:1100-1117. [PMID: 39659270 DOI: 10.1039/d4tb01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Regeneration of functional bone tissue relies heavily on achieving adequate vascularization in engineered bone constructs following implantation. This process requires the close integration of osteogenesis and angiogenesis. Cell-free fat extract (CEFFE or FE), a recently emerging acellular fat extract containing abundant growth factors, holds significant potential for regulating osteo-angiogenic coupling and promoting regeneration of vascularized bone tissue. However, its specific role in modulating the coupling between angiogenesis and osteogenesis remains unclear. Our previous research demonstrated that FE-decorated electrospun fibers of polycaprolactone/gelatin (named FE-PDA@PCL/GT) exhibited pro-vasculogenic capabilities both in vitro and in vivo (D. Li, Q. Li, T. Xu, X. Guo, H. Tang, W. Wang, W. Zhang and Y. Zhang, Pro-vasculogenic fibers by PDA-mediated surface functionalization using cell-free fat extract (CEFFE), Biomacromolecules 2024, 25, 1550-1562). Herein, we firstly demonstrated that the FE-PDA@PCL/GT fibers also significantly stimulated osteogenesis in a mouse calvaria osteoblast-like cell line MC3T3-E1 cells, as evidenced by the increased production of alkaline phosphatase (ALP), mineral deposits, and collagen I, as well as the upregulated expression of osteogenic marker genes in the osteoblasts. Using a transwell co-culture system, we further demonstrated that the release of FE from the FE-PDA@PCL/GT fibers not only promoted osteogenesis and angiogenesis but also markedly enhanced the paracrine functions and reciprocal communications between endothelial cells and osteoblasts. This dynamic interaction played a key role in the observed enhancement of osteo-angiogenic coupling. With the confirmed pro-osteogenic and pro-angiogenic properties of FE-PDA@PCL/GT, it is envisaged that these newly engineered bioactive fibers can be used to develop highly biomimicking bone constructs. These constructs are designed to promote native-like cell-scaffold and cell-cell interactions, which are essential for the effective regeneration of defected bone tissue with adequate vasculature.
Collapse
Affiliation(s)
- Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Qiong Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fen Li
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Jagadale S, Damle M, Joshi MG. Bone Tissue Engineering: From Biomaterials to Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:73-115. [PMID: 39881051 DOI: 10.1007/5584_2024_841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response. Growth factors like bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are utilized to accelerate bone regeneration. Clinical applications include treating nonunion and mal-union fractures, osteonecrosis, orthopedic surgery, dental applications, and spinal cord injuries. Recent advances in the field include nanotechnology, 3D printing, bioprinting techniques, gene editing technologies, and microfluidic devices for drug testing. However, challenges remain, such as standardization of protocols, large-scale biomaterial production, personalized medicine approaches, cost-effectiveness, and regulatory issues. Current clinical trials are investigating the safety and efficacy of various bone tissue engineering approaches, with the potential to modernize patient care by providing more adequate treatments for bone defects and injuries.
Collapse
Affiliation(s)
- Swapnali Jagadale
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Mrunal Damle
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
- Stem Plus Biotech, Sangli, India.
| |
Collapse
|
3
|
Liu L, Zhou N, Fu S, Wang L, Liu Y, Fu C, Xu F, Guo W, Wu Y, Cheng J, Dai J, Wang Y, Wang X, Yang Q, Wang Y. Endothelial cell-derived exosomes trigger a positive feedback loop in osteogenesis-angiogenesis coupling via up-regulating zinc finger and BTB domain containing 16 in bone marrow mesenchymal stem cell. J Nanobiotechnology 2024; 22:721. [PMID: 39563357 DOI: 10.1186/s12951-024-03002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The close spatial and temporal connection between osteogenesis and angiogenesis around type H vasculature is referred as "osteogenesis-angiogenesis coupling", which is one of the basic mechanisms of osteogenesis. Endothelial cells (ECs), bone marrow mesenchymal stem cells (BMSCs), and their specific lineage constitute important cluster that participate in the regulation of osteogenesis and angiogenesis in bone microenvironment. However, the regulatory mechanism of osteogenesis-angiogenesis coupling under the condition of bone healing has not been unveiled. In this study, we demonstrated that the exosome derived from ECs (EC-exo) is an initiator of type H blood vessels formation, and EC-exo acts as a mediator in orchestrating osteogenesis-angiogenesis coupling by enhancing BMSC osteogenic differentiation and EC angiogenesis both in monolayer and stereoscopic co-culture system of primary human cells. The transcriptome array indicated that zinc finger and BTB domain containing 16 (ZBTB16) is a key gene in EC-exo-mediated osteogenesis, and ZBTB16 is indispensable in EC-exo-initiated osteogenesis-angiogenesis coupling. Mechanistically, EC-exo up-regulated the expression of ZBTB16 in BMSCs, thereby promoting osteoprogenitor phenotype transformation; the osteoprogenitors further promote ECs which constitute type H vessel (H-ECs) generation by activating HIF-1α pathway; and the H-ECs conversely promotes osteogenic differentiation of BMSCs. The crosstalk between BMSCs and ECs triggered by EC-exo constitutes a positive feedback loop that enhances osteogenesis-angiogenesis coupling. This study demonstrates that EC-exo can become an effective therapeutic tool to promote bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Steet, Changchun, 130033, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China
- Medical Research Center, The Second Hospital of Jilin University, No. 218 Ziqiang Steet, Changchun, 130041, Jilin, China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Songning Fu
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China
| | - Linlin Wang
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China
| | - Weiying Guo
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yanhua Wu
- Department of Epidemiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Jiangsu, 215004, China
| | - Yipeng Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Steet, Changchun, 130033, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, No. 218 Ziqiang Steet, Changchun, 130041, Jilin, China.
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, No. 1 Xinmin Steet, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
5
|
Jang HJ, Yoon JK. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics (Basel) 2024; 9:75. [PMID: 38392121 PMCID: PMC10887147 DOI: 10.3390/biomimetics9020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Bone regeneration is a complex process that involves various growth factors, cell types, and extracellular matrix components. A crucial aspect of this process is the formation of a vascular network, which provides essential nutrients and oxygen and promotes osteogenesis by interacting with bone tissue. This review provides a comprehensive discussion of the critical role of vasculature in bone regeneration and the applications of angiogenic strategies, from conventional to cutting-edge methodologies. Recent research has shifted towards innovative bone tissue engineering strategies that integrate vascularized bone complexes, recognizing the significant role of vasculature in bone regeneration. The article begins by examining the role of angiogenesis in bone regeneration. It then introduces various in vitro and in vivo applications that have achieved accelerated bone regeneration through angiogenesis to highlight recent advances in bone tissue engineering. This review also identifies remaining challenges and outlines future directions for research in vascularized bone regeneration.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Zhang Z, Liu Y, Tao X, Du P, Enkhbat M, Lim KS, Wang H, Wang PY. Engineering Cell Microenvironment Using Nanopattern-Derived Multicellular Spheroids and Photo-Crosslinked Gelatin/Hyaluronan Hydrogels. Polymers (Basel) 2023; 15:polym15081925. [PMID: 37112072 PMCID: PMC10144125 DOI: 10.3390/polym15081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cultures of dispersed cells within hydrogels depict the interaction of the cell-extracellular matrix (ECM) in 3D, while the coculture of different cells within spheroids combines both the effects of cell-cell and cell-ECM interactions. In this study, the cell co-spheroids of human bone mesenchymal stem cells/human umbilical vein endothelial cells (HBMSC/HUVECs) are prepared with the assistance of a nanopattern, named colloidal self-assembled patterns (cSAPs), which is superior to low-adhesion surfaces. A phenol-modified gelatin/hyaluronan (Gel-Ph/HA-Ph) hydrogel is used to encapsulate the multicellular spheroids and the constructs are photo-crosslinked using blue light. The results show that Gel-Ph/HA-Ph hydrogels with a 5%-to-0.3% ratio have the best properties. Cells in HBMSC/HUVEC co-spheroids are more favorable for osteogenic differentiation (Runx2, ALP, Col1a1 and OPN) and vascular network formation (CD31+ cells) compared to HBMSC spheroids. In a subcutaneous nude mouse model, the HBMSC/HUVEC co-spheroids showed better performance than HBMSC spheroids in angiogenesis and the development of blood vessels. Overall, this study paves a new way for using nanopatterns, cell coculturing and hydrogel technology for the generation and application of multicellular spheroids.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW 2052, Australia
