1
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Science 2025; 388:eadq1709. [PMID: 40208986 PMCID: PMC12118822 DOI: 10.1126/science.adq1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 04/12/2025]
Abstract
We used Hi-C, imaging, proteomics, and polymer modeling to define rules of engagement for SMC (structural maintenance of chromosomes) complexes as cells refold interphase chromatin into rod-shaped mitotic chromosomes. First, condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. Second, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion as sisters separate. Studies of mitotic chromosomes formed by cohesin, condensin II, and condensin I alone or in combination lead to refined models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase, loops are extruded in vivo at ∼1 to 3 kilobases per second by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
2
|
Prizak R, Gadzekpo A, Hilbert L. Chromatin unfolding via loops can drive clustered transposon insertion. Biophys J 2025:S0006-3495(25)00212-7. [PMID: 40188359 DOI: 10.1016/j.bpj.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025] Open
Abstract
Transposons, DNA sequences capable of relocating within the genome, make up a significant portion of eukaryotic genomes and are often found in clusters. Within the cell nucleus, the genome is organized into chromatin, a structure with varying degrees of compaction due to three-dimensional folding. Transposon insertion or activation can lead to chromatin decompaction, increasing accessibility and potentially facilitating further nearby insertions. This positive feedback between chromatin unfolding and transposon insertion may result in transposon clustering. Here, we combine bioinformatics with polymer modeling to explore possible mechanisms and conditions that promote clustered transposon insertions. Our analysis of human cell line genomic repeat data reveals extensive clustering of heterochromatic LINE-1 elements and euchromatic Alu elements. For Alu elements, this clustering correlates with increased chromatin accessibility. Both Alu and LINE-1 deviate in their sequence-inherent flexibility from the overall genome, with above-average flexibility for Alu and below-average flexibility for most LINE-1 sequences. Flexibility was highest in young transposons, so that young Alu and LINE-1 exceed overall genome flexibility. We developed an according polymer model of transposon insertion, consisting of a self-attracting chromatin domain. Transposon insertions locally disrupt self-attraction, leading to unfolding of the domain as more transposons are inserted. In simulations where transposons are inserted adjacent to existing ones, we observed gradual unfolding through loop extensions from a folded core. Including transposases as explicit particles, our model shows that adjacent transposon insertion occurs when densely packed chromatin excludes transposases or when insertion rates exceed the thermal equilibration rate of polymer configurations. We conclude that 1) dense chromatin packing that hinders transposase access as well as 2) a local loss of compaction upon transposon insertion favor clustered transposon insertion via loop formation. This biophysical mechanism of clustered insertion site preference would act in combination with selective pressures shaping transposon distribution over evolutionary timescales.
Collapse
Affiliation(s)
- Roshan Prizak
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Aaron Gadzekpo
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology, Zoological Institute, Karlsruhe, Germany.
| |
Collapse
|
3
|
Alvarez-Sandoval J, Guillen Melendez GA, Pérez-Hernández RA, Elizondo-Luevano JH, Castro-Ríos R, Kačániová M, Montes de Oca-Saucedo CR, Soto-Domínguez A, Chávez-Montes A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2025; 18:580. [PMID: 39942246 PMCID: PMC11818646 DOI: 10.3390/ma18030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Vernonia greggii belongs to the Asteraceae family, and some members of this family have been reported to possess anticancer properties. This study evaluated the antiproliferative effect of V. greggii methanol extract (ME), both in its free form and encapsulated into poly(lactic-co-glycolide) (PLGA) nanoparticles (NPs), on human cervical cancer cells (HeLa) and human epidermal keratinocytes (HaCaT). The extract was subsequently sub-fractionated into n-hexane (F-He), methanol (F-Me), and distilled water (F-Ac) fractions, and their antiproliferative effects were assessed. Time-dependent toxicity on HeLa cells was observed for the free-form fractions, with the F-Me fraction showing the highest efficacy compared to the others. Additionally, an NP formulation based on PLGA and F-Me (NPs F-Me) was developed, achieving 64.21% encapsulation efficiency and 11.38% drug loading. The NPs had an average size of 146.9 nm, a polydispersity index (PDI) of 0.103, and a ζ-potential of 23.3 mV. NPs F-Me were tested on HeLa and HaCaT cells, with toxicity observed at concentrations of 300 and 500 μg/mL, affecting tumor cell morphology. Furthermore, the hemolytic activity of F-Me and NPs F-Me was evaluated. The major bioactive compounds in the F-Me fraction were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). These findings suggest that the F-Me fraction of V. greggii exerts an antineoplastic effect both in its free form and when encapsulated in nanoparticles.
