1
|
Santos SP, Garcés LFS, Silva FS, Santiago LF, Pinheiro CS, Alcantara-Neves NM, Pacheco LG. Engineering an optimized expression operating unit for improved recombinant protein production in Escherichia coli. Protein Expr Purif 2022; 199:106150. [DOI: 10.1016/j.pep.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
|
2
|
Alves CPA, Prazeres DMF, Monteiro GA. Minicircle Biopharmaceuticals–An Overview of Purification Strategies. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.612594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Minicircles are non-viral delivery vectors with promising features for biopharmaceutical applications. These vectors are plasmid-derived circular DNA molecules that are obtained in vivo in Escherichia coli by the intramolecular recombination of a parental plasmid, which generates a minicircle containing the eukaryotic therapeutic cassette of interest and a miniplasmid containing the prokaryotic backbone. The production process results thus in a complex mixture, which hinders the isolation of minicircle molecules from other DNA molecules. Several strategies have been proposed over the years to meet the challenge of purifying and obtaining high quality minicircles in compliance with the regulatory guidelines for therapeutic use. In minicircle purification, the characteristics of the strain and parental plasmid used have a high impact and strongly affect the purification strategy that can be applied. This review summarizes the different methods developed so far, focusing not only on the purification method itself but also on its dependence on the upstream production strategy used.
Collapse
|
3
|
Román R, Lončar N, Casablancas A, Fraaije MW, Gonzalez G. High-level production of industrially relevant oxidases by a two-stage fed-batch approach: overcoming catabolite repression in arabinose-inducible Escherichia coli systems. Appl Microbiol Biotechnol 2020; 104:5337-5345. [PMID: 32322946 DOI: 10.1007/s00253-020-10622-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
With the growing interest in enzyme applications, there is an urgent demand for economic, affordable, and flexible enzyme production processes. In the present paper, we developed a high cell density fed-batch process for the production of two cofactor-containing oxidase, 5-hydroxymethylfurfural oxidase (HMFO) and eugenol oxidase (EUGO). The approach involved the arabinose-inducible system to drive the expression while using mineral media. In order to overcome a major drawback of arabinose-inducible promoters, carbon catabolite repression, (CCR) by glucose, we developed a high cell density culture (HCDC), two-stage fed-batch protocol allowing us to reach cell densities exceeding 70 g/L of dry cell weight (DCW) using glucose as carbon source. Then, induction was achieved by adding arabinose, while changing the carbon source to glycerol. This strategy allowed us to obtain an eightfold increase in recombinant HMFO titer when compared with a reference batch fermentation in Erlenmeyer flasks using terrific broth (TB), typically used with arabinose-inducible strains. The optimized protocol was also tested for expression of a structurally unrelated oxidase, EUGO, where a similar yield was achieved. Clearly, this two-step protocol in which a relatively cheap medium (when compared to TB) can be used reduces costs and provides a way to obtain protein production levels similar to those of IPTG-based systems. KEY POINTS: • Arabinose promoters are not well suited for HCDC production due to CCR effect. • This drawback has been overcome by using a two-stage Fed-batch protocol. • Protein yield has been increased by an eightfold factor, improving process economics.
Collapse
Affiliation(s)
- Ramón Román
- Fermentation Pilot Plant, Department of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | | | - Antoni Casablancas
- Fermentation Pilot Plant, Department of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marco W Fraaije
- Molecular Enzymology group, University of Groningen, Groningen, The Netherlands
| | - Glòria Gonzalez
- Fermentation Pilot Plant, Department of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Kalinichenko SV, Shepelev MV, Korobko IV. A gel-less isolation of untagged plasmid DNA insert from vector backbone in homogeneous format. Anal Biochem 2017; 521:28-30. [PMID: 28082218 DOI: 10.1016/j.ab.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 11/24/2022]
Abstract
Agarose gel electrophoresis with subsequent DNA extraction from gel is routinely used for DNA fragment isolation after plasmid DNA digestion. We describe a gel-less method for DNA fragment isolation after plasmid DNA digestion which is based on in-solution negative selection through depletion of vector backbone bearing LoxP sites by sorption on solid phase-immobilized mutated Cre recombinase. The method might be especially useful in preparation of DNA fragments for transgenic animal generation where residual agarose presence is a concern, and DNA fragments are frequently large in size and thus might be mechanically damaged during purification with conventional affinity-based gel extraction methods.
