1
|
Feng Z, Li L, Tu Y, Shu X, Zhang Y, Zeng Q, Luo L, Wu A, Chen W, Cao Y, Li Z. Identification of Circular RNA-Based Immunomodulatory Networks in Colorectal Cancer. Front Oncol 2022; 11:779706. [PMID: 35155186 PMCID: PMC8833313 DOI: 10.3389/fonc.2021.779706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been recently proposed as hub molecules in various diseases, especially in tumours. We found that circRNAs derived from ribonuclease P RNA component H1 (RPPH1) were highly expressed in colorectal cancer (CRC) samples from Gene Expression Omnibus (GEO) datasets. OBJECTIVE We sought to identify new circRNAs derived from RPPH1 and investigate their regulation of the competing endogenous RNA (ceRNA) and RNA binding protein (RBP) networks of CRC immune infiltration. METHODS The circRNA expression profiles miRNA and mRNA data were extracted from the GEO and The Cancer Genome Atlas (TCGA) datasets, respectively. The differentially expressed (DE) RNAs were identified using R software and online server tools, and the circRNA-miRNA-mRNA and circRNA-protein networks were constructed using Cytoscape. The relationship between targeted genes and immune infiltration was identified using the GEPIA2 and TIMER2 online server tools. RESULTS A ceRNA network, including eight circRNAs, five miRNAs, and six mRNAs, was revealed. Moreover, a circRNA-protein network, including eight circRNAs and 49 proteins, was established. The targeted genes, ENOX1, NCAM1, SAMD4A, and ZC3H10, are closely related to CRC tumour-infiltrating macrophages. CONCLUSIONS We analysed the characteristics of circRNA from RPPH1 as competing for endogenous RNA binding miRNA or protein in CRC macrophage infiltration. The results point towards the development of a new diagnostic and therapeutic paradigm for CRC.
Collapse
Affiliation(s)
- Zongfeng Feng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leyan Li
- Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Queen Mary School, Medical Department of Nanchang University, Nanchang, China
| | - Yi Tu
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xufeng Shu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Zhang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Zeng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianghua Luo
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ahao Wu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China
| | - Wenzheng Chen
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Cao
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Pucci G, Forte GI, Cavalieri V. Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish. Int J Mol Sci 2021; 22:ijms22169053. [PMID: 34445758 PMCID: PMC8396651 DOI: 10.3390/ijms22169053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos’ and larvae’s exposure to radiotherapy treatments.
Collapse
Affiliation(s)
- Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù, Italy
- Correspondence: (G.I.F.); (V.C.)
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
- Correspondence: (G.I.F.); (V.C.)
| |
Collapse
|
3
|
Wu Y, Liu Z, Wei X, Feng H, Hu B, Liu B, Luan Y, Ruan Y, Liu X, Liu Z, Wang S, Liu J, Wang T. Identification of the Functions and Prognostic Values of RNA Binding Proteins in Bladder Cancer. Front Genet 2021; 12:574196. [PMID: 34239534 PMCID: PMC8258248 DOI: 10.3389/fgene.2021.574196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/19/2021] [Indexed: 12/01/2022] Open
Abstract
Post-transcriptional regulation plays a leading role in gene regulation and RNA binding proteins (RBPs) are the most important posttranscriptional regulatory protein. RBPs had been found to be abnormally expressed in a variety of tumors and is closely related to its occurrence and progression. However, the exact mechanism of RBPs in bladder cancer (BC) is unknown. We downloaded transcriptomic data of BC from the Cancer Genome Atlas (TCGA) database and used bioinformatics techniques for subsequent analysis. A total of 116 differentially expressed RBPs were selected, among which 61 were up-regulated and 55 were down-regulated. We then identified 12 prognostic RBPs including CTIF, CTU1, DARS2, ENOX1, IGF2BP2, LIN28A, MTG1, NOVA1, PPARGC1B, RBMS3, TDRD1, and ZNF106, and constructed a prognostic risk score model. Based on this model we found that patients in the high-risk group had poorer overall survival (P < 0.001), and the area under the receiver operator characteristic curve for this model was 0.677 for 1 year, 0.697 for 3 years, and 0.709 for 5 years. Next, we drew a nomogram based on the risk score and other clinical variables, which showed better predictive performance. Our findings contribute to a better understanding of the pathogenesis, progression and metastasis of BC. The model of these 12 genes has good predictive value and may have good prospects for improving clinical treatment regimens and patient prognosis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Huang YC, Liu SP, Chen SY, Lin JM, Lin HJ, Lei YJ, Wang YH, Huang WT, Liao WL, Tsai FJ. Increased Expression of Ecto-NOX Disulfide-thiol Exchanger 1 (ENOX1) in Diabetic Mice Retina and its Involvement in Diabetic Retinopathy Development. In Vivo 2019; 33:1801-1806. [PMID: 31662505 DOI: 10.21873/invivo.11671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Diabetic retinopathy (DR) is a type of retinal damage caused by a complication of diabetes and is a major cause of blindness in working-age adults. Ecto-NOX disulfide-thiol exchanger 1 (ENOX1) is a member