Collapse
Affiliation(s)
- Jissell Alvarez-Sandoval
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Gloria A. Guillen Melendez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Raymundo A. Pérez-Hernández
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Joel H. Elizondo-Luevano
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
- Laboratorio de Ciencias Naturales, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo C.P. 66050, NL, Mexico
| | - Rocío Castro-Ríos
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico;
| | - Miroslava Kačániová
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Carlos R. Montes de Oca-Saucedo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| |
Collapse
|
4
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
5
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590027. [PMID: 38659940 PMCID: PMC11042376 DOI: 10.1101/2024.04.18.590027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
6
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
8
|
Martin RM, de Almeida MR, Gameiro E, de Almeida SF. Live-cell imaging unveils distinct R-loop populations with heterogeneous dynamics. Nucleic Acids Res 2023; 51:11010-11023. [PMID: 37819055 PMCID: PMC10639055 DOI: 10.1093/nar/gkad812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
We have developed RHINO, a genetically encoded sensor that selectively binds RNA:DNA hybrids enabling live-cell imaging of cellular R-loops. RHINO comprises a tandem array of three copies of the RNA:DNA hybrid binding domain of human RNase H1 connected by optimized linker segments and fused to a fluorescent protein. This tool allows the measurement of R-loop abundance and dynamics in live cells with high specificity and sensitivity. Using RHINO, we provide a kinetic framework for R-loops at nucleoli, telomeres and protein-coding genes. Our findings demonstrate that R-loop dynamics vary significantly across these regions, potentially reflecting the distinct roles R-loops play in different chromosomal contexts. RHINO is a powerful tool for investigating the role of R-loops in cellular processes and their contribution to disease development and progression.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Madalena R de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Gameiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Dupont C, Chahar D, Trullo A, Gostan T, Surcis C, Grimaud C, Fisher D, Feil R, Llères D. Evidence for low nanocompaction of heterochromatin in living embryonic stem cells. EMBO J 2023:e110286. [PMID: 37082862 DOI: 10.15252/embj.2021110286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Despite advances in the identification of chromatin regulators and genome interactions, the principles of higher-order chromatin structure have remained elusive. Here, we applied FLIM-FRET microscopy to analyse, in living cells, the spatial organisation of nanometre range proximity between nucleosomes, which we called "nanocompaction." Both in naive embryonic stem cells (ESCs) and in ESC-derived epiblast-like cells (EpiLCs), we find that, contrary to expectations, constitutive heterochromatin is much less compacted than bulk chromatin. The opposite was observed in fixed cells. HP1α knockdown increased nanocompaction in living ESCs, but this was overridden by loss of HP1β, indicating the existence of a dynamic HP1-dependent low compaction state in pluripotent cells. Depletion of H4K20me2/3 abrogated nanocompaction, while increased H4K20me3 levels accompanied the nuclear reorganisation during EpiLCs induction. Finally, the knockout of the nuclear cellular-proliferation marker Ki-67 strongly reduced both interphase and mitotic heterochromatin nanocompaction in ESCs. Our data indicate that, contrary to prevailing models, heterochromatin is not highly compacted at the nanoscale but resides in a dynamic low nanocompaction state that depends on H4K20me2/3, the balance between HP1 isoforms, and Ki-67.
Collapse
Affiliation(s)
- Claire Dupont
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Dhanvantri Chahar
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Antonio Trullo
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Thierry Gostan
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Charlotte Grimaud
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, Wang ZY, Kapheim KM, Wyman ES, Adastra PA, Liu W, Parsons LR, Jackson SR, Goodwin K, Davidson SM, McBride MJ, Webb AE, Omufwoko KS, Van Dorp N, Otárola MF, Pham M, Omer AD, Weisz D, Schraiber J, Villanea F, Wcislo WT, Paxton RJ, Hunt BG, Aiden EL, Kocher SD. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nat Ecol Evol 2023; 7:557-569. [PMID: 36941345 PMCID: PMC11610481 DOI: 10.1038/s41559-023-02001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2023]
Abstract
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Karen M Kapheim
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biology, Utah State University, Logan, UT, USA
| | - Eli S Wyman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Per A Adastra
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthew J McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nikki Van Dorp
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mauricio Fernández Otárola
- Biodiversity and Tropical Ecology Research Center (CIBET) and School of Biology, University of Costa Rica, San José, Costa Rica
| | - Melanie Pham
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Schraiber
- Department of Biology, Temple University, Philadelphia, PA, USA
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Fernando Villanea
- Department of Biology, Temple University, Philadelphia, PA, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Robert J Paxton
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Durand T, Paul-Gilloteaux P, Gora M, Laboudie L, Coron E, Neveu I, Neunlist M, Naveilhan P. Visualizing enteric nervous system activity through dye-free dynamic full-field optical coherence tomography. Commun Biol 2023; 6:236. [PMID: 36864093 PMCID: PMC9981581 DOI: 10.1038/s42003-023-04593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Major advances have been achieved in imaging technologies but most methodological approaches currently used to study the enteric neuronal functions rely on exogenous contrast dyes that can interfere with cellular functions or survival. In the present paper, we investigated whether full-field optical coherence tomography (FFOCT), could be used to visualize and analyze the cells of the enteric nervous system. Experimental work on whole-mount preparations of unfixed mouse colons showed that FFOCT enables the visualization of the myenteric plexus network whereas dynamic FFOCT enables to visualize and identify in situ individual cells in the myenteric ganglia. Analyzes also showed that dynamic FFOCT signal could be modified by external stimuli such veratridine or changes in osmolarity. These data suggest that dynamic FFOCT could be of great interest to detect changes in the functions of enteric neurons and glia in normal and disease conditions.
Collapse
Affiliation(s)
- Tony Durand
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000, Nantes, France
| | - Michalina Gora
- Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France
| | - Lara Laboudie
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Emmanuel Coron
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Department of Gastroenterology and Hepatology, University Hospital of Geneva (HUG), rue Gabrielle Perret-Gentil 4, 1211, Genève, 1205, Switzerland
| | - Isabelle Neveu
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunlist
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
12
|
Weiβ M, Chanou A, Schauer T, Tvardovskiy A, Meiser S, König AC, Schmidt T, Kruse E, Ummethum H, Trauner M, Werner M, Lalonde M, Hauck SM, Scialdone A, Hamperl S. Single-copy locus proteomics of early- and late-firing DNA replication origins identifies a role of Ask1/DASH complex in replication timing control. Cell Rep 2023; 42:112045. [PMID: 36701236 PMCID: PMC9989823 DOI: 10.1016/j.celrep.2023.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The chromatin environment at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how and which chromatin features control the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we use site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae. Using mass spectrometry, we define the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to known origin interactors, we find the microtubule-binding Ask1/DASH complex as an origin-regulating factor. Strikingly, tethering of Ask1 to individual origin sites advances replication timing (RT) of the targeted chromosomal domain. Targeted degradation of Ask1 globally changes RT of a subset of origins, which can be reproduced by inhibiting microtubule dynamics. Thus, our findings mechanistically connect RT and chromosomal organization via Ask1/DASH with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Meiser
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Tobias Schmidt
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
13
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
14
|
von der Heyde EL, Hallmann A. Molecular and cellular dynamics of early embryonic cell divisions in Volvox carteri. THE PLANT CELL 2022; 34:1326-1353. [PMID: 35018470 PMCID: PMC9026201 DOI: 10.1093/plcell/koac004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Cell division is fundamental to all organisms and the green alga used here exhibits both key animal and plant functions. Specifically, we analyzed the molecular and cellular dynamics of early embryonic divisions of the multicellular green alga Volvox carteri (Chlamydomonadales). Relevant proteins related to mitosis and cytokinesis were identified in silico, the corresponding genes were cloned, fused to yfp, and stably expressed in Volvox, and the tagged proteins were studied by live-cell imaging. We reveal rearrangements of the microtubule cytoskeleton during centrosome separation, spindle formation, establishment of the phycoplast, and generation of previously unknown structures. The centrosomes participate in initiation of spindle formation and determination of spindle orientation. Although the nuclear envelope does not break down during early mitosis, intermixing of cytoplasm and nucleoplasm results in loss of nuclear identity. Finally, we present a model for mitosis in Volvox. Our study reveals enormous dynamics, clarifies spatio-temporal relationships of subcellular structures, and provides insight into the evolution of cell division.