Collapse
Affiliation(s)
- Svetlana V Kalinichenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov street, Moscow 119334, Russia
| | - Mikhail V Shepelev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov street, Moscow 119334, Russia
| | - Igor V Korobko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov street, Moscow 119334, Russia.
| |
Collapse
|
5
|
Abstract
In sexually reproducing organisms, the formation of healthy gametes (sperm and eggs) requires the proper establishment and release of meiotic sister chromatid cohesion (SCC). SCC tethers replicated sisters from their formation in premeiotic S phase until the stepwise removal of cohesion in anaphase of meiosis I and II allows the separation of homologs and then sisters. Defects in the establishment or release of meiotic cohesion cause chromosome segregation errors that lead to the formation of aneuploid gametes and inviable embryos. The nematode Caenorhabditis elegans is an attractive model for studies of meiotic sister chromatid cohesion due to its genetic tractability and the excellent cytological properties of the hermaphrodite gonad. Moreover, mutants defective in the establishment or maintenance of meiotic SCC nevertheless produce abundant gametes, allowing analysis of the pattern of chromosome segregation. Here I describe two approaches for analysis of meiotic cohesion in C. elegans. The first approach relies on cytology to detect and quantify defects in SCC. The second approach relies on PCR and restriction digests to identify embryos that inherited an incorrect complement of chromosomes due to aberrant meiotic chromosome segregation. Both approaches are sensitive enough to identify rare errors and precise enough to reveal distinctive phenotypes resulting from mutations that perturb meiotic SCC in different ways. The robust, quantitative nature of these assays should strengthen phenotypic comparisons of different meiotic mutants and enhance the reproducibility of data generated by different investigators.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue SI 219, Cleveland, OH, 44115-2214, USA.
| |
Collapse
|
6
|
Pseudosynapsis and decreased stringency of meiotic repair pathway choice on the hemizygous sex chromosome of Caenorhabditis elegans males. Genetics 2015; 197:543-60. [PMID: 24939994 DOI: 10.1534/genetics.114.164152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During meiosis, accurate chromosome segregation relies on homology to mediate chromosome pairing, synapsis, and crossover recombination. Crossovers are dependent upon formation and repair of double-strand breaks (DSBs) by homologous recombination (HR). In males of many species, sex chromosomes are largely hemizygous, yet DSBs are induced along nonhomologous regions. Here we analyzed the genetic requirements for meiotic DSB repair on the completely hemizygous X chromosome of Caenorhabditis elegans males. Our data reveal that the kinetics of DSB formation, chromosome pairing, and synapsis are tightly linked in the male germ line. Moreover, DSB induction on the X is concomitant with a brief period of pseudosynapsis that may allow X sister chromatids to masquerade as homologs. Consistent with this, neither meiotic kleisins nor the SMC-5/6 complex are essential for DSB repair on the X. Furthermore, early processing of X DSBs is dependent on the CtIP/Sae2 homolog COM-1, suggesting that as with paired chromosomes, HR is the preferred pathway. In contrast, the X chromosome is refractory to feedback mechanisms that ensure crossover formation on autosomes. Surprisingly, neither RAD-54 nor BRC-2 are essential for DSB repair on the X, suggesting that unlike autosomes, the X is competent for repair in the absence of HR. When both RAD-54 and the structure-specific nuclease XPF-1 are abrogated, X DSBs persist, suggesting that single-strand annealing is engaged in the absence of HR. Our findings indicate that alteration in sister chromatid interactions and flexibility in DSB repair pathway choice accommodate hemizygosity on sex chromosomes.