of the ecto-NOX family involved in the plasma membrane electron transport pathway. This study aimed to investigate the role of ENOX1 in the development of DR. MATERIALS AND METHODS Human retinal endothelial cells (HRECs) and human retinal pigment epithelial cells (HREpiCs) exposed to a high concentration (25 mM) of D-glucose and type 2 diabetes (T2D) mice (+Leprdb/+Leprdb, db/db) with retinopathy were used as models to determine the ENOX1 expression levels there. RESULTS Our results showed that ENOX1 expression levels did not significantly change in both HRECs and HREpiCs under hyperglycemic conditions for 48 h. Nevertheless, ENOX1 expression increased significantly in T2D mouse retinas, particularly in the photoreceptor layer, compared to the control mouse retinas. CONCLUSION Different retinal ENOX1 expression in T2D mice and control mice suggested that ENOX1 may be involved in DR development.
Collapse
Affiliation(s)
- Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jane-Ming Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Jie Lei
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei, Taiwan, R.O.C
| | - Wan-Ting Huang
- Department of Public Health, China Medical University, Taichung, Taiwan, R.O.C
| | - Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Children's Hospital of China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
5
|
Smith CA, Mont S, Traver G, Sekhar KR, Crooks PA, Freeman ML. Targeting Enox1 in tumor stroma increases the efficacy of fractionated radiotherapy. Oncotarget 2018; 7:77926-77936. [PMID: 27788492 PMCID: PMC5363632 DOI: 10.18632/oncotarget.12845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
The goal of this investigation was to clarify the question of whether targeting Enox1 in tumor stroma would synergistically enhance the survival of tumor-bearing mice treated with fractionated radiotherapy. Enox1, a NADH oxidase, is expressed in tumor vasculature and stroma. However, it is not expressed in many tumor types, including HT-29 colorectal carcinoma cells. Pharmacological inhibition of Enox1 in endothelial cells inhibited repair of DNA double strand breaks, as measured by γH2AX and 53BP1 foci formation, as well as neutral comet assays. For 4 consecutive days athymic mice bearing HT-29 hindlimb xenografts were injected with a small molecule inhibitor of Enox1 or solvent control. Tumors were then administered 2 Gy of x-rays. On day 5 tumors were administered a single ‘top-up’ fraction of 30 Gy, the purpose of which was to amplify intrinsic differences in the radiation fractionation regimen produced by Enox1 targeting. Pharmacological targeting of Enox1 resulted in 80% of the tumor-bearing mice surviving at 90 days compared to only 40% of tumor-bearing mice treated with solvent control. The increase in survival was not a consequence of reoxygenation, as measured by pimonidazole immunostaining. These results are interpreted to indicate that targeting of Enox1 in tumor stroma significantly enhances the effectiveness of 2 Gy fractionated radiotherapy and identifies Enox1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Clayton A Smith
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Current Address: Department of Radiation Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Stacey Mont
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Geri Traver
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Pouwels SD, Faiz A, den Boef LE, Gras R, van den Berge M, Boezen HM, Korstanje R, ten Hacken NHT, van Oosterhout AJM, Heijink IH, Nawijn MC. Genetic variance is associated with susceptibility for cigarette smoke-induced DAMP release in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L559-L580. [DOI: 10.1152/ajplung.00466.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by unresolved neutrophilic airway inflammation and is caused by chronic exposure to toxic gases, such as cigarette smoke (CS), in genetically susceptible individuals. Recent data indicate a role for damage-associated molecular patterns (DAMPs) in COPD. Here, we investigated the genetics of CS-induced DAMP release in 28 inbred mouse strains. Subsequently, in lung tissue from a subset of strains, the expression of the identified candidate genes was analyzed. We tested whether small interfering RNA-dependent knockdown of candidate genes altered the susceptibility of the human A549 cell line to CS-induced cell death and DAMP release. Furthermore, we tested whether these genes were differentially regulated by CS exposure in bronchial brushings obtained from individuals with a family history indicative of either the presence or absence of susceptibility for COPD. We observed that, of the four DAMPs tested, double-stranded DNA (dsDNA) showed the highest correlation with neutrophilic airway inflammation. Genetic analyses identified 11 candidate genes governing either CS-induced or basal dsDNA release in mice. Two candidate genes ( Elac2 and Ppt1) showed differential expression in lung tissue on CS exposure between susceptible and nonsusceptible mouse strains. Knockdown of ELAC2 and PPT1 in A549 cells altered susceptibility to CS extract-induced cell death and DAMP release. In bronchial brushings, CS-induced expression of ENOX1 and ARGHGEF11 was significantly different between individuals susceptible or nonsusceptible for COPD. Our study shows that genetic variance in a mouse model is associated with CS-induced DAMP release, and that this might contribute to susceptibility for COPD.