Collapse
Affiliation(s)
- Eva Laura von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Stahl-Meyer J, Holland LKK, Liu B, Maeda K, Jäättelä M. Lysosomal Changes in Mitosis. Cells 2022; 11:875. [PMID: 35269496 PMCID: PMC8909281 DOI: 10.3390/cells11050875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
The recent discovery demonstrating that the leakage of cathepsin B from mitotic lysosomes assists mitotic chromosome segregation indicates that lysosomal membrane integrity can be spatiotemporally regulated. Unlike many other organelles, structural and functional alterations of lysosomes during mitosis remain, however, largely uncharted. Here, we demonstrate substantial differences in lysosomal proteome, lipidome, size, and pH between lysosomes that were isolated from human U2OS osteosarcoma cells either in mitosis or in interphase. The combination of pharmacological synchronization and mitotic shake-off yielded ~68% of cells in mitosis allowing us to investigate mitosis-specific lysosomal changes by comparing cell populations that were highly enriched in mitotic cells to those mainly in the G1 or G2 phases of the cell cycle. Mitotic cells had significantly reduced levels of lysosomal-associated membrane protein (LAMP) 1 and the active forms of lysosomal cathepsin B protease. Similar trends were observed in levels of acid sphingomyelinase and most other lysosomal proteins that were studied. The altered protein content was accompanied by increases in the size and pH of LAMP2-positive vesicles. Moreover, mass spectrometry-based shotgun lipidomics of purified lysosomes revealed elevated levels of sphingolipids, especially sphingomyelin and hexocylceramide, and lysoglyserophospholipids in mitotic lysosomes. Interestingly, LAMPs and acid sphingomyelinase have been reported to stabilize lysosomal membranes, whereas sphingomyelin and lysoglyserophospholipids have an opposite effect. Thus, the observed lysosomal changes during the cell cycle may partially explain the reduced lysosomal membrane integrity in mitotic cells.
Collapse
Affiliation(s)
- Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Lya Katrine Kauffeldt Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Gilloteaux J, Bouchat J, Bielarz V, Brion JP, Nicaise C. A primary cilium in oligodendrocytes: a fine structure signal of repairs in thalamic Osmotic Demyelination Syndrome (ODS). Ultrastruct Pathol 2021; 45:128-157. [PMID: 34154511 DOI: 10.1080/01913123.2021.1891161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium.,Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Valery Bielarz
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| |
Collapse
|
17
|
Xin Y, Kang BS, Zheng YP, Shan SW, Kee CS, Tan Y. Biophysical properties of corneal cells reflect high myopia progression. Biophys J 2021; 120:3498-3507. [PMID: 34022236 DOI: 10.1016/j.bpj.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
Myopia is a common ocular disorder with significant alterations in the anterior ocular structure, including the cornea. The cell biophysical phenotype has been proposed to reflect the state of various diseases. However, the biophysical properties of corneal cells have not been characterized during myopia progression and their relationship with myopia remains unknown. This study characterizes the biophysical properties of corneal cells in normal, myopic, and recovered conditions, using two classical myopia models. Surprisingly, myopic corneal cells considerably reduce F-actin and microtubule content and cellular stiffness and generate elevated traction force compared with control cells. When myopia is restored to the healthy state, these biophysical properties are partially or fully restored to the levels of control cells. Furthermore, the level of chromatin condensation is significantly increased in the nucleus of myopic corneal cells and reduced to a level similar to healthy cells after recovery. These findings demonstrate that the reversible biophysical alterations of corneal cells reflect myopia progression, facilitating the study of the role of corneal cell biophysics in myopia.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Byung Soo Kang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chea-Su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
19
|
Chattopadhyaya S, Banerjee S. miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes. Biol Cell 2020; 113:118-129. [PMID: 33278308 DOI: 10.1111/boc.202000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND INFORMATION Megakaryocytes (MKs) follow a unique cell cycle duplication process, called endomitosis, resulting in polyploidisation of cells. It is hypothesised that polyploidy, as well as an increment in cytoplasm volume, allow more efficient platelets generation from MKs. Although polyploidy leads to an increase in the DNA amount, which impacts gene expression, little is known about ribosomal biogenesis in these polylobulated polyploid cells. RESULTS The nucleolus acts as a hub for ribosomal biogenesis, which in turn governs the protein synthesis rate of the cells. We therefore estimated the size and activity of the nucleolus in polyploid cells during megakaryopoiesis in vitro. Polyploid megakaryocytic cell lines and in vitro cultured MKs, which were obtained from human cord blood-derived CD 34+ cells, revealed that miRNA 146b regulated the activity of nucleolar and coiled-body phosphoprotein 1, which plays an integral role in determining nucleolar size and activity. Additionally, miRNA-146b was up-regulated during endomitosis and was found to promote megakaryopoiesis. CONCLUSION We propose that miRNA 146b regulates not only nucleolar size and activity, but also megakaryopoiesis. SIGNIFICANCE This study highlights the importance of nucleolar activity and miRNA in the progression of megakaryopoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Saran Chattopadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Bidhannagar, Kolkata, 700064, India
| | - Subrata Banerjee
- School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| |
Collapse
|
20
|
King JJ, Irving KL, Evans CW, Chikhale RV, Becker R, Morris CJ, Peña Martinez CD, Schofield P, Christ D, Hurley LH, Waller ZAE, Iyer KS, Smith NM. DNA G-Quadruplex and i-Motif Structure Formation Is Interdependent in Human Cells. J Am Chem Soc 2020; 142:20600-20604. [PMID: 33253551 DOI: 10.1021/jacs.0c11708] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.