Collapse
|
7
|
Severson AF, Meyer BJ. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes. eLife 2014; 3:e03467. [PMID: 25171895 PMCID: PMC4174578 DOI: 10.7554/elife.03467] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
8
|
DNA helicase HIM-6/BLM both promotes MutSγ-dependent crossovers and antagonizes MutSγ-independent interhomolog associations during caenorhabditis elegans meiosis. Genetics 2014; 198:193-207. [PMID: 25053665 DOI: 10.1534/genetics.114.161513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination is initiated by the programmed induction of double-strand DNA breaks (DSBs), lesions that pose a potential threat to the genome. A subset of the DSBs induced during meiotic prophase become designated to be repaired by a pathway that specifically yields interhomolog crossovers (COs), which mature into chiasmata that temporarily connect the homologs to ensure their proper segregation at meiosis I. The remaining DSBs must be repaired by other mechanisms to restore genomic integrity prior to the meiotic divisions. Here we show that HIM-6, the Caenorhabditis elegans ortholog of the RecQ family DNA helicase BLM, functions in both of these processes. We show that him-6 mutants are competent to load the MutSγ complex at multiple potential CO sites, to generate intermediates that fulfill the requirements of monitoring mechanisms that enable meiotic progression, and to accomplish and robustly regulate CO designation. However, recombination events at a subset of CO-designated sites fail to mature into COs and chiasmata, indicating a pro-CO role for HIM-6/BLM that manifests itself late in the CO pathway. Moreover, we find that in addition to promoting COs, HIM-6 plays a role in eliminating and/or preventing the formation of persistent MutSγ-independent associations between homologous chromosomes. We propose that HIM-6/BLM enforces biased outcomes of recombination events to ensure that both (a) CO-designated recombination intermediates are reliably resolved as COs and (b) other recombination intermediates reliably mature into noncrossovers in a timely manner.
Collapse
|
9
|
Deshpande AG, Darton NJ, Yunus K, Fisher AC, Slater NK. In situ fabrication of a microfluidic device for immobilised metal affinity sensing. N Biotechnol 2012; 29:494-501. [DOI: 10.1016/j.nbt.2012.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
10
|
Nocadello S, Swennen EF. The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb Cell Fact 2012; 11:3. [PMID: 22222111 PMCID: PMC3274441 DOI: 10.1186/1475-2859-11-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022] Open
Abstract
Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction) prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS) system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene independently from external inducers or drastic changes in metabolic conditions and enabling tight regulation of expression.
Collapse
|
11
|
Barbosa H, Hine A, Brocchini S, Slater N, Marcos J. Dual affinity method for plasmid DNA purification in aqueous two-phase systems. J Chromatogr A 2010; 1217:1429-36. [DOI: 10.1016/j.chroma.2009.12.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/07/2009] [Accepted: 12/22/2009] [Indexed: 11/15/2022]
|
12
|
Han Y, You G, Pattenden LK, Forde GM. The harnessing of peptide–monolith constructs for single step plasmid DNA purification. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Belanto JJ, Diaz-Perez SV, Magyar CE, Maxwell MM, Yilmaz Y, Topp K, Boso G, Jamieson CH, Cacalano NA, Jamieson CA. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord 2010; 20:111-21. [PMID: 20080405 PMCID: PMC2856642 DOI: 10.1016/j.nmd.2009.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 01/02/2023]
Abstract
Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation.