Collapse
Affiliation(s)
- Simon D. Pouwels
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisette E. den Boef
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reneé Gras
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H. Marike Boezen
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Nick H. T. ten Hacken
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoon J. M. van Oosterhout
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Franks LN, Ford BM, Madadi NR, Penthala NR, Crooks PA, Prather PL. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs. Eur J Pharmacol 2014; 737:140-8. [PMID: 24858620 DOI: 10.1016/j.ejphar.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- CHO Cells
- Chemical Phenomena
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Humans
- Indoles/chemistry
- Ligands
- Mice
- Quinuclidines/chemistry
- Quinuclidines/metabolism
- Quinuclidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Benjamin M Ford
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Nikhil R Madadi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Paul L Prather
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
8
|
Venkateswaran A, Sekhar KR, Levic DS, Melville DB, Clark TA, Rybski WM, Walsh AJ, Skala MC, Crooks PA, Knapik EW, Freeman ML. The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development. Cancer Res 2013; 74:38-43. [PMID: 24247717 DOI: 10.1158/0008-5472.can-13-1981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ENOX1 is a highly conserved NADH oxidase that helps to regulate intracellular nicotinamide adenine dinucleotide levels in many cell types, including endothelial cells. Pharmacologic and RNA interference (RNAi)-mediated suppression of ENOX1 impairs surrogate markers of tumor angiogenesis/vasculogenesis, providing support for the concept that ENOX1 represents an antiangiogenic druggable target. However, direct genetic evidence that demonstrates a role for ENOX1 in vascular development is lacking. In this study, we exploited a zebrafish embryonic model of development to address this question. Whole-mount in situ hybridization coupled with immunofluorescence performed on zebrafish embryos demonstrate that enox1 message and translated protein are expressed in most tissues, and its expression is enriched in blood vessels and heart. Morpholino-mediated suppression of Enox1 in Tg(fli1-eGFP) and Tg(flk1-eGFP) zebrafish embryos significantly impairs the development of vasculature and blood circulation. Using in vivo multiphoton microscopy, we show that morpholino-mediated knockdown of enox1 increases NADH levels, consistent with loss of enzyme. VJ115 is a small-molecule inhibitor of Enox1's oxidase activity shown to increase intracellular NADH in endothelial cells; we used VJ115 to determine if the oxidase activity was crucial for vascular development. We found that VJ115 suppressed vasculogenesis in Tg(fli1-eGFP) embryos and impaired circulation. Previously, it was shown that suppression of ENOX1 radiosensitizes proliferating tumor vasculature, a consequence of enhanced endothelial cell apoptosis. Thus, our current findings, coupled with previous research, support the hypothesis that ENOX1 represents a potential cancer therapy target, one that combines molecular targeting with cytotoxic sensitization.