| | - Huaiyu Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Xia Y, Geng N, Ren J, Liao C, Wang M, Chen S, Chen H, Peng W. Regulation of endothelial cells on the osteogenic ability of bone marrow mesenchymal stem cells in peri-implantitis. Tissue Cell 2023; 81:102042. [PMID: 36812664 DOI: 10.1016/j.tice.2023.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES The relationship between bone resorption and angiogenesis in peri-implantitis remains to be studied. We constructed a Beagle dog model of peri-implantitis, and extracted bone marrow mesenchymal stem cells (BMSCs) and endothelial cells (ECs) for culture. The osteogenic ability of BMSCs in the presence of ECs was investigated through an in vitro osteogenic induction model, and its mechanism was initially explored. SUBJECTS AND METHODS The peri-implantitis model was verified by ligation, bone loss was observed by micro-CT, and cytokines were detected by ELISA. The isolated BMSCs and ECs were cultured to detect the expression of angiogenesis, osteogenesis-related proteins, and NF-κB signaling pathway-related proteins. RESULTS 8 weeks after surgery, the peri-implant gums were swollen, and micro-CT showed bone resorption. Compared with the control group, IL-1β, TNF-α, ANGII and VEGF were markedly increased in the peri-implantitis group. In vitro studies found that the osteogenic differentiation ability of BMSCs co-cultured with IECs was decreased, and the expression of NF-κB signaling pathway-related cytokines was increased. CONCLUSION Endothelial cells inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells through NF-κB signaling in the environment of peri-implantitis, which may become a new target for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Yixin Xia
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Ningbo Geng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Jing Ren
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Chunhui Liao
- Department of Orthodontics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ming Wang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Songling Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Huanlin Chen
- Department of Stomatology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
8
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
9
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Mahapatra C, Kumar P, Paul MK, Kumar A. Angiogenic stimulation strategies in bone tissue regeneration. Tissue Cell 2022; 79:101908. [DOI: 10.1016/j.tice.2022.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
|
11
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
12
|
Liang X, Xie L, Zhang Q, Wang G, Zhang S, Jiang M, Zhang R, Yang T, Hu X, Yang Z, Tian W. Gelatin methacryloyl-alginate core-shell microcapsules as efficient delivery platforms for prevascularized microtissues in endodontic regeneration. Acta Biomater 2022; 144:242-257. [PMID: 35364321 DOI: 10.1016/j.actbio.2022.03.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Combined injectable cell-laden microspheres and angiogenesis approaches are promising for functional vascularized endodontic regeneration. However, advanced microsphere designs and production techniques that benefit practical applications are rarely developed. Herein, gelatin methacryloyl (GelMA)-alginate core-shell microcapsules were fabricated to co-encapsulate human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) based on a coaxial electrostatic microdroplet technique. This technique enables high-throughput production, convenient collection, and minimal material waste. The average diameter of core-shell microcapsules was ∼359 µm, and that of GelMA cores was ∼278 µm. There were higher proliferation rates for hDPSCs and HUVECs co-encapsulated in the GelMA cores than for hDPSCs or HUVECs monoculture group. HUVECs assembled to form 3D capillary-like networks in co-culture microcapsules. Moreover, HUVECs promoted the osteo/odontogenic differentiation of hDPSCs in microcapsules. After 14 days of cultivation, prevascularized microtissues formed in microcapsules that contained abundant deposited extracellular matrix (ECM); no microcapsule aggregation occurred. In vivo studies confirmed that better microvessel formation and pulp-like tissue regeneration occurred in the co-culture group than in hDPSCs group. Thus, an effective platform for prevascularization microtissue preparation was proposed and showed great promise in endodontic regeneration and tissue engineering applications. STATEMENT OF SIGNIFICANCE: Cell-laden microspheres combined with the proangiogenesis approach are promising in endodontic regeneration. We proposed GelMA-alginate core-shell microcapsules generated via the coaxial electrostatic microdroplet (CEM) method, which utilizes a double-lumen needle to allow for core-shell structures to form. The microcapsules were used for co-culturing hDPSCs and HUVECs to harvest large amounts of prevascularized microtissues, which further showed improved vascularization and pulp-like tissue regeneration in vivo. This CEM method and the microcapsule system have advantages of high-throughput generation, convenient collection, and avoid aggregation during long-term culturing. We proposed a high-effective platform for mass production of prevascularized microtissues, which exhibit great promise in the clinical transformation of endodontic regeneration and other applications in regenerative medicine.
Collapse
Affiliation(s)
- Xi Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qingyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ge Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziyang Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Lin Z, Zhang X, Fritch MR, Li Z, Kuang B, Alexander PG, Hao T, Cao G, Tan S, Bruce KK, Lin H. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials 2022; 283:121451. [DOI: 10.1016/j.biomaterials.2022.121451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/12/2023]
|
14
|
Liao Y, Fang Y, Zhu H, Huang Y, Zou G, Dai B, Rausch MA, Shi B. Concentrated Growth Factors Promote hBMSCs Osteogenic Differentiation in a Co-Culture System With HUVECs. Front Bioeng Biotechnol 2022; 10:837295. [PMID: 35387306 PMCID: PMC8979293 DOI: 10.3389/fbioe.2022.837295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Osteogenesis is a complex physiologic process that occurs during bone regeneration. This process requires several growth factors that act on bone marrow-derived mesenchymal stem cells (BMSCs). Concentrated growth factor (CGF) is a new-generation platelet-rich derivative that is an appealing autologous material for application in tissue repair and bone regenerative medicine because it contains a variety of fibrin and growth factors. In this study, the effects of CGF on the proliferation and osteogenic differentiation of hBMSCs and human umbilical vein endothelial cells (HUVECs) were explored with in vitro cell co-culture experiments. HBMSCs and HUVECs were directly co-cultured at the ratio of 1:2 under different concentrations (0, 2, 5, 10, 20%) of CGF for 7 days. Alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction were used to detect the effects of CGF on the expression of osteogenic genes (ALP, osteocalcin [OCN], type I collagen [COL-1], Runt-related transcription factor 2 [RUNX2]) and connexin 43 (CX43). RNA sequencing was used to explore potential regulated genes and signaling pathways that affect the osteogenesis of co-cultured hBMSCs exposed to CGF. The results showed higher expressions of ALP, COL-1, RUNX2, OCN, and CX43 in the direct co-culture group containing 10% CGF compared to the direct co-culture group without CGF and the indirect co-culture group. In summary, 10% CGF can significantly promote osteogenesis in hBMSCs directly co-cultured with HUVECs. Intercellular communication between the direct co-culture of hBMSCs and HUVECs through CX43 may be one of the main regulatory mechanisms.