Collapse
Affiliation(s)
- Joseph J. Belanto
- Dept. of Urology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
- Dept. of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Silvia V. Diaz-Perez
- Dept. of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Clara E. Magyar
- Translational Pathology Core Laboratory, Dept. of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Michele M. Maxwell
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yasemin Yilmaz
- Dept. of Urology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Kasey Topp
- Dept. of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Guney Boso
- Dept. of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Catriona H. Jamieson
- Dept. of Medicine, Hematology/Oncology Division, School of Medicine, University of California, San Diego, La Jolla, CA, USA 92093
| | - Nicholas A. Cacalano
- Dept. of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| | - Christina A.M. Jamieson
- Dept. of Urology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
- Dept. of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA 90095
| |
Collapse
|
14
|
Han Y, Gras S, Forde GM. Binding properties of peptidic affinity ligands for plasmid DNA capture and detection. AIChE J 2009. [DOI: 10.1002/aic.11690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Mayrhofer P, Blaesen M, Schleef M, Jechlinger W. Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 2008; 10:1253-69. [PMID: 18767031 DOI: 10.1002/jgm.1243] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Conventional plasmid-DNA (pDNA) used in gene therapy and vaccination can be subdivided into a bacterial backbone and a transcription unit. Bacterial backbone sequences are needed for pDNA production in bacteria. However, for gene transfer application, these sequences are dispensable, reduce the overall efficiency of the DNA agent and, most importantly, represent a biological safety risk. For example, the dissemination of antibiotic resistance genes, as well as the uncontrolled expression of backbone sequences, may have profound detrimental effects and unmethylated CpG motifs have been shown to contribute to silencing of episomal transgene expression. Therefore, an important goal in nonviral vector development is to produce supercoiled pDNA lacking bacterial backbone sequences. METHODS A method is described to provide circular, supercoiled minimal expression cassettes (minicircle-DNA) based on two processes: (i) an inducible, sequence specific, in vivo recombination process that is almost 100% efficient and (2) a novel affinity-based chromatographic purification approach for the isolation of the minicircle-DNA. RESULTS Quantitative real-time polymerase chain reaction analysis, capillary gel electrophoresis and restriction analysis of the recombination products, and the minicircle-DNA revealed a recombination efficiency greater than 99.5% and a purity of the isolated minicircle-DNA of more than 98.5%. CONCLUSIONS The results obtained in the present study demonstrate that the described technology facilitates the production of highly pure minicircle-DNA for direct application in gene therapy and vaccination. The process described is efficient, stable and suitable for further scale-up in industrial large-scale manufacturing.
Collapse
|
16
|
Sousa F, Prazeres DM, Queiroz JA. Affinity chromatography approaches to overcome the challenges of purifying plasmid DNA. Trends Biotechnol 2008; 26:518-25. [DOI: 10.1016/j.tibtech.2008.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/21/2008] [Accepted: 05/28/2008] [Indexed: 02/05/2023]
|
17
|
Barbosa H, Hine AV, Brocchini S, Slater NKH, Marcos JC. Affinity partitioning of plasmid DNA with a zinc finger protein. J Chromatogr A 2008; 1206:105-12. [PMID: 18760786 DOI: 10.1016/j.chroma.2008.07.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger-GST (Glutathione-S-Transferase) fusion protein was examined in PEG-dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600-DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger-GST fusion protein in a PEG 1000-DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.
Collapse
Affiliation(s)
- H Barbosa
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
18
|
Lee SK, Keasling JD. Heterologous protein production in Escherichia coli using the propionate-inducible pPro system by conventional and auto-induction methods. Protein Expr Purif 2008; 61:197-203. [PMID: 18639640 DOI: 10.1016/j.pep.2008.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
We examined expression of two plant genes encoding coclaurine N-methyltransferase (CMT) and norcoclaurine synthase (NCS) in Escherichia coli from the Salmonella entericaprpBCDE promoter (P(prpB)) and compared it to that from the strongest IPTG-inducible promoter, P(T7). In contrast to our previous study showing slightly higher production of green fluorescent protein (GFP) from the pPro system compared to that from the T7 system, production of two plant proteins CMT and NCS from P(prpB) was 2- to 4-fold higher than that from P(T7). Unlike P(T7), expression from P(prpB) did not reduce cell growth even when highly induced, indicating that this propionate-inducible system is more efficient for overproduction of proteins that result in growth inhibition. In an auto-induction experiment, which does not require monitoring the culture or adding inducer during cell growth, the pPro system exhibited much higher protein production than the T7 system. These results strongly indicate that the pPro system is well-suited for overproduction of recombinant proteins.