Collapse
Affiliation(s)
- Jessica J King
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kelly L Irving
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Rouven Becker
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Cristian D Peña Martinez
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia
| | - Peter Schofield
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Daniel Christ
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - K Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
21
|
Frölich S, Robker R, Russell D. Development of Automated Microscopy-Assisted High-Content Multiparametric Assays for Cell Cycle Staging and Foci Quantitation. Cytometry A 2020; 97:378-393. [PMID: 32083400 DOI: 10.1002/cyto.a.23988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/19/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023]
Abstract
The investigation of cell cycle stage-dependent processes in a population of cells is often performed using flow cytometry. While this approach is high-throughput, it is relatively low in resolution and unable to measure phenotypic changes or processes occurring in subcellular compartments. We integrated automated microscopy with newly developed informatics workflow that enabled the quantitation of multiple fluorescent markers from specific subnuclear regions throughout a population of cells. Telomeres protect chromosome termini and prevent cellular aging. Cancer cells lengthen telomeres by synthesizing new TTAGGG repeats by the enzyme telomerase, while others activate recombination-dependent alternative lengthening of telomeres (ALT). A key feature of the ALT pathway is the specific clustering of promyelocytic leukemia (PML) nuclear bodies at telomeres. These ALT-associated PML bodies (APBs) common in tumors of mesenchymal origin have gained in diagnostic use in the past decade. Here we applied recent improvements in automated microscopy and developed novel informatics workflows for quantitation of multiple fluorescent markers from specific subnuclear regions at the single cell level. Key to this workflow are customized machine learning algorithms within HCS Studio™ Cell Analysis which automatically identify and segment cells into defined regions of interest based on fluorescent markers, measure marker intensities and compute marker colocalizations in specific segmented regions. These multiparametric cellular assays assess cell cycle dynamics as well as the interactome of APBs, are amenable to adherent cells and histological sections, and are adaptable for use with additional markers. In the future we anticipate exploiting these algorithms for a wide range of research questions related to telomere biology with potential to facilitate clinical development of ALT detection assays to benefit patients with these often-poor prognosis tumors. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Sonja Frölich
- Robinson Research Institute, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Rebecca Robker
- Robinson Research Institute, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Darryl Russell
- Robinson Research Institute, School of Medicine, The University of Adelaide, South Australia, Australia
| |
Collapse
|
22
|
NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility. Int J Mol Sci 2020; 21:ijms21041248. [PMID: 32070024 PMCID: PMC7072915 DOI: 10.3390/ijms21041248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis. After 1.5 days of differentiation, silencing NCAPG enhanced muscle-specific gene expression. An assay for transposase-accessible chromatin- high throughput sequencing (ATAC-seq) revealed that silencing NCAPG altered chromatin accessibility to activating protein 1 (AP-1) and its subunits. Knocking down the expression of the AP-1 subunits fos-related antigen 2 (FOSL2) or junB proto-oncogene (JUNB) enhanced part of the muscle-specific gene expression. In conclusion, our data provide valuable evidence about NCAPG’s function in myogenesis, as well as its potential role in gene expression.
Collapse
|
23
|
Advantage of Using Spherical over Cartesian Coordinates in the Chromosome Territories 3D Modeling. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7302845 DOI: 10.1007/978-3-030-50417-5_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper shows results of chromosome territory modeling in two cases: when the implementation of the algorithm was based on Cartesian coordinates and when implementation was made with Spherical coordinates. In the article, the summary of measurements of computational times of simulation of chromatin decondensation process (which led to constitute the chromosome territory) was presented. Initially, when implementation was made with the use of Cartesian Coordinates, simulation takes a lot of time to create a model (mean 746.7[sec] with the median 569.1[sec]) and additionally requires restarts of the algorithm, also often exceeds acceptable (given a priori) time for the computational experiment. Because of that, authors attempted changing the coordinate system to Spherical Coordinates (in a few previous projects it leads to improving the efficiency of implementation). After changing the way that 3D point is represented in 3D space the time required to make a successful model reduced to the mean 25.3[sec] with a median 18.5[s] (alongside with lowering the number of necessary algorithm restarts) which gives a significant difference in the efficiency of model’s creation. Therefore we showed, that a more efficient way for implementation was the usage of spherical coordinates.
Collapse
|
24
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
25
|
Bergqvist C, Niss F, Figueroa RA, Beckman M, Maksel D, Jafferali MH, Kulyté A, Ström AL, Hallberg E. Monitoring of chromatin organization in live cells by FRIC. Effects of the inner nuclear membrane protein Samp1. Nucleic Acids Res 2019; 47:e49. [PMID: 30793190 PMCID: PMC6511872 DOI: 10.1093/nar/gkz123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.