Collapse
Affiliation(s)
- Yunyang Liao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youran Fang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hanghang Zhu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yue Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Gengsen Zou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Bowen Dai
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
| | - Macro Aoqi Rausch
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- *Correspondence: Macro Aoqi Rausch, ; Bin Shi,
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Laboratory of Facial Plastic and Reconstruction, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Macro Aoqi Rausch, ; Bin Shi,
| |
Collapse
|
15
|
Mohajeri M, Eskandari M, Ghazali ZS, Ghazali HS. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed Phys Eng Express 2022; 8. [PMID: 35073537 DOI: 10.1088/2057-1976/ac4e2d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Cell encapsulation within the microspheres using a semi-permeable polymer allows the two-way transfer of molecules such as oxygen, nutrients, and growth factors. The main advantages of cell encapsulation technology include controlling the problems involved in transplanting rejection in tissue engineering applications and reducing the long-term need for immunosuppressive drugs following organ transplantation to eliminate the side effects. Cell-laden microgels can also be used in 3D cell cultures, wound healing, and cancerous clusters for drug testing. Since cell encapsulation is used for different purposes, several techniques have been developed to encapsulate cells. Droplet-based microfluidics is one of the most valuable techniques in cell encapsulating. This study aimed to review the geometries and the mechanisms proposed in microfluidic systems to precisely control cell-laden microgels production with different biopolymers. We also focused on alginate gelation techniques due to their essential role in cell encapsulation applications. Finally, some applications of these microgels and researches will be explored.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Hanieh Sadat Ghazali
- Department of Nanobiotechnology, Tarbiat Modares University, Jalal Aleahmad-Tehran-Iran, Tehran, 14115-111, Iran (the Islamic Republic of)
| |
Collapse
|
16
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
17
|
Zou D, Vigen M, Putnam AJ, Cao C, Tarlé SA, Guinn T, Kaigler D. Phenotypic, trophic, and regenerative properties of mesenchymal stem cells from different osseous tissues. Cell Tissue Res 2022; 388:75-88. [DOI: 10.1007/s00441-021-03563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
|
18
|
Zhao J, He W, Zheng H, Zhang R, Yang H. Bone Regeneration and Angiogenesis by Co-transplantation of Angiotensin II-Pretreated Mesenchymal Stem Cells and Endothelial Cells in Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Transplant 2022; 31:9636897221086965. [PMID: 35313737 PMCID: PMC8943589 DOI: 10.1177/09636897221086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on
osteonecrosis of the femoral head (ONFH) in preclinical experiments and clinical
trials. After the femoral head suffers avascular necrosis, the transplanted MSCs
undergo a great deal of stress-induced apoptosis and senescence in this
microenvironment. So, survival and differentiation of MSCs in osteonecrotic
areas are especially important in ONFH. Although MSCs and endothelial cells
(ECs) co-culture enhancing proliferation and osteogenic differentiation of MSCs
and form more mature vasculature in vivo, it remains unknown
whether the co-culture cells are able to repair ONFH. In this study, we explored
the roles and mechanisms of co-transplantation of angiotensin II (Ang II)-MSCs
and ECs in repairing early ONFH. In vitro, when MSCs and ECs
were co-cultured in a ratio of 5:1, both types of cells managed to proliferate
and induce both osteogenesis and angiogenesis. Then, we established a rabbit
model of steroid-induced ONFH and co-transplantation of Ang II-MSCs and ECs
through the tunnel of core decompression. Four weeks later, histological and
Western blot analyses revealed that ONFH treated with Ang II-MSCs and ECs may
promote ossification and revascularization by increasing the expression of
collagen type I, runt-related transcription factor 2, osteocalcin, and vascular
endothelial growth factor in the femoral head. Our data suggest that
co-transplantation of Ang II-MSCs and ECs was able to rescue the early
steroid-induced ONFH via promoting osteogenesis and angiogenesis, which may be
regarded as a novel therapy for the treatment of ONFH in a clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wei He
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hongqing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Li T, Zhang T. The Application of Nanomaterials in Angiogenesis. Curr Stem Cell Res Ther 2021; 16:74-82. [PMID: 32066364 DOI: 10.2174/1574888x15666200211102203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Induction of angiogenesis has enormous potential in the treatment of ischemic diseases and
the promotion of bulk tissue regeneration. However, the poor activity of angiogenic cells and proangiogenic
factors after transplantation is the main problem that imposes its wide applications. Recent
studies have found that the development of nanomaterials has solved this problem to some extent.
Nanomaterials can be mainly classified into inorganic nanomaterials represented by metals, metal oxides
and metal hydroxides, and organic nanomaterials including DNA tetrahedrons, graphene, graphene
oxide, and carbon nanotubes. These nanomaterials can induce the release of angiogenic factors
either directly or indirectly, thereby initiating a series of signaling pathways to induce angiogenesis.
Moreover, appropriate surface modifications of nanomaterial facilitate a variety of functions, such as
enhancing its biocompatibility and biostability. In clinical applications, nanomaterials can promote the
proliferation and differentiation of endothelial cells or mesenchymal stem cells, thereby promoting the
migration of hemangioblast cells to form new blood vessels. This review outlines the role of nanomaterials
in angiogenesis and is intended to provide new insights into the clinical treatment of systemic
and ischemic diseases.
Collapse
Affiliation(s)
- Tianle Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Abd Rahman F. Gene expression profiling on effect of aspirin on osteogenic differentiation of periodontal ligament stem cells. BDJ Open 2021; 7:35. [PMID: 34531365 PMCID: PMC8446061 DOI: 10.1038/s41405-021-00090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Periodontal ligament (PDL) contains a unique population of mesenchymal stem cells (MSCs), also known as PDL stem cells (PDLSCs). The regenerative properties of PDLSCs hold great potential for its use in stem cells based therapy, particularly for periodontal or bone regeneration. The present study investigated the global gene expression profile in PDLSCs during osteogenic differentiation. MSCs from PDL were isolated from normal permanent human teeth (n = 3). Microarray analysis was used to study the effects of ASA (200, 500, and 1000 μM) on the gene expression profiles in PDLSCs during osteogenic differentiation. Microarray study revealed that ASA was able to modulate PDLSCs gene expression profile. At 200 µM, 315 genes were dysregulated genes (DE), involving 151 upregulated and 164 downregulated genes. At 500 µM, 794 genes were DE, involving of 364 upregulated and 430 downregulated genes. At 1000 µM, the number of DE genes increased to 2035, of which 735 were upregulated and 1300 were downregulated. Bioinformatics analyses of the gene expression data revealed that the majority of DE genes (for 500 and 1000 µM ASA treatment) are involved in osteogenic differentiation. The gene network analysis was carried out using Ingenuity Pathway Analysis (IPA) software, and this revealed that the number of gene groups involved in cell adhesion and extracellular matrix components were increased. This study indicated that ASA could enhance PDLSCs functions and provide evidence for the potential use of ASA with PDLSCs for regenerative dentistry applications, particularly in the areas of periodontal health and regeneration. Periodontal ligament stem cells (PDLSCs) Aspirin (ASA) Microarray Osteogenic.
Collapse
Affiliation(s)
- Fazliny Abd Rahman
- Faculty of Dentistry, SEGi University, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
21
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
22
|
Bouland C, Philippart P, Dequanter D, Corrillon F, Loeb I, Bron D, Lagneaux L, Meuleman N. Cross-Talk Between Mesenchymal Stromal Cells (MSCs) and Endothelial Progenitor Cells (EPCs) in Bone Regeneration. Front Cell Dev Biol 2021; 9:674084. [PMID: 34079804 PMCID: PMC8166285 DOI: 10.3389/fcell.2021.674084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone regeneration is a complex, well-orchestrated process based on the interactions between osteogenesis and angiogenesis, observed in both physiological and pathological situations. However, specific conditions (e.g., bone regeneration in large quantity, immunocompromised regenerative process) require additional support. Tissue engineering offers novel strategies. Bone regeneration requires a cell source, a matrix, growth factors and mechanical stimulation. Regenerative cells, endowed with proliferation and differentiation capacities, aim to recover, maintain, and improve bone functions. Vascularization is mandatory for bone formation, skeletal development, and different osseointegration processes. The latter delivers nutrients, growth factors, oxygen, minerals, etc. The development of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) cocultures has shown synergy between the two cell populations. The phenomena of osteogenesis and angiogenesis are intimately intertwined. Thus, cells of the endothelial line indirectly foster osteogenesis, and conversely, MSCs promote angiogenesis through different interaction mechanisms. In addition, various studies have highlighted the importance of the microenvironment via the release of extracellular vesicles (EVs). These EVs stimulate bone regeneration and angiogenesis. In this review, we describe (1) the phenomenon of bone regeneration by different sources of MSCs. We assess (2) the input of EPCs in coculture in bone regeneration and describe their contribution to the osteogenic potential of MSCs. We discuss (3) the interaction mechanisms between MSCs and EPCs in the context of osteogenesis: direct or indirect contact, production of growth factors, and the importance of the microenvironment via the release of EVs.
Collapse
Affiliation(s)
- Cyril Bouland
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Philippart
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Stomatology and Maxillofacial Surgery, IRIS South Hospital, Brussels, Belgium
| | - Didier Dequanter
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Loeb
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Dominique Bron
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Nifosì G, Nifosì L, Nifosì AF. Mesenchymal stem cells in the treatment of osteonecrosis of the jaw. J Korean Assoc Oral Maxillofac Surg 2021; 47:65-75. [PMID: 33911038 PMCID: PMC8084742 DOI: 10.5125/jkaoms.2021.47.2.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) has recently associated to the increase in antiresorptive and anti-angiogenic drugs prescriptions in the treatment of oncologic and osteoporotic patients. The physiopathogenesis of MRONJ remains unclear and available treatments are unsatisfactory. Newer pharmacological treatments have shown good results, but are not curative and could have major side effects. At the same time as pharmacological treatments, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality for tissue regeneration and repair. MSCs are multipotential non-hematopoietic progenitor cells capable to differentiating into multiple lineages of the mesenchyme. Bone marrow MSCs can differentiate into osteogenic cells and display immunological properties and secrete paracrine anti-inflammatory factors in damaged tissues. The immunomodulatory, reparative, and anti-inflammatory properties of bone marrow MSCs have been tested in a variety of animal models of MRONJ and applied in specific clinical settings. The aim of this review is to discuss critically the immunogenicity and immunomodulatory properties of MSCs, both in vitro and in vivo, the possible underlying mechanisms of their effects, and their potential clinical use as modulators of immune responses in MRONJ, and to identify clinical safety and recommendations for future research.