Collapse
Affiliation(s)
- Amudhan Venkateswaran
- Authors' Affiliations: Departments of Radiation Oncology and Medicine and Cell & Developmental Biology; Genomic Sciences Resources, Vanderbilt University Medical Center; Biomedical Engineering, Vanderbilt School of Engineering, Nashville, Tennessee; School of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Venkateswaran A, Friedman DB, Walsh AJ, Skala MC, Sasi S, Rachakonda G, Crooks PA, Freeman ML, Sekhar KR. The novel antiangiogenic VJ115 inhibits the NADH oxidase ENOX1 and cytoskeleton-remodeling proteins. Invest New Drugs 2012; 31:535-44. [PMID: 23054211 DOI: 10.1007/s10637-012-9884-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 01/23/2023]
Abstract
Targeting tumor vasculature represents a rational strategy for controlling cancer. (Z)-(+/-)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (denoted VJ115) is a novel chemical entity that inhibits the enzyme ENOX1, a NADH oxidase. Genetic and small molecule inhibition of ENOX1 inhibits endothelial cell tubule formation and tumor-mediated neo-angiogenesis. Inhibition of ENOX1 radiosensitizes tumor vasculature, a consequence of enhanced apoptosis. However, the molecular mechanisms underlying these observations are not well understood. Herein, we mechanistically link ENOX1-mediated regulation of cellular NADH concentrations with proteomics profiling of endothelial cell protein expression following exposure to VJ115. Pathway Studios network analysis of potential effector molecules identified by the proteomics profiling indicated that a VJ115 exposure capable of altering intracellular NADH concentrations impacted proteins involved in cytoskeletal reorganization. The analysis was validated using RT-PCR and immunoblotting of selected proteins. RNAi knockdown of ENOX1 was shown to suppress expression of stathmin and lamin A/C, proteins identified by the proteomics analysis to be suppressed upon VJ115 exposure. These data support the hypothesis that VJ115 inhibition of ENOX1 can impact expression of proteins involved in cytoskeletal reorganization and support a hypothesis in which ENOX1 activity links elevated cellular NADH concentrations with cytoskeletal reorganization and angiogenesis.
Collapse
|
10
|
Castéra L, Dehainault C, Michaux D, Lumbroso-Le Rouic L, Aerts I, Doz F, Pelet A, Couturier J, Stoppa-Lyonnet D, Gauthier-Villars M, Houdayer C. Fine mapping of whole RB1 gene deletions in retinoblastoma patients confirms PCDH8 as a candidate gene for psychomotor delay. Eur J Hum Genet 2012; 21:460-4. [PMID: 22909775 DOI: 10.1038/ejhg.2012.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (Rb) results from inactivation of both alleles of the RB1 gene located in 13q14.2. Whole-germline monoallelic deletions of the RB1 gene (6% of RB1 mutational spectrum) sometimes cause a variable degree of psychomotor delay and several dysmorphic abnormalities. Breakpoints in 12 Rb patients with or without psychomotor delay were mapped to specifically define the role of chromosomal regions adjacent to RB1 in psychomotor delay. A high-resolution CGH array focusing on RB1 and its flanking region was designed to precisely map the deletion. Comparative analysis detected a 4-Mb critical interval, including a candidate gene protocadherin 8 (PCDH8). PCDH8 is thought to function in signalling pathways and cell adhesion in a central nervous system-specific manner, making loss of PCDH8 one of the probable causes of psychomotor delay in RB1-deleted patients. Consequently, we propose to systematically use high-resolution CGH in cases of partial or complete RB1 deletion encompassing the telomeric flanking region to characterize the putative loss of PCDH8 and to better define genotype/phenotype correlations, eventually leading to optimized genetic counselling and psychomotor follow-up.