Collapse
Affiliation(s)
- Cecilia Bergqvist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Frida Niss
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Ricardo A Figueroa
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Marie Beckman
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet SE-171 77 Sweden
| | - Danuta Maksel
- Monash Molecular Crystallisation Facility (MMCF), Monash University, VIC 3800, Australia
| | - Mohammed H Jafferali
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Agné Kulyté
- Lipid laboratory, Department of Medicine, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Anna-Lena Ström
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| | - Einar Hallberg
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16B, SE-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Chitranshi N, Dheer Y, Kumar S, Graham SL, Gupta V. Molecular docking, dynamics, and pharmacology studies on bexarotene as an agonist of ligand-activated transcription factors, retinoid X receptors. J Cell Biochem 2019; 120:11745-11760. [PMID: 30746761 DOI: 10.1002/jcb.28455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Retinoid X receptors (RXRs) belong to the nuclear receptor superfamily, and upon ligand activation, these receptors control gene transcription via either homodimerization with themselves or heterodimerization with the partner-nuclear receptor. The protective effects of RXRs and RXR agonists have been reported in several neurodegenerative diseases, including in the retina. This study was aimed to prioritize compounds from natural and synthetic origin retinoids as potential RXR agonists by molecular docking and molecular dynamic simulation strategies. The docking studies indicated bexarotene as a lead compound that can activate various RXR receptor isoforms (α, β, and γ) and has a strong binding affinity to the receptor protein than retinoic acid, which is known as a natural endogenous RXR agonist. Dynamic simulation studies confirmed that the hydrogen bonding and hydrophobic interactions were highly stable in all the three isoforms of the RXR-bexarotene complex. To further validate the significance of the RXR receptor in neurons, in vitro pharmacological treatment of neuronal SH-SY5Y cells with bexarotene was performed. In vitro data from SH-SY5Y cells confirmed that bexarotene activated RXR-simulated neurite outgrowth significantly. We conclude that bexarotene could be potentially used as an exogenous activator of RXRs and emerge as a good drug target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Jankipuram, Lucknow, Uttar Pradesh, India
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
- Save Sight Institute, Sydney University, Sydney, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| |
Collapse
|
27
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
28
|
Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin. Mol Cell 2019; 69:664-676.e5. [PMID: 29452641 DOI: 10.1016/j.molcel.2018.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023]
Abstract
The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive. Here we show that condensin has a strong tendency to trap itself in its own reaction product during chromatin compaction and yet is capable of interacting with chromatin in a highly dynamic manner in vivo. To resolve this apparent paradox, we identified specific chromatin remodelers and AAA-class ATPases that act in a coordinated manner to release condensin from chromatin entrapment. The Cdc48 segregase is the central linchpin of this regulatory mechanism and promotes ubiquitin-dependent cycling of condensin on mitotic chromatin as well as effective chromosome condensation. Collectively, our results show that condensin inhibition by its own reaction product is relieved by forceful enzyme extraction from chromatin.
Collapse
|
29
|
Abdollahi E, Taucher-Scholz G, Jakob B. Application of fluorescence lifetime imaging microscopy of DNA binding dyes to assess radiation-induced chromatin compaction changes. Int J Mol Sci 2018; 19:E2399. [PMID: 30110966 PMCID: PMC6121443 DOI: 10.3390/ijms19082399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.
Collapse
Affiliation(s)
- Elham Abdollahi
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| |
Collapse
|
30
|
Abe KI, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, Schultz RM, Aoki F. Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci U S A 2018; 115:E6780-E6788. [PMID: 29967139 PMCID: PMC6055165 DOI: 10.1073/pnas.1804309115] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mice, transcription initiates at the mid-one-cell stage and transcriptional activity dramatically increases during the two-cell stage, a process called zygotic gene activation (ZGA). Associated with ZGA is a marked change in the pattern of gene expression that occurs after the second round of DNA replication. To distinguish ZGA before and after the second-round DNA replication, the former and latter are called minor and major ZGA, respectively. Although major ZGA are required for development beyond the two-cell stage, the function of minor ZGA is not well understood. Transiently inhibiting minor ZGA with 5, 6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB) resulted in the majority of embryos arresting at the two-cell stage and retention of the H3K4me3 mark that normally decreases. After release from DRB, at which time major ZGA normally occurred, transcription initiated with characteristics of minor ZGA but not major ZGA, although degradation of maternal mRNA normally occurred. Thus, ZGA occurs sequentially starting with minor ZGA that is critical for the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Ken-Ichiro Abe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan
| | - Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan
| | - Dai Tsukioka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan
| | - Machika Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 277-0882 Kashiwa, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 277-8562 Kashiwa, Japan;
| |
Collapse
|
31
|
Rana M, Dash AK, Ponnusamy K, Tyagi RK. Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin. Chromosome Res 2018; 26:255-276. [DOI: 10.1007/s10577-018-9583-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
|
32
|
Barton C, Morganella S, Ødegård-Fougner Ø, Alexander S, Ries J, Fitzgerald T, Ellenberg J, Birney E. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy. PLoS Comput Biol 2018. [PMID: 29522506 PMCID: PMC5862484 DOI: 10.1371/journal.pcbi.1006002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The 3D structure of chromatin plays a key role in genome function, including gene expression, DNA replication, chromosome segregation, and DNA repair. Furthermore the location of genomic loci within the nucleus, especially relative to each other and nuclear structures such as the nuclear envelope and nuclear bodies strongly correlates with aspects of function such as gene expression. Therefore, determining the 3D position of the 6 billion DNA base pairs in each of the 23 chromosomes inside the nucleus of a human cell is a central challenge of biology. Recent advances of super-resolution microscopy in principle enable the mapping of specific molecular features with nanometer precision inside cells. Combined with highly specific, sensitive and multiplexed fluorescence labeling of DNA sequences this opens up the possibility of mapping the 3D path of the genome sequence in situ. Here we develop computational methodologies to reconstruct the sequence configuration of all human chromosomes in the nucleus from a super-resolution image of a set of fluorescent in situ probes hybridized to the genome in a cell. To test our approach, we develop a method for the simulation of DNA in an idealized human nucleus. Our reconstruction method, ChromoTrace, uses suffix trees to assign a known linear ordering of in situ probes on the genome to an unknown set of 3D in-situ probe positions in the nucleus from super-resolved images using the known genomic probe spacing as a set of physical distance constraints between probes. We find that ChromoTrace can assign the 3D positions of the majority of loci with high accuracy and reasonable sensitivity to specific genome sequences. By simulating appropriate spatial resolution, label multiplexing and noise scenarios we assess our algorithms performance. Our study shows that it is feasible to achieve genome-wide reconstruction of the 3D DNA path based on super-resolution microscopy images. The 3D structure of DNA in the nucleus is known to be important for many aspects of DNA function, such as how gene expression is regulated. However, current techniques to localise or determine 3D DNA structure are often indirect. The advent of super-resolution microscopy, at a resolution of 20 nm or better can directly visualize fluorescent probes bound to specific DNA in the nucleus. However it is not trivial to associate how many specific stretches of DNA lie relative to each other, making reliable and precise 3D mapping of large stretches of the genome difficult. Here, we propose a method that leverages the fact that we know the sequence of the genome and the resolution of the super-resolution microscope. Our method, ChromoTrace, uses a computer science data structure, suffix trees, that allow one to simultaneous search the entire genome for specific sub-sequences. To show that our method works, we build a simulation scheme for simulating DNA as ensembles of polymer chains in a nucleus and explore the sensitivity of our method to different types of error. ChromoTrace can robustly and accurately reconstruct 3D paths in our simulations.