Collapse
|
24
|
Wang Z, Han T, Zhu H, Tang J, Guo Y, Jin Y, Wang Y, Chen G, Gu N, Wang C. Potential Osteoinductive Effects of Hydroxyapatite Nanoparticles on Mesenchymal Stem Cells by Endothelial Cell Interaction. NANOSCALE RESEARCH LETTERS 2021; 16:67. [PMID: 33900483 PMCID: PMC8076414 DOI: 10.1186/s11671-021-03522-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Nano-hydroxyapatite (nano-HA) has attracted substantial attention in the field of regenerative medicine. Endothelial cell (EC)-mesenchymal stem cell (MSC) interactions are necessary for bone reconstruction, but the manner in which nano-HA interacts in this process remains unknown. Herein, we investigated the cytotoxicity and osteoinductive effects of HA nanoparticles (HANPs) on MSCs using an indirect co-culture model mediated by ECs and highlighted the underlying mechanisms. It was found that at a subcytotoxic dose, HANPs increased the viability and expression of osteoblast genes, as well as mineralized nodules and alkaline phosphatase production of MSCs. These phenomena relied on HIF-1α secreted by ECs, which triggered the ERK1/2 signaling cascade. In addition, a two-stage cell-lineage mathematical model was established to quantitatively analyze the impact of HIF-1α on the osteogenic differentiation of MSCs. It demonstrated that HIF-1α exerted a dose-dependent stimulatory effect on the osteogenic differentiation rate of MSCs up to 1500 pg/mL, which was in agreement with the above results. Our data implied that cooperative interactions between HANPs, ECs, and MSCs likely serve to stimulate bone regeneration. Furthermore, the two-stage cell-lineage model is helpful in vitro system for assessing the potential influence of effector molecules in bone tissue engineering.
Collapse
Affiliation(s)
- Zhongyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Haoqi Zhu
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jinxin Tang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Yanyang Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Yu Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Guilan Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China
| | - Ning Gu
- Jiangsu Key Laboratory of Oral Diseases, Department of Laboratory Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han-zhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
25
|
Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. Stem Cell Res Ther 2020; 11:537. [PMID: 33308309 PMCID: PMC7731475 DOI: 10.1186/s13287-020-02056-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of bone tissue engineering is to regenerate tissue using biomaterials and stem cell-based approaches. Combination of two or more cell types is one of the strategies to promote bone formation. Endothelial progenitor cells (EPCs) may enhance the osteogenic properties of mesenchymal stem cells (MSCs) and promote bone healing; this study aimed to investigate the possible mechanisms of EPCs on promoting osteogenic differentiation of MSCs. METHODS MSCs and EPCs were isolated and co-cultured in Transwell chambers, the effects of EPCs on the regulation of MSC biological properties were investigated. Real-time PCR array, and western blotting were performed to explore possible signaling pathways involved in osteogenesis. The expression of osteogenesis markers and calcium nodule formation was quantified by qRT-PCR, western blotting, and Alizarin Red staining. RESULTS Results showed that MSCs exhibited greater alkaline phosphatase (ALP) activity and increased calcium mineral deposition significantly when co-cultured with EPCs. The mitogen-activated protein kinase (MAPK) signaling pathway was involved in this process. p38 gene expression and p38 protein phosphorylation levels showed significant upregulation in co-cultured MSCs. Silencing expression of p38 in co-cultured MSCs reduced osteogenic gene expression, protein synthesis, ALP activity, and calcium nodule formation. CONCLUSIONS These data suggest paracrine signaling from EPCs influences the biological function and promotes MSCs osteogenic differentiation. Activation of the p38MAPK pathway may be the key to enhancing MSCs osteogenic differentiation via indirect interactions with EPCs.
Collapse
Affiliation(s)
- Chu Xu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.,Department of General Dentistry, School of Stomatology, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haijie Liu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanqing Li
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Xiaoning He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
26
|
Dai K, Shen T, Yu Y, Deng S, Mao L, Wang J, Liu C. Generation of rhBMP-2-induced juvenile ossicles in aged mice. Biomaterials 2020; 258:120284. [DOI: 10.1016/j.biomaterials.2020.120284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
|
27
|
Heo DN, Ayan B, Dey M, Banerjee D, Wee H, Lewis GS, Ozbolat IT. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Biofabrication 2020; 13. [PMID: 33059343 DOI: 10.1088/1758-5090/abc1bf] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Conventional top-down approaches in tissue engineering involving cell seeding on scaffolds have been widely used in bone engineering applications. However, scaffold-based bone tissue constructs have had limited clinical translation due to constrains in supporting scaffolds, minimal flexibility in tuning scaffold degradation, and low achievable cell seeding density as compared with native bone tissue. Here, we demonstrate a pragmatic and scalable bottom-up method, inspired from embryonic developmental biology, to build three-dimensional (3D) scaffold-free constructs using spheroids as building blocks. Human umbilical vein endothelial cells (HUVECs) were introduced to human mesenchymal stem cells (hMSCs) (hMSC/HUVEC) and spheroids were fabricated by an aggregate culture system. Bone tissue was generated by induction of osteogenic differentiation in hMSC/HUVEC spheroids for 10 days, with enhanced osteogenic differentiation and cell viability in the core of the spheroids compared to hMSC-only spheroids. Aspiration-assisted bioprinting (AAB) is a new bioprinting technique which allows precise positioning of spheroids (11% with respect to the spheroid diameter) by employing aspiration to lift individual spheroids and bioprint them onto a hydrogel. AAB facilitated bioprinting of scaffold-free bone tissue constructs using the pre-differentiated hMSC/HUVEC spheroids. These constructs demonstrated negligible changes in their shape for two days after bioprinting owing to the reduced proliferative potential of differentiated stem cells. Bioprinted bone tissues showed interconnectivity with actin-filament formation and high expression of osteogenic and endothelial-specific gene factors. This study thus presents a viable approach for 3D bioprinting of complex-shaped geometries using spheroids as building blocks, which can be used for various applications including but not limited to, tissue engineering, organ-on-a-chip and microfluidic devices, drug screening and, disease modeling.
Collapse
Affiliation(s)
| | - Bugra Ayan
- Penn State, University Park, Pennsylvania, UNITED STATES
| | - Madhuri Dey
- Penn State, University Park, Pennsylvania, UNITED STATES
| | | | - Hwabok Wee
- Penn State, Hershey, Pennsylvania, UNITED STATES
| | | | | |
Collapse
|
28
|
Hu W, Zhu S, Fanai ML, Wang J, Cai J, Feng J. 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing. Stem Cell Res Ther 2020; 11:355. [PMID: 32795343 PMCID: PMC7427858 DOI: 10.1186/s13287-020-01838-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Extensive passage of adipose-derived stem cells (ASCs) in vitro leads to loss of function. Endothelial colony-forming cells (ECFCs) can be isolated from adult peripheral blood. A 3D co-culture system may rescue in vitro ASC senescence. Methods A 3D co-culture model was successfully established using hyaluronic acid (HA) gel and a 10:1 ratio of late-passage ASCs and ECFCs. Cell density and culture conditions were optimized. Stem cell phenotype was characterized by flow cytometry. ELISA was used to measure the trophic effect of angiogenic growth factors and compare the effects of these factors between the 3-D co-culture and single-cell culture. Therapeutic potential of ASC/ECFC 3-D co-cultures was evaluated in a mouse chronic injury model. Results Following incubation in a HA substrate 3D co-culture system, ASC morphology, phenotype, secretory profile, and differentiation capacity were restored. The ASC/ECFC co-culture increased the secretion of cytokines, such as hepatocyte growth factor, compared with single-cell 3D culture or monolayer culture. Mice radiation-ulcer wounds treated with ASC/ECFC 3-D co-cultures (spheroids) showed epithelialization and improved healing compared with wounds treated with ASCs or ECFCs alone. Further, transplanted ASC/ECFC spheroids exhibited superior angiogenic potential due to the ability of the ASCs to transdifferentiate into pericytes. Conclusion 3D co-culture of ECFCs and ASCs in vitro restored native ASC properties by reversing cellular senescence and loss of trophic function. Transplant of ASC/ECFC 3D spheroids in vivo demonstrated pro-angiogenic capacity with improved therapeutic potential.