Collapse
Affiliation(s)
- Laurent Castéra
- Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sekhar KR, Reddy YT, Reddy PN, Crooks PA, Venkateswaran A, McDonald WH, Geng L, Sasi S, Van Der Waal RP, Roti JLR, Salleng KJ, Rachakonda G, Freeman ML. The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization. Clin Cancer Res 2011; 17:6490-9. [PMID: 21878537 DOI: 10.1158/1078-0432.ccr-11-1054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Radiation therapy continues to be an important therapeutic strategy for providing definitive local/regional control of human cancer. However, oncogenes that harbor driver mutations and/or amplifications can compromise therapeutic efficacy. Thus, there is a need for novel approaches that enhance the DNA damage produced by ionizing radiation. EXPERIMENTAL DESIGN A forward chemical genetic approach coupled with cell-based phenotypic screening of several tumor cell lines was used to identify a novel chemical entity (NCE) that functioned as a radiation sensitizer. Proteomics, comet assays, confocal microscopy, and immunoblotting were used to identify the biological target. RESULTS The screening process identified a 5-((N-benzyl-1H-indol-3-yl)-methylene)pyrimidine-2,4,6(1H,3H,5H)trione as an NCE that radiosensitized cancer cells expressing amplified and/or mutated RAS, ErbB, PIK3CA, and/or BRAF oncogenes. Affinity-based solid-phase resin capture followed by liquid chromatography/tandem mass spectrometry identified the chaperone nucleophosmin (NPM) as the NCE target. SiRNA suppression of NPM abrogated radiosensitization by the NCE. Confocal microscopy showed that the NCE inhibited NPM shuttling to radiation-induced DNA damage repair foci, and the analysis of comet assays indicated a diminished rate of DNA double-strand break repair. CONCLUSION These data support the hypothesis that inhibition of DNA repair due to inhibition of NPM shuttling increases the efficacy of DNA-damaging therapeutic strategies.
Collapse
Affiliation(s)
- Konjeti R Sekhar
- Department of Radiation Oncology, Division of Animal Care, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Venkateswaran A, Reddy YT, Sonar VN, Muthusamy V, Crooks PA, Freeman ML, Sekhar KR. Antiangiogenic properties of substituted (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol/one analogs and their derivatives. Bioorg Med Chem Lett 2010; 20:7323-6. [PMID: 21055930 PMCID: PMC3001633 DOI: 10.1016/j.bmcl.2010.10.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/14/2010] [Indexed: 12/19/2022]
Abstract
In the past half century research efforts have defined a critical role for angiogenesis in tumor growth and metastasis. We previously reported that inhibition of a novel target, ENOX1, by a (Z)-2-benzylindol-3-ylmethylene) quinuclidin-3-ol, suppressed tumor angiogenesis. The present study was undertaken in order to establish structure-activity relationships for quinuclidine analogs. The angiogenesis inhibiting activity of a series of substituted (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ols (1a-1k), (Z)-2-benzylindol-3-ylmethylene)quinuclidin-3-ones (2a-2h), (Z)-(±)-2-(1H/N-methyl-indol-3-ylmethylene)quinuclidin-3-ols (3a-3b), and substituted (Z)-(±)-2-(N-benzenesulfonylindol-3-yl-methylene)quinuclidin-3-ols and their derivatives (4a-4d) that incorporate a variety of substituents in both the indole and N-benzyl moieties was evaluated using Human Umbilical Vein Endothelial Cells (HUVECs) subjected to in vitro cell migration scratch assays, tubule formation in Matrigel, cell viability and proliferation assays. In total, 25 different analogs were evaluated. Based on in vitro cell migration scratch assays, eight analogs were identified as potent angiogenesis inhibitors at 10 μM, a concentration that was determined to be nontoxic by colony formation assay. In addition, this approach identified a potent antiangiogenic ENOX1 inhibitor, analog 4b.
Collapse
Affiliation(s)
- Amudhan Venkateswaran
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Y. Thirupathi Reddy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Vijaykumar N. Sonar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Venkatraj Muthusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Konjeti R. Sekhar
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Savini I, Arnone R, Rossi A, Catani MV, Del Principe D, Avigliano L. Redox modulation of Ecto-NOX1 in human platelets. Mol Membr Biol 2010; 27:160-9. [PMID: 20462348 DOI: 10.3109/09687688.2010.485936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By modulating the cellular redox state, the plasma membrane electron transport (PMET) is important in platelet biology; indeed, the oxidant/antioxidant balance plays a central role during activation of the coagulation pathway. None the less, in human platelets, the PMET system has not yet been fully characterized and the molecular identities of most components are unknown. Here, for the first time, the presence of the plasma membrane hydroquinone (NADH) oxidase Ecto-NOX1 in human platelets has been described. We found that Ecto-NOX1 expression is modulated by capsaicin: Indeed, it is positively regulated through a mechanism requiring binding of capsaicin to its receptor, namely the transient receptor potential vanilloid subtype 1 (TRPV1). Ligand-receptor interaction triggers a signalling cascade leading to ROS production, which in turn enhances expression and activity of Ecto-NOX1. Redox regulation of Ecto-NOX1 may be important to platelet recruitment and activation during inflammatory diseases.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine & Biochemical Sciences, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | | |
Collapse
|