Collapse
Affiliation(s)
- Carl Barton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sandro Morganella
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Øyvind Ødegård-Fougner
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Heidelberg, Germany
| | - Stephanie Alexander
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Heidelberg, Germany
| | - Jonas Ries
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Heidelberg, Germany
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jan Ellenberg
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Heidelberg, Germany
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Samejima K, Booth DG, Ogawa H, Paulson JR, Xie L, Watson CA, Platani M, Kanemaki MT, Earnshaw WC. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J Cell Sci 2018; 131:jcs.210187. [PMID: 29361541 PMCID: PMC5868952 DOI: 10.1242/jcs.210187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
The requirement for condensin in chromosome formation in somatic cells remains unclear, as imperfectly condensed chromosomes do form in cells depleted of condensin by conventional methodologies. In order to dissect the roles of condensin at different stages of vertebrate mitosis, we have established a versatile cellular system that combines auxin-mediated rapid degradation with chemical genetics to obtain near-synchronous mitotic entry of chicken DT40 cells in the presence and absence of condensin. We analyzed the outcome by live- and fixed-cell microscopy methods, including serial block face scanning electron microscopy with digital reconstruction. Following rapid depletion of condensin, chromosomal defects were much more obvious than those seen after a slow depletion of condensin. The total mitotic chromatin volume was similar to that in control cells, but a single mass of mitotic chromosomes was clustered at one side of a bent mitotic spindle. Cultures arrest at prometaphase, eventually exiting mitosis without segregating chromosomes. Experiments where the auxin concentration was titrated showed that different condensin levels are required for anaphase chromosome segregation and formation of a normal chromosome architecture. This article has an associated First Person interview with the first author of the paper. Summary: Rapid condensin depletion reveals that different condensin levels are required for mitotic chromosome architecture and segregation. Condensin is not required for chromatin volume compaction during mitosis.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Daniel G Booth
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Cara A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Melpomeni Platani
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, ROIS, and Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
34
|
Shen D, Skibbens RV. Chl1 DNA helicase and Scc2 function in chromosome condensation through cohesin deposition. PLoS One 2017; 12:e0188739. [PMID: 29186203 PMCID: PMC5706694 DOI: 10.1371/journal.pone.0188739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
Chl1 DNA helicase promotes sister chromatid cohesion and associates with both the cohesion establishment acetyltransferase Eco1/Ctf7 and the DNA polymerase processivity factor PCNA that supports Eco1/Ctf7 function. Mutation in CHL1 results in precocious sister chromatid separation and cell aneuploidy, defects that arise through reduced levels of chromatin-bound cohesins which normally tether together sister chromatids (trans tethering). Mutation of Chl1 family members (BACH1/BRIP/FANCJ and DDX11/ChlR1) also exhibit genotoxic sensitivities, consistent with a role for Chl1 in trans tethering which is required for efficient DNA repair. Chl1 promotes the recruitment of Scc2 to DNA which is required for cohesin deposition onto DNA. There is limited evidence, however, that Scc2 also directs the deposition onto DNA of condensins which promote tethering in cis (intramolecular DNA links). Here, we test the ability of Chl1 to promote cis tethering and the role of both Chl1 and Scc2 to promote condensin recruitment to DNA. The results reveal that chl1 mutant cells exhibit significant condensation defects both within the rDNA locus and genome-wide. Importantly, chl1 mutant cell condensation defects do not result from reduced chromatin binding of condensin, but instead through reduced chromatin binding of cohesin. We tested scc2-4 mutant cells and similarly found no evidence of reduced condensin recruitment to chromatin. Consistent with a role for Scc2 specifically in cohesin deposition, scc2-4 mutant cell condensation defects are irreversible. We thus term Chl1 a novel regulator of both chromatin condensation and sister chromatid cohesion through cohesin-based mechanisms. These results reveal an exciting interface between DNA structure and the highly conserved cohesin complex.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
35
|
Raccaud M, Suter DM. Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Lett 2017; 592:878-887. [PMID: 28862742 DOI: 10.1002/1873-3468.12828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
During mitosis, gene transcription stops, and the bulk of DNA-binding proteins are excluded from condensed chromosomes. While most gene-specific transcription factors are largely evicted from mitotic chromosomes, a subset remains bound to specific and non-specific DNA sites. Here, we review the current knowledge on the mechanisms leading to the retention of a subset of transcription factors on mitotic chromosomes and discuss the implications in gene expression regulation and their potential as an epigenetic mechanism controlling stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Mahé Raccaud
- UPSUTER, Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - David M Suter
- UPSUTER, Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| |
Collapse
|
36
|
Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, Li P, Deng C, Di LJ. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep 2017. [PMID: 28642588 PMCID: PMC5481380 DOI: 10.1038/s41598-017-04406-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic therapy is a novel tumor therapeutic method and refers to the targeting of the aberrant epigenetic modifications presumably at cancer-related genes by chemicals which are epigenetic targeting drugs (ETDs). Not like in treating hematopoietic cancer, the clinical trials investigating the potential use of ETDs in the solid tumor is not encouraging. Instead, the curative effects of ETD delivered together with DNA targeting chemo drugs (DTDs) are quite promising according to our meta-analysis. To investigate the synergistic mechanism of ETD and DTD drug combination, the therapeutic effect was studied using both cell lines and mouse engrafted tumors. Mechanically we show that HDAC inhibitors and DNMT inhibitors are capable of increasing the chromatin accessibility to cisplatin (CP) and doxorubicin (Dox) through chromatin decompaction globally. Consequently, the combination of ETD and DTD enhances the DTD induced DNA damage and cell death. Engrafted tumors in SCID mice also show increased sensitivity to irradiation (IR) or CP when the tumors were pretreated by ETDs. Given the limited therapeutic effect of ETD alone, these results strongly suggest that the combination of DTD, including irradiation, and ETD treatment is a very promising choice in clinical solid tumor therapy.