Collapse
Affiliation(s)
- Wansheng Hu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengqian Zhu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mimi Lalrimawii Fanai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jingwei Feng
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
29
|
Umeyama R, Yamawaki T, Liu D, Kanazawa S, Takato T, Hoshi K, Hikita A. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen Ther 2020; 14:284-295. [PMID: 32462057 PMCID: PMC7240285 DOI: 10.1016/j.reth.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. METHOD Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days. The differentiation status of the cells was examined by alkaline phosphatase staining, alizarin red staining, and real-time RT-PCR for differentiation markers. In addition, the flow of changes in the abundance of endothelial cells and monocytes was analyzed by flow cytometry according to the culture period of bone marrow cells.Next, cells at days 4, 7, and 14 of culture were placed on a β-TCP/RCP scaffold and implanted subcutaneously into the back of C57BL/6J mice. Grafts were harvested and evaluated histologically 8 weeks later. Finally, Cells cultured for 7 days were also transplanted subperiosteally in the skull of the mouse with scaffolds. RESULT Alkaline phosphatase staining was most prominent at 7 days, and alizarin red staining was positive at 14 days. Real-time RT-PCR revealed that Runx2 and Alp peaked at 7 days, while expression of Col1a1 and Bglap was highest at 14 days. Flow cytometry indicated that endothelial cells increased from day 0 to day 7, while monocytes increased continuously from day 0 to day 14. When transplanted into mice, the scaffold with cells cultured for 7 days exhibited the most prominent osteogenesis. The scaffold, which was transplanted subperiosteally in the skull, retained its shape and was replaced with regenerated bone over a large area of the field of view. CONCLUSION Osteoblasts before full maturation are most efficient for bone regeneration, and the pre-culture period suitable for cells to be loaded onto a β-TCP/RCP hybrid scaffold is approximately 7 days.This β-TCP/RCP hybrid scaffolds will also be useful for bone augmentation.
Collapse
Affiliation(s)
- Ryo Umeyama
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takanori Yamawaki
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Liu
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sanshiro Kanazawa
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya, Tokyo 151-8528
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
30
|
Leucht A, Volz AC, Rogal J, Borchers K, Kluger PJ. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci Rep 2020; 10:5330. [PMID: 32210309 PMCID: PMC7093518 DOI: 10.1038/s41598-020-62166-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone tissue is highly vascularized. The crosstalk of vascular and osteogenic cells is not only responsible for the formation of the strongly divergent tissue types but also for their physiological maintenance and repair. Extrusion-based bioprinting presents a promising fabrication method for bone replacement. It allows for the production of large-volume constructs, which can be tailored to individual tissue defect geometries. In this study, we used the all-gelatin-based toolbox of methacryl-modified gelatin (GM), non-modified gelatin (G) and acetylated GM (GMA) to tailor both the properties of the bioink towards improved printability, and the properties of the crosslinked hydrogel towards enhanced support of vascular network formation by simple blending. The vasculogenic behavior of human dermal microvascular endothelial cells (HDMECs) and human adipose-derived stem cells (ASCs) was evaluated in the different hydrogel formulations for 14 days. Co-culture constructs including a vascular component and an osteogenic component (i.e. a bone bioink based on GM, hydroxyapatite and ASCs) were fabricated via extrusion-based bioprinting. Bioprinted co-culture constructs exhibited functional tissue-specific cells whose interplay positively affected the formation and maintenance of vascular-like structures. The setup further enabled the deposition of bone matrix associated proteins like collagen type I, fibronectin and alkaline phosphatase within the 30-day culture.
Collapse
Affiliation(s)
- A Leucht
- Institute of Interfacial Process Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - A-C Volz
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | - J Rogal
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- RWTH Aachen University, Aachen, Germany
| | - K Borchers
- Institute of Interfacial Process Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - P J Kluger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany.
| |
Collapse
|
31
|
Hiraki T, Kunimatsu R, Nakajima K, Abe T, Yamada S, Rikitake K, Tanimoto K. Stem cell‐derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Dis 2020; 26:381-390. [DOI: 10.1111/odi.13244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Sakura Yamada
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Kodai Rikitake
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology Hiroshima University Graduate School of Biomedical and Health Sciences Hiroshima Japan
| |
Collapse
|
32
|
Rammal H, Entz L, Dubus M, Moniot A, Bercu NB, Sergheraert J, Gangloff SC, Mauprivez C, Kerdjoudj H. Osteoinductive Material to Fine-Tune Paracrine Crosstalk of Mesenchymal Stem Cells With Endothelial Cells and Osteoblasts. Front Bioeng Biotechnol 2019; 7:256. [PMID: 31649927 PMCID: PMC6795130 DOI: 10.3389/fbioe.2019.00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
While stem cell/biomaterial studies provide solid evidences that biomaterial intrinsic cues deeply affect cell fate, current strategies tend to neglect their effects on mesenchymal stem cells (MSCs) secretory activities and resulting cell-crosstalks. The present study aims to investigate the impact of bone-mimetic material (B-MM), with intrinsic osteoinductive property, on MSCs mediator secretions; and to explore underlying effects on cells involved in bone regeneration. Human MSCs were cultured, on B-MM, made from inorganic calcium phosphate supplemented with chitosan and hyaluronic acid biopolymers. Collected MSCs culture media were assessed for mediators release quantification and used further to stimulate endothelial cells (ECs) and alveolar bone derived osteoblasts (OBs). Without osteogenic supplements, MSCs committed into bone lineage forming thus 3D bone-like nodules after 21 days. Despite a weak percentage of cell commitment, our data elucidate new aspects of osteoinductive material effect on MSCs functions through the regulation of the secretion of mediators involved in bone regeneration and subsequently the MSCs/ECs indirect crosstalk with osteogenesis-boosting effect. Using MSCs culture media, we demonstrate a large potential of osteoinductive materials and MSCs in bone regenerative medicine. Such strategies could help to address some insights in cell-free therapies using MSCs derived media.
Collapse
Affiliation(s)
- Hassan Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Laura Entz
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France
| | - Marie Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Aurélie Moniot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France
| | - Nicolae B Bercu
- EA 4682, Laboratoire de Recherche en Nanoscience (LRN), Université de Reims Champagne-Ardenne, Reims, France
| | - Johan Sergheraert
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR de Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - Cédric Mauprivez
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Halima Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne Ardenne, Reims, France.,UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
33
|
Jin Y, Long D, Li J, Yu R, Song Y, Fang J, Yang X, Zhou S, Huang S, Zhao Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol 2019; 234:14838-14851. [PMID: 30847902 DOI: 10.1002/jcp.28303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Juan Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ruichao Yu
- Department of Pulmonary, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
34
|
Caetano G, Wang W, Murashima A, Passarini JR, Bagne L, Leite M, Hyppolito M, Al-Deyab S, El-Newehy M, Bártolo P, Frade MAC. Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2268. [PMID: 31311087 PMCID: PMC6679084 DOI: 10.3390/ma12142268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The use of porous scaffolds created by additive manufacturing is considered a viable approach for the regeneration of critical-size bone defects. This paper investigates the xenotransplantation of polycaprolactone (PCL) tissue constructs seeded with differentiated and undifferentiated human adipose-derived mesenchymal stem cells (hADSCs) to treat calvarial critical-sized defect in Wistar rats. PCL scaffolds without cells were also considered. In vitro and in vivo biological evaluations were performed to assess the feasibility of these different approaches. In the case of cell seeded scaffolds, it was possible to observe the presence of hADSCs in the rat tissue contributing directly (osteoblasts) and indirectly (stimulation by paracrine factors) to tissue formation, organization and mineralization. The presence of bone morphogenetic protein-2 (BMP-2) in the rat tissue treated with cell-seeded PCL scaffolds suggests that the paracrine factors of undifferentiated hADSC cells could stimulate BMP-2 production by surrounding cells, leading to osteogenesis. Moreover, BMP-2 acts synergistically with growth factors to induce angiogenesis, leading to higher numbers of blood vessels in the groups containing undifferentiated and differentiated hADSCs.