Collapse
Affiliation(s)
- Sung Kuk Lee
- Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
19
|
Lao UL, Kostal J, Mulchandani A, Chen W. Affinity purification of plasmid DNA by temperature-triggered precipitation. Nat Protoc 2007; 2:1263-8. [PMID: 17546022 DOI: 10.1038/nprot.2007.171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol presents a new method to purify plasmid DNA using temperature-triggered precipitation. The principle is based on the specific DNA-binding affinity of a bacterial metalloregulatory (MerR) protein to its cognate DNA sequence and the temperature responsiveness of elastin-like protein (ELP). A bifunctional ELP-MerR fusion protein is created to enable the precipitation of plasmid DNA, designed to contain the MerR recognition sequence, by a simple temperature trigger. The protocol covers all stages of the process from the design of ELP-MerR fusion proteins and MerR-binding plasmids, to the isolation of plasmid DNA from Escherichia coli cultures after boiling lysis, the subsequent temperature-triggered precipitation of plasmid DNA-fusion protein complexes and final elution of plasmid DNA by mild heating. This protocol is well suited to laboratory research-scale applications, producing plasmid DNA of better purity and similar yield as one of the most commonly used laboratory methods, standard alkaline lysis (known as the midiprep procedure). The protocol takes approximately 30 min to obtain pure plasmid DNA from cell cultures using the temperature-triggered precipitation method.
Collapse
Affiliation(s)
- U Loi Lao
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, California 92507, USA
| | | | | | | |
Collapse
|
20
|
Darby RAJ, Forde GM, Slater NKH, Hine AV. Affinity purification of plasmid DNA directly from crude bacterial cell lysates. Biotechnol Bioeng 2007; 98:1103-8. [PMID: 17497740 DOI: 10.1002/bit.21492] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with impractically low DNA yields. We have optimized the procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 microg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required.
Collapse
Affiliation(s)
- Richard A J Darby
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | | | | | | |
Collapse
|
21
|
Forde GM, Ghose S, Slater NKH, Hine AV, Darby RAJ, Hitchcock AG. LacO-LacI interaction in affinity adsorption of plasmid DNA. Biotechnol Bioeng 2006; 95:67-75. [PMID: 16646090 DOI: 10.1002/bit.20955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current approaches for purifying plasmids from bacterial production systems exploit the physiochemical properties of nucleic acids in non-specific capture systems. In this study, an affinity system for plasmid DNA (pDNA) purification has been developed utilizing the interaction between the lac operon (lacO) sequence contained in the pDNA and a 64mer synthetic peptide representing the DNA-binding domain of the lac repressor protein, LacI. Two plasmids were evaluated, the native pUC19 and pUC19 with dual lacO3/lacOs operators (pUC19(lacO3/lacOs)), where the lacOs operator is perfectly symmetrical. The DNA-protein affinity interaction was evaluated by surface plasmon resonance using a Biacore system. The affinity capture of DNA in a chromatography system was evaluated using LacI peptide that had been immobilized to Streamline adsorbent. The KD-values for double stranded DNA (dsDNA) fragments containing lacO1 and lacO3 and lacOS and lacO3 were 5.7 +/- 0.3 x 10(-11) M and 4.1 +/- 0.2 x 10(-11) M respectively, which compare favorably with literature reports of 5 x 10(-10)-1 x 10(-9) M for native lacO1 and 1-1.2 x 10(-10) M for lacO1 in a saline buffer. Densitometric analysis of the gel bands from the affinity chromatography run clearly showed a significant preference for capture of the supercoiled fraction from the feed pDNA sample. The results indicate the feasibility of the affinity approach for pDNA capture and purification using native protein-DNA interaction.
Collapse
Affiliation(s)
- Gareth M Forde
- Department of Chemical Engineering, Cambridge Unit for Bioscience Engineering (CUBE), Pembroke Street, University of Cambridge, Cambridge CB2 3RA, UK
| | | | | | | | | | | |
Collapse
|