Collapse
Affiliation(s)
- Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Dapeng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Haitao Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhiqiang Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Peipei Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
37
|
Funaya S, Aoki F. Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J Reprod Dev 2017; 63:359-363. [PMID: 28579579 PMCID: PMC5593087 DOI: 10.1262/jrd.2017-058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the
mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos is unique and changes dramatically at the two-cell
stage. However, the mechanism regulating this alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically between the one- and two-cell stages. In this article, we
review the characteristics of transcription, chromatin structure, and epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic factors in the alteration of
transcription that occurs between these stages.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
38
|
Golloshi R, Sanders JT, McCord RP. Genome organization during the cell cycle: unity in division. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28510289 DOI: 10.1002/wsbm.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
39
|
Abstract
Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia.
Collapse
Affiliation(s)
- Donglai Shen
- a Department of Biological Sciences , Lehigh University , Bethlehem , PA , USA
| | - Robert V Skibbens
- a Department of Biological Sciences , Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
40
|
Abnosi MH, Gholami S. Cadmium treatment of rats caused impairment of osteogenic potential of bone marrow mesenchymal stem cells: a possible mechanism of cadmium related osteoporosis. IRANIAN JOURNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Vaňková Hausnerová V, Lanctôt C. Chromatin decondensation is accompanied by a transient increase in transcriptional output. Biol Cell 2016; 109:65-79. [PMID: 27633335 DOI: 10.1111/boc.201600032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION The levels of chromatin condensation usually correlate inversely with the levels of transcription. The mechanistic links between chromatin condensation and RNA polymerase II activity remain to be elucidated. In the present work, we sought to experimentally determine whether manipulation of chromatin condensation levels can have a direct effect on transcriptional activity. RESULTS We generated a U-2-OS cell line in which the nascent transcription of a reporter gene could be imaged alongside chromatin compaction levels in living cells. The transcripts were tagged at their 5' end with PP7 stem loops, which can be detected upon expression of a PP7 capsid protein fused to green fluorescent protein. Cycles of global chromatin hypercondensation and decondensation were performed by perfusing culture media of different osmolarities during imaging. We used the fluorescence recovery after photobleaching technique to analyse the transcriptional dynamics in both conditions. Surprisingly, we found that, despite a drop in signal intensity, nascent transcription appeared to continue at the same rate in hypercondensed chromatin. Furthermore, quantification of transcriptional profiles revealed that chromatin decondensation was accompanied by a brief and transient spike in transcriptional output. CONCLUSIONS We propose a model whereby the initiation of transcription is not impaired in condensed chromatin, but inefficient elongation in these conditions leads to the accumulation of RNA polymerase II at the transcription site. Upon chromatin decondensation, release of the RNA polymerase II halt triggers a wave of transcription, which we detect as a transient spike in activity. SIGNIFICANCE The results presented here shed light on the activity of RNA polymerase II during chromatin condensation and decondensation. As such, they point to a new level of transcriptional regulation.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| | - Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| |
Collapse
|
42
|
Abstract
Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.
Collapse
Affiliation(s)
- Elisabeth Schmidtmann
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| | - Tobias Anton
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| | - Pascaline Rombaut
- b Gene Center and Department of Biochemistry , LMU Munich , Munich , Germany
| | - Franz Herzog
- b Gene Center and Department of Biochemistry , LMU Munich , Munich , Germany
| | - Heinrich Leonhardt
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| |
Collapse
|
43
|
Abstract
The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.
Collapse
Affiliation(s)
- Ewa Piskadlo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156 , Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156 , Portugal
| |
Collapse
|
44
|
Spagnol ST, Armiger TJ, Dahl KN. Mechanobiology of Chromatin and the Nuclear Interior. Cell Mol Bioeng 2016; 9:268-276. [PMID: 28163791 PMCID: PMC5289645 DOI: 10.1007/s12195-016-0444-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
The view of the cell nucleus has evolved from an isolated, static organelle to a dynamic structure integrated with other mechanical elements of the cell. Both dynamics and integration appear to contribute to a mechanical regulation of genome expression. Here, we review physical structures inside the nucleus at different length scales and the dynamic reorganization modulated by cellular forces. First, we discuss nuclear organization focusing on self-assembly and disassembly of DNA structures and various nuclear bodies. We then discuss the importance of connections from the chromatin fiber through the nuclear envelope to the rest of the cell as they relate to mechanobiology. Finally, we discuss how cell stimulation, both chemical and physical, can alter nuclear structures and ultimately cellular function in healthy cells and in some model diseases. The view of chromatin and nuclear bodies as mechanical entities integrated with force generation from the cytoskeleton combines polymer physics with cell biology and medicine.