Collapse
Affiliation(s)
- Guilherme Caetano
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil
- Graduate Program in Biomedical Sciences, University Centre of Hermínio Ometto Foundation, Araras 13607339, SP, Brazil
| | - Weiguang Wang
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Adriana Murashima
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil
| | - José Roberto Passarini
- Graduate Program in Biomedical Sciences, University Centre of Hermínio Ometto Foundation, Araras 13607339, SP, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Centre of Hermínio Ometto Foundation, Araras 13607339, SP, Brazil
| | - Marcel Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil
| | - Miguel Hyppolito
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil
| | - Salem Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Paulo Bártolo
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil.
| |
Collapse
|
35
|
Eswaramoorthy SD, Dhiman N, Korra G, Oranges CM, Schaefer DJ, Rath SN, Madduri S. Isogenic-induced endothelial cells enhance osteogenic differentiation of mesenchymal stem cells on silk fibroin scaffold. Regen Med 2019; 14:647-661. [DOI: 10.2217/rme-2018-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated the role of induced endothelial cells (iECs) in mesenchymal stem cells (MSCs)/iECs co-culture and assessed their osteogenic ability on silk fibroin nanofiber scaffolds. Methods: The osteogenic differentiation was assessed by the ALP assay, calcium assay and gene expression studies. Results: The osteogenic differentiation of the iECs co-cultures was found to be higher than the MSCs group and proximal to endothelial cells (ECs) co-cultures. Furthermore, the usage of isogenic iECs for co-culture increased the osteogenic and endothelial gene expression. Conclusion: These findings suggest that iECs mimic endothelial cells when co-cultured with MSCs and that one MSCs source can be used to give rise to both MSCs and iECs. The isogenic MSCs/iECs co-culture provides a new option for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Nandini Dhiman
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Gayathri Korra
- Sri Sai Krishna Multi Specialty Hospital, Department of Obstetrics and Gynecology, Sangareddy 502001, Medak, Telangana, India
| | - Carlo M Oranges
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Srinivas Madduri
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland
| |
Collapse
|
36
|
Dubus M, Rammal H, Alem H, Bercu NB, Royaud I, Quilès F, Boulmedais F, Gangloff SC, Mauprivez C, Kerdjoudj H. Boosting mesenchymal stem cells regenerative activities on biopolymers-calcium phosphate functionalized collagen membrane. Colloids Surf B Biointerfaces 2019; 181:671-679. [PMID: 31226642 DOI: 10.1016/j.colsurfb.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023]
Abstract
The regeneration of bone-soft tissue interface, using functional membranes, remains challenging and can be promoted by improving mesenchymal stem cells (MSCs) paracrine function. Herein, a collagen membrane, used as guided bone regeneration membrane, was functionalized by calcium phosphate, chitosan and hyaluronic acid hybrid coating by simultaneous spray of interacting species process. Composed of brushite, octacalcium phosphate and hydroxyapatite, the hybrid coating increased the membrane stiffness by 50%. After 7 days of MSCs culture on the hybrid coated polymeric membrane, biological studies were marked by a lack of osteoblastic commitment. However, MSCs showed an enhanced proliferation along with the secretion of cytokines and growth factors that could block bone resorption and favour endothelial cell recruitment without exacerbating polynuclear neutrophils infiltration. These data shed light on the great potential of inorganic/organic coated collagen membranes as an alternative bioactive factor-like platform to improve MSCs regenerative capacity, in particular to support bone tissue vascularization and to modulate inflammatory infiltrates.
Collapse
Affiliation(s)
- Marie Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Hassan Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Halima Alem
- Université de Lorraine, UMR 7198 CNRS, Institut Jean Lamour, 54011 Nancy, France
| | - Nicolae B Bercu
- EA 4682, Laboratoire de Recherche en Nanoscience (LRN), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Isabelle Royaud
- Université de Lorraine, UMR 7198 CNRS, Institut Jean Lamour, 54011 Nancy, France
| | - Fabienne Quilès
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Sophie C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR de Pharmacie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Cedric Mauprivez
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France; Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, France
| | - Halima Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51100 Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France.
| |
Collapse
|
37
|
Zhang S, Chen J, Yu Y, Dai K, Wang J, Liu C. Accelerated Bone Regenerative Efficiency by Regulating Sequential Release of BMP-2 and VEGF and Synergism with Sulfated Chitosan. ACS Biomater Sci Eng 2019; 5:1944-1955. [DOI: 10.1021/acsbiomaterials.8b01490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Dong X, Li H, E L, Cao J, Guo B. Bioceramic akermanite enhanced vascularization and osteogenic differentiation of human induced pluripotent stem cells in 3D scaffolds in vitro and vivo. RSC Adv 2019; 9:25462-25470. [PMID: 35530104 PMCID: PMC9070079 DOI: 10.1039/c9ra02026h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023] Open
Abstract
A growing number of studies suggest that the modulation of cell differentiation by biomaterials is critical for tissue engineering. In previous work, we demonstrated that human induced pluripotent stem cells (iPSCs) are remarkably promising seed cells for bone tissue engineering. In addition, we found that the ionic products of akermanite (Aker) are potential inducers of osteogenic differentiation of iPSCs. Furthermore, composite scaffolds containing polymer and bioceramics have more interesting properties compared to pure bioceramic scaffolds for bone tissue engineering. The characteristic of model biomaterials in bone tissue engineering is their ability to control the osteogenic differentiation of stem cells and simultaneously induce the angiogenesis of endothelia cells. Thus, this study aimed at investigating the effects of poly(lactic-co-glycolic acid)/Aker (PLGA-Aker) composite scaffolds on angiogenic and osteogenic differentiation of human iPSCs in order to optimize the scaffold compositions. The results from Alizarin Red S staining, qRT-PCR analysis of osteogenic genes (BMP2, RUNX2, ALP, COL1 and OCN) and angiogenic genes (VEGF and CD31) demonstrated that PLGA/Aker composite scaffolds containing 10% Aker exhibited the highest stimulatory effects on the osteogenic and angiogenic differentiation of human iPSCs among all scaffolds. After the scaffolds were implanted in nu/nu mice subcutaneous pockets and calvarial defects, H&E staining, BSP immunostaining, qRT-PCR analysis and micro-CT analysis (BMD, BV/TV) indicated that PLGA + 10% Aker scaffolds enhanced the vascularization and osteogenic differentiation of human iPSCs and stimulated the repair of bone defects. Taken together, our work indicated that combining scaffolds containing silicate bioceramic Aker and human iPSCs is a promising approach for the enhancement of bone regeneration. Bioceramics akermanite enhanced vascularization and osteogenic differentiation of human iPSCs in 3D scaffolds in vitro and vivo.![]()
Collapse
Affiliation(s)
- Xixi Dong
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Haiyan Li
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Lingling E
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Junkai Cao
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Bin Guo
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| |
Collapse
|
39
|
Sadowska JM, Guillem-Marti J, Ginebra MP. The Influence of Physicochemical Properties of Biomimetic Hydroxyapatite on the In Vitro Behavior of Endothelial Progenitor Cells and Their Interaction with Mesenchymal Stem Cells. Adv Healthc Mater 2019; 8:e1801138. [PMID: 30516356 DOI: 10.1002/adhm.201801138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/06/2018] [Indexed: 12/18/2022]
Abstract
Calcium phosphate (CaP) substrates are successfully used as bone grafts due to their osteogenic properties. However, the influence of the physicochemical features of CaPs in angiogenesis is frequently neglected despite it being a crucial process for bone regeneration. The present work focuses on analyzing the effects of textural parameters of biomimetic calcium deficient hydroxyapatite (CDHA) and sintered beta-tricalcium phosphate (β-TCP), such as specific surface area, surface roughness, and microstructure, on the behavior of rat endothelial progenitor cells (rEPCs) and their crosstalk with rat mesenchymal stem cells (rMSCs). The higher reactivity of CDHA results in low proliferation rates in monocultured and cocultured systems. This effect is especially pronounced for rMSCs alone, and for CDHA with a fine microstructure. In terms of angiogenic and osteogenic gene expressions, the upregulation of particular genes is especially enhanced for needle-like CDHA compared to plate-like CDHA and β-TCP, suggesting the importance not only of the chemistry of the substrate, but also of its textural features. Moreover, the coculture of rEPCs and rMSCs on needle-like CDHA results in early upregulation of osteogenic modulator, i.e., protein deglycase 1 might be a possible cause of overexpression of osteogenic-related genes on the same substrate.