Collapse
Affiliation(s)
- Stephen T. Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Travis J. Armiger
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
45
|
Ooga M, Fulka H, Hashimoto S, Suzuki MG, Aoki F. Analysis of chromatin structure in mouse preimplantation embryos by fluorescent recovery after photobleaching. Epigenetics 2016; 11:85-94. [PMID: 26901819 DOI: 10.1080/15592294.2015.1136774] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development.
Collapse
Affiliation(s)
- Masatoshi Ooga
- a Department of Integrated Biosciences , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba , Japan
| | - Helena Fulka
- a Department of Integrated Biosciences , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba , Japan.,b Department of Biology of Reproduction , Institute of Animal Science , Prague , Czech Republic
| | - Satoshi Hashimoto
- a Department of Integrated Biosciences , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba , Japan
| | - Masataka G Suzuki
- a Department of Integrated Biosciences , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba , Japan
| | - Fugaku Aoki
- a Department of Integrated Biosciences , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba , Japan.,b Department of Biology of Reproduction , Institute of Animal Science , Prague , Czech Republic
| |
Collapse
|
46
|
Spagnol ST, Dahl KN. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging. PLoS One 2016; 11:e0146244. [PMID: 26765322 PMCID: PMC4713418 DOI: 10.1371/journal.pone.0146244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes.
Collapse
Affiliation(s)
- Stephen T. Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, 15213, United States of America
- * E-mail:
| |
Collapse
|
47
|
Harkness T, McNulty JD, Prestil R, Seymour SK, Klann T, Murrell M, Ashton RS, Saha K. High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics. Biotechnol J 2015; 10:1555-67. [PMID: 26097126 DOI: 10.1002/biot.201400756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/24/2015] [Accepted: 06/11/2015] [Indexed: 01/14/2023]
Abstract
Understanding the mechanisms underpinning cellular responses to microenvironmental cues requires tight control not only of the complex milieu of soluble signaling factors, extracellular matrix (ECM) connections and cell-cell contacts within cell culture, but also of the biophysics of human cells. Advances in biomaterial fabrication technologies have recently facilitated detailed examination of cellular biophysics and revealed that constraints on cell geometry arising from the cellular microenvironment influence a wide variety of human cell behaviors. Here, we create an in vitro platform capable of precise and independent control of biochemical and biophysical microenvironmental cues by adapting microcontact printing technology into the format of standard six- to 96-well plates to create MicroContact Printed Well Plates (μCP Well Plates). Automated high-content imaging of human cells seeded on μCP Well Plates revealed tight, highly consistent control of single-cell geometry, cytoskeletal organization, and nuclear elongation. Detailed subcellular imaging of the actin cytoskeleton and chromatin within live human fibroblasts on μCP Well Plates was then used to describe a new relationship between cellular geometry and chromatin dynamics. In summary, the μCP Well Plate platform is an enabling high-content screening technology for human cell biology and cellular engineering efforts that seek to identify key biochemical and biophysical cues in the cellular microenvironment.
Collapse
Affiliation(s)
- Ty Harkness
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D McNulty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Prestil
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie K Seymour
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler Klann
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Murrell
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, Yale University, CT, USA.,Systems Biology Institute, Yale University, CT, USA
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
48
|
Azad GK, Tomar RS. Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 2015; 41:2717-30. [PMID: 24469733 DOI: 10.1007/s11033-014-3181-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromatin is a dynamic DNA scaffold structure that responds to a variety of external and internal stimuli to regulate the fundamental biological processes. Majority of the cases chromatin dynamicity is exhibited through chemical modifications and physical changes between DNA and histones. These modifications are reversible and complex signaling pathways involving chromatin-modifying enzymes regulate the fluidity of chromatin. Fluidity of chromatin can also be impacted through irreversible change, proteolytic processing of histones which is a poorly understood phenomenon. In recent studies, histone proteolysis has been implicated as a regulatory process involved in the permanent removal of epigenetic marks from histones. Activities responsible for clipping of histone tails and their significance in various biological processes have been observed in several organisms. Here, we have reviewed the properties of some of the known histone proteases, analyzed their significance in biological processes and have provided future directions.
Collapse
Affiliation(s)
- Gajendra Kumar Azad
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| | | |
Collapse
|
49
|
Spagnol ST, Dahl KN. Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations. Integr Biol (Camb) 2014; 6:523-31. [PMID: 24619297 DOI: 10.1039/c3ib40226f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin remodeling, including the movement of genes and regulatory factors, precedes or accompanies stimulated changes in gene expression. Here we quantify chromatin fluctuations in primary human cells using particle-tracking microrheology and determine the physical mechanisms which influence chromatin reorganization. We find that intranuclear movements are enhanced beyond thermal motion by active force generation from cytoskeletal motor activity propagated through the LINC complex; intranuclear movements are also dependent on the viscoelasticity of the DNA-protein polymer network. Chromatin movements were dramatically altered by modulation of chromatin condensation state, which we independently verified using fluorescence lifetime imaging microscopy (FLIM). These findings suggest that chromatin condensation and cytoskeletal force generation play distinct functional roles in regulating intranuclear movements, and these effects are decoupled as measured by particle tracking. We further utilize this approach in identifying the nuclear responsiveness of primary human endothelial cells to vascular endothelial growth factor (VEGF): early in the response chromatin movements increase and are dominated by cytoskeletal force, which transitions at later times to a chromatin decondensation event. Given the hierarchical genome organization in primary cells, our work generally suggests an important role for force generation and chromatin mechanics in altered gene expression kinetics.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | | |
Collapse
|
50
|
Park H, Han SS, Sako Y, Pack CG. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy. FASEB J 2014; 29:837-48. [PMID: 25404711 DOI: 10.1096/fj.14-254110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.
Collapse
Affiliation(s)
- Hweon Park
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Sik Han
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yasushi Sako
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|