Collapse
Affiliation(s)
- Joanna Maria Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
40
|
Zhang Y, Yang W, Devit A, van den Beucken JJJP. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs. J Biomed Mater Res A 2018; 107:643-653. [PMID: 30458064 DOI: 10.1002/jbm.a.36581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
Cell-based bone regeneration with mesenchymal stem cells (MSCs) represents the current challenge toward repair of bone defects and fractures. The supposed hurdles for satisfactory performance of cell-based constructs include inadequate vascularization and osteogenic signals. Considering the reported beneficial role of angiogenic cells in promoting vascularization and osteogenic differentiation and the osteogenic potential of bone morphogenetic protein 2 (BMP-2), we here evaluated the efficiency of coculture with angiogenic cells or a physiological dose of BMP-2 on improving osteogenic differentiation of MSCs and bone formation in vivo. In three dimensional (3D) collagen hydrogels in vitro, cocultured human umbilical vein endothelial cells (HUVECs) in a 1:1 ratio or with a physiological dose of BMP-2 (2 ng/μL) promoted the osteogenic potential of MSCs evidenced by enhanced alkaline phosphatase activity and gene expression of osteogenic markers. Notably, HUVECs evoked similar osteogenic stimulation as BMP-2, albeit in a delayed manner. When their bone formation capacity was further evaluated in a mouse subcutaneous implantation model, MSCs with BMP-2 demonstrated the highest efficiency with reproducible bone formation. In contrast, MSCs cocultured with HUVECs constructs displayed substantial blood vessel-like structures with fibrous tissue rather than ectopic bone as MSC monoculture controls. Our findings confirm the priority of generating cell-based bone constructs with physiological BMP-2 administration and indicate the potential of using angiogenic cells to develop vascularized constructs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 643-653, 2019.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Wanxun Yang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Amar Devit
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands.,Faculty of Medical Science, Radboud University, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Theme Reconstructive & Regenerative Medicine, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Eng Part A 2018; 24:1715-1732. [PMID: 29845891 PMCID: PMC6302678 DOI: 10.1089/ten.tea.2018.0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell cultures within perfusion bioreactors, while efficient in obtaining cell numbers, often lack the similarity to native tissues and consequently cell phenotype. We develop a three-dimensional (3D)-printed fluidic chamber for dynamic stem cell culture, with emphasis on control over flow and substrate curvature in a 3D environment, two physiologic features of native tissues. The chamber geometry, consisting of an array of vertical cylindrical pillars, facilitates actin-mediated localization of human mesenchymal stem cells (hMSCs) within ∼200 μm distance from the pillars, enabling spatial patterning of hMSCs and endothelial cells in cocultures and subsequent modulation of calcium signaling between these two essential cell types in the bone marrow microenvironment. Flow-enhanced osteogenic differentiation of hMSCs in growth media imposes spatial variations of alkaline phosphatase expression, which positively correlates with local shear stress. Proliferation of hMSCs is maintained within the chamber, exceeding the cell expansion in conventional static culture. The capability to manipulate cell spatial patterning, differentiation, and 3D tissue formation through geometry and flow demonstrates the culture chamber's relevant chemomechanical cues in stem cell microenvironments, thus providing an easy-to-implement tool to study interactions among substrate curvature, shear stress, and intracellular actin machinery in the tissue-engineered construct.
Collapse
Affiliation(s)
- Josephine Lembong
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Max J. Lerman
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tami J. Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I. Civin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
42
|
Taylor B, Indano S, Yankannah Y, Patel P, Perez XI, Freeman J. Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization In Vivo. Tissue Eng Part A 2018; 25:964-977. [PMID: 30421653 DOI: 10.1089/ten.tea.2018.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Bone loss and skeletal deficiencies due to musculoskeletal diseases, traumatic injury, abnormal development, and cancer are major problems worldwide, frequently requiring surgical intervention. There has been a shift in paradigm to utilize tissue engineering applications. This novel bone technology has the potential to promote bone regeneration for large bone defects without the addition of growth factors and offers a unique architecture for cell attachment, proliferation, and differentiation. This scaffold serves as a tailored therapeutic for bone injuries and defects, leading to an increased quality of life by decreasing the risk of reoccurring surgeries and complications.
Collapse
Affiliation(s)
- Brittany Taylor
- 1Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Indano
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Yasonia Yankannah
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Pushpendra Patel
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Xiomara I Perez
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Freeman
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
43
|
Rowan SC, Piouceau L, Cornwell J, Li L, McLoughlin P. EXPRESS: Gremlin1 blocks vascular endothelial growth factor signalling in the pulmonary microvascular endothelium. Pulm Circ 2018; 10:2045894018807205. [PMID: 30284507 PMCID: PMC7066471 DOI: 10.1177/2045894018807205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Abstract
The bone morphogenetic protein (BMP) antagonist gremlin 1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension (HPH). Recently, non-canonical functions of gremlin 1 have been identified, including specific binding to the vascular endothelial growth factor receptor-2 (VEGFR2). We tested the hypothesis that gremlin 1 modulates VEGFR2 signaling in the pulmonary microvascular endothelium. We examined the effect of gremlin 1 haploinsufficiency on the expression of VEGF responsive genes and proteins in the hypoxic (10% O2) murine lung in vivo. Using human microvascular endothelial cells in vitro we examined the effect of gremlin 1 on VEGF signaling. Gremlin 1 haploinsufficiency (Grem1+/–) attenuated the hypoxia-induced increase in gremlin 1 observed in the wild-type mouse lung. Reduced gremlin 1 expression in hypoxic Grem1+/– mice restored VEGFR2 expression and endothelial nitric oxide synthase (eNOS) expression and activity to normoxic values. Recombinant monomeric gremlin 1 inhibited VEGFA-induced VEGFR2 activation, downstream signaling, and VEGF-induced increases in Bcl-2, cell number, and the anti-apoptotic effect of VEGFA in vitro. These results show that the monomeric form of gremlin 1 acts as an antagonist of VEGFR2 activation in the pulmonary microvascular endothelium. Given the previous demonstration that inhibition of VEGFR2 causes marked worsening of HPH, our results suggest that increased gremlin 1 in the hypoxic lung, in addition to blocking BMP receptor type-2 (BMPR2) signaling, contributes importantly to the development of PH by a non-canonical VEGFR2 blocking activity.
Collapse
Affiliation(s)
- Simon C. Rowan
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Lucie Piouceau
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Joanna Cornwell
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Lili Li
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD School of Medicine and Conway Institute,
University
College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Cao L, Kong X, Lin S, Zhang S, Wang J, Liu C, Jiang X. Synergistic effects of dual growth factor delivery from composite hydrogels incorporating 2-N,6-O-sulphated chitosan on bone regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1-S17. [PMID: 30231646 DOI: 10.1080/21691401.2018.1488721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A promising strategy to accelerate bone generation is to deliver a combination of certain growth factors to the integration site via a controlled spatial and temporal delivery mode. Here, a composite hydrogel incorporating poly(lactide-co-glycolide) (PLGA) microspheres was accordingly prepared to load and deliver the osteogenic rhBMP-2 and angiogenic rhVEGF165 in the required manner. In addition, 2-N,6-O-sulphated chitosan (26SCS), which is a synergetic factor of growth factors, was incorporated in the composite hydrogel as well. The system showed a similar release behaviour of the two growth factors regardless of 26SCS inclusion. RhBMP-2 loaded in PLGA microspheres showed a sustained release over a period of 2 weeks, whereas rhVEGF165 loaded in hydrogel eluted almost completely from the hydrogel over the first 16 days. Both growth factors retained their efficacy, as quantified with relevant in vitro assays. Moreover, an enhanced cell response was achieved upon the delivery of dual growth factors, compared to that obtained with a single factor. Furthermore, in the presence of 26SCS, the system revealed significantly upregulated alkaline phosphatase activity, human umbilical vein endothelial cell proliferation, sprouting, nitric oxide secretion, and angiogenic gene expression. This study highlighted that the composite hydrogel incorporated with 26SCS appears to constitute a promising approach to deliver multiple growth factors. From our findings, we could also conclude that rhBMP-2 can promote angiogenesis and that the mechanism is worthy of further study in subsequent research.
Collapse
Affiliation(s)
- Lingyan Cao
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| | - Xiangjun Kong
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Shuxian Lin
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| | - Shuang Zhang
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Jing Wang
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Changsheng Liu
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China.,d Key Laboratory for Ultrafine Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Xinquan Jiang
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| |
Collapse
|
45
|
Ogata K, Osugi M, Kawai T, Wakayama Y, Sakaguchi K, Nakamura S, Katagiri W. Secretomes of mesenchymal stem cells induce early bone regeneration by accelerating migration of stem cells. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2018. [DOI: 10.1016/j.ajoms.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
James EN, Van Doren E, Li C, Kaplan DL. Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Eng Part A 2018; 25:12-23. [PMID: 29415631 DOI: 10.1089/ten.tea.2017.0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Silk-based bioresorbable medical devices, such as screws, plates, and rods, have been under investigation due to their promising properties for orthopedic repairs. Options to functionalize these new devices for enhanced control of bone regeneration would also exploit the compatible processing methods used to generate the devices. MicroRNAs are important regulators of bone maintenance and formation, and miRNA-based therapeutics have the potential to aid bone repair, utilizing a transient therapeutic approach with local bioactivity. We hypothesized that silk-based orthopedic devices could be used for the local delivery of miRNAs, using anti-sense miR-214 (AS-miR-214), to inhibit endogenous expression of osteoinductive antagonist and thereby supporting the upregulation of osteoinductive target molecules activating transcription factor 4 (ATF4) and Osterix (Osx). AS-miR-214 silk devices, prepared using surface coating, demonstrated continuous release of miRNA inhibitors up to 7 days in vitro. Additionally, human mesenchymal stem cells seeded on AS-miR-214 silk films expressed higher levels of osteogenic genes ATF4, Osx, Runx2, and Osteocalcin. Interestingly, these cells exhibited lower cell viability and DNA content over 21 days. Conversely, the cells demonstrated significantly higher levels of alkaline phosphatase expression and calcium deposition compared with cells seeded on silk films with nontargeting miRNA controls. The study demonstrated that the silk-based orthopedic devices, in conjunction with bioactive miRNA-based therapeutics, may serve as a novel system for localized bone tissue engineering, enhancing osteogenesis at the implant interface while avoiding detrimental systematic side effects.
Collapse
Affiliation(s)
- Eric N James
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Emily Van Doren
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
47
|
Jiang YN, Zhao J, Chu FT, Jiang YY, Tang GH. Tension-loaded bone marrow stromal cells potentiate the paracrine osteogenic signaling of co-cultured vascular endothelial cells. Biol Open 2018; 7:bio.032482. [PMID: 29716948 PMCID: PMC6031349 DOI: 10.1242/bio.032482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Co-culture of bone marrow stromal cells (BMSCs) and vascular endothelial cells (VECs) is a promising strategy for better osteogenesis and pre-vascularization in bone tissue engineering. Recent reports have shown that mechanical stretching further promotes osteogenesis in BMSC/VEC co-culture systems, but the underlying mechanism of this process remains unclear. In this study, noncontact co-cultures of rat primary BMSCs and VECs were employed to interrogate paracrine cell-to-cell communications in response to tension. Exposure of VECs to 6% tension for 48 h elicited neither ALP activity nor mRNA expression of OCN and OPN in BMSCs incubated in a shared culture medium. Instead, BMSCs subjected to tension induced robust VEGF release, and its conditioned medium enhanced the proliferation and tubular formation of VECs with a concurrent increase in BMP-2 and IGF-1 production. Conditioned medium from activated VECs in turn promoted expression of osteogenic genes in BMSCs, followed by an increase in matrix mineralization. The addition of VEGF-R inhibitor Tivozanib to these systems abrogated the tension-induced paracrine effects on VECs and subsequently impaired BMSC osteogenesis. These results clearly demonstrate that the response of BMSCs to tension potentiates paracrine osteogenic signaling from VECs; this positive feedback loop is initiated by VEGF release.
Collapse
Affiliation(s)
- Yu Nan Jiang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Jun Zhao
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Feng Ting Chu
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Yang Yang Jiang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| | - Guo Hua Tang
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China .,Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, People's Republic of China
| |
Collapse
|
48
|
Harvestine JN, Orbay H, Chen JY, Sahar DE, Leach JK. Cell-secreted extracellular matrix, independent of cell source, promotes the osteogenic differentiation of human stromal vascular fraction. J Mater Chem B 2018; 6:4104-4115. [PMID: 30505446 DOI: 10.1039/c7tb02787g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipoaspirates contain a readily accessible heterogeneous cell source for use in bone regeneration collectively referred to as the stromal vascular fraction (SVF). However, the osteogenic potential of SVF is inferior to other progenitor cell populations, thereby requiring alternative strategies to potentiate its effective use in cell-based therapies of bone repair. Cell-secreted extracellular matrix (ECM) is a promising substrate to guide cell phenotype or for use in biomaterial design, yet the instructional capacity of ECMs produced by various cell types is unknown. To determine whether the bioactivity of cell-secreted ECM was dependent on cell source, we assessed the osteogenic response of human SVF on ECMs secreted by bone marrow-derived mesenchymal stem cells (MSCs), adipose stromal cells (ASCs), and human dermal fibroblasts (HDFs). Tissue culture plastic (TCP), type I collagen, and ECM induced expression of integrin subunits α2, α5, and β1 in SVF, yet seeding efficiency was only improved on MSC-derived ECM. Regardless of ECM source, SVF deposited over 8- and 1.3-fold more calcium compared to TCP and collagen-coated controls, respectively. Flow cytometry confirmed that SVF cultured on ECM retained CD31 and CD34 positive cell populations better than TCP. After depleting accessory cells, ASCs deposited significantly less calcium compared to donor-matched SVF. This function was partially restored in the presence of MSC-derived ECM when donor-matched endothelial cells (ECs) were added in an ASC/EC co-culture, confirming a role for ECs in osteogenic differentiation. These findings support the use of cell-derived ECM as a means to promote cell retention and osteogenic differentiation of SVF.
Collapse
Affiliation(s)
- Jenna N Harvestine
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Hakan Orbay
- Department of Surgery, Division of Plastic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Jonathan Y Chen
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - David E Sahar
- Department of Surgery, Division of Plastic Surgery, UC Davis Health, Sacramento, CA 95817
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616.,Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
49
|
Liu M, Zhao L, Hu J, Wang L, Li N, Wu D, Shi X, Yuan M, Hu W, Wang X. Endothelial cells and endothelin‑1 promote the odontogenic differentiation of dental pulp stem cells. Mol Med Rep 2018; 18:893-901. [PMID: 29845193 PMCID: PMC6059721 DOI: 10.3892/mmr.2018.9033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
It has been established that dental pulp stem cells (DPSCs) serve an important role in the restoration and regeneration of dental tissues. DPSCs are present in blood vessels and also exist in the vessel microenvironment in vivo and have a close association with endothelial cells (ECs). The present study aimed to evaluate the influence of ECs and their secretory product endothelin-1 (ET-1) on the differentiation of DPSCs. In the present study, cells were divided into four groups: i) a DPSC-only control group; ii) a DPSC with ET-1 administration group; iii) a DPSC and human umbilical vein endothelial cell (HUVEC) direct co-culture group; and iv) a DPSC and HUVEC indirect co-culture group using a Transwell system. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of the odontoblastic differentiation-associated genes, including dentin sialoprotein (DSP) and dentin matrix acidic phosphoprotein 1 (DMP-1) at days 4, 7, 14 and 21. Alizarin Red S staining, immunofluorescence and western blot analyses were also conducted to assess the differentiation of the DPSCs in each group. The highest expression levels of odontoblastic differentiation-associated genes were observed on day 7 and in the two co-culture groups were increased compared with the DPSC-only and DPSC + ET-1 culture groups at all four time points. However, expression levels in the DPSC + ET-1 group were not downregulated as notably as in the co-culture groups on days 14 and 21. The Transwell group exhibited the greatest ability for odontoblastic differentiation compared with the other groups according to staining with Alizarin Red S, immunofluorescence and western blot analysis results. According to the results of the present study, the culture solution with HUVECs affected the differentiation of DPSCs. In addition, ET-1 may promote the odontoblastic differentiation of DPSCs.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lin Zhao
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Junlong Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lihua Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ning Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Di Wu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Shi
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
50
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|