1
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S. Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 2024; 15:343. [PMID: 39354635 PMCID: PMC11446099 DOI: 10.1186/s13287-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yilin Pang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Linquan Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China.
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
3
|
Zhang Q, Huang S, Liu X, Wang W, Zhu Z, Chen L. Innovations in Breaking Barriers: Liposomes as Near-Perfect Drug Carriers in Ischemic Stroke Therapy. Int J Nanomedicine 2024; 19:3715-3735. [PMID: 38681090 PMCID: PMC11046314 DOI: 10.2147/ijn.s462194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Tang L, Wang Y, Xiang J, Yang D, Zhang Y, Xiang Q, Li J. lncRNA and circRNA expression profiles in the hippocampus of Aβ 25‑35‑induced AD mice treated with Tripterygium glycoside. Exp Ther Med 2023; 26:426. [PMID: 37602300 PMCID: PMC10433443 DOI: 10.3892/etm.2023.12125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Tripterygium glycosides (TG) have been reported to ameliorate Alzheimer's disease (AD), although the mechanism involved remains to be determined. In the present study, the lncRNA and circRNA expression profiles of an AD mouse model treated with TG were assessed using microarrays. lncRNAs, mRNAs, and circRNAs in the hippocampi of 3 AD+normal saline (NS) mice and 3 AD+TG mice were detected using microarrays. The most differentially expressed lncRNAs, mRNAs, and circRNAs were screened between the AD+NS and AD+TG groups. The differentially expressed lncRNAs and circRNAs were analyzed using GO enrichment and KEGG analyses. Co-expression analysis of lncRNAs, circRNAs, and mRNAs was performed by calculating the correlation coefficients. Protein-protein interaction (PPI) network analysis was performed on mRNAs using STRING. The lncRNA-target-transcription factor (TF) network was analyzed using the Network software. In total, 661 lncRNAs, 64 circRNAs, and 503 mRNAs were found to be differentially expressed in AD mice treated with TG. Pou4f1, Egr2, Mag, and Nr4a1 were the hub genes in the PPI network. The KEGG results showed that the mRNAs that were co-expressed with lncRNAs were enriched in the TNF, PI3K-Akt, and Wnt signaling pathways. LncRNA-target-TF network analysis indicated that TFs, including Cebpa, Zic2, and Rxra, were the most likely to regulate the detected lncRNAs. The circRNA-miRNA interaction network indicated that 275 miRNAs may bind to the 64 circRNAs. In conclusion, these findings provide a novel perspective on AD pathogenesis, and the detected lncRNAs, mRNAs, and circRNAs may serve as novel therapeutic targets for the management of AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, Guangxi Zhuang 543000, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Yan Wang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Department of Basic Biology, Wuzhou Medical College, Wuzhou, Guangxi Zhuang 543000, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Dawei Yang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Yan Zhang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, Hunan 410219, P.R. China
- The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, Hunan 410219, P.R. China
| |
Collapse
|
5
|
Slieker RC, Donnelly LA, Akalestou E, Lopez-Noriega L, Melhem R, Güneş A, Abou Azar F, Efanov A, Georgiadou E, Muniangi-Muhitu H, Sheikh M, Giordano GN, Åkerlund M, Ahlqvist E, Ali A, Banasik K, Brunak S, Barovic M, Bouland GA, Burdet F, Canouil M, Dragan I, Elders PJM, Fernandez C, Festa A, Fitipaldi H, Froguel P, Gudmundsdottir V, Gudnason V, Gerl MJ, van der Heijden AA, Jennings LL, Hansen MK, Kim M, Leclerc I, Klose C, Kuznetsov D, Mansour Aly D, Mehl F, Marek D, Melander O, Niknejad A, Ottosson F, Pavo I, Duffin K, Syed SK, Shaw JL, Cabrera O, Pullen TJ, Simons K, Solimena M, Suvitaival T, Wretlind A, Rossing P, Lyssenko V, Legido Quigley C, Groop L, Thorens B, Franks PW, Lim GE, Estall J, Ibberson M, Beulens JWJ, 't Hart LM, Pearson ER, Rutter GA. Identification of biomarkers for glycaemic deterioration in type 2 diabetes. Nat Commun 2023; 14:2533. [PMID: 37137910 PMCID: PMC10156700 DOI: 10.1038/s41467-023-38148-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise A Donnelly
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rana Melhem
- CHUM Research Centre and University of Montreal, Montreal, QC, Canada
| | - Ayşim Güneş
- IRCM and University of Montreal, Montreal, QC, Canada
| | | | - Alexander Efanov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, US
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hermine Muniangi-Muhitu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mahsa Sheikh
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Mikael Åkerlund
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ashfaq Ali
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Marko Barovic
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Medical Faculty, Dresden, Germany
| | - Gerard A Bouland
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frédéric Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mickaël Canouil
- INSERM U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille, F-59000, France
| | - Iulian Dragan
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra J M Elders
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | | | - Andreas Festa
- Eli Lilly Regional Operations GmbH, Vienna, Austria
- 1st Medical Department, LK Stockerau, Niederösterreich, Austria
| | - Hugo Fitipaldi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Phillippe Froguel
- INSERM U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille, F-59000, France
- Division of Systems Biology, Department of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | | | - Amber A van der Heijden
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Michael K Hansen
- Cardiovascular and Metabolic Disease Research, Janssen Research & Development, Spring House, PA, USA
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicines, King's College London, London, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- CHUM Research Centre and University of Montreal, Montreal, QC, Canada
| | | | - Dmitry Kuznetsov
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Diana Marek
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Anne Niknejad
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Filip Ottosson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Vienna, Austria
| | - Kevin Duffin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, US
| | - Samreen K Syed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, US
| | - Janice L Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, US
| | - Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, US
| | - Timothy J Pullen
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes, Guy's Campus King's College London, London, UK
| | | | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Medical Faculty, Dresden, Germany
- Molecular Diabetology, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Cristina Legido Quigley
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicines, King's College London, London, UK
| | - Leif Groop
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Gareth E Lim
- CHUM Research Centre and University of Montreal, Montreal, QC, Canada
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands.
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- CHUM Research Centre and University of Montreal, Montreal, QC, Canada.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Zhao H, Liu ZD, Zhang YB, Gao XY, Wang C, Liu Y, Wang XF. NEP1‑40 promotes myelin regeneration via upregulation of GAP‑43 and MAP‑2 expression after focal cerebral ischemia in rats. Mol Med Rep 2021; 24:844. [PMID: 34643252 PMCID: PMC8524407 DOI: 10.3892/mmr.2021.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
Axon regeneration after lesions to the central nervous system (CNS) is largely limited by the presence of growth inhibitory molecules expressed in myelin. Nogo‑A is a principal inhibitor of neurite outgrowth, and blocking the activity of Nogo‑A can induce axonal sprouting and functional recovery. However, there are limited data on the expression of Nogo‑A after CNS lesions, and the mechanism underlying its influences on myelin growth remains unknown. The aim of the present study was to observe the time course of Nogo‑A after cerebral ischemia/reperfusion in rats using immunohistochemistry and western blot techniques, and to test the effect of its inhibitor Nogo extracellular peptide 1‑40 (NEP1‑40) on neural plasticity proteins, growth‑associated binding protein 43 (GAP‑43) and microtubule associated protein 2 (MAP‑2), as a possible mechanism underlying myelin suppression. A classic model of middle cerebral artery occlusion (MCAO) was established in Sprague‑Dawley rats, which were divided into three groups: i) MCAO model group; ii) MCAO + saline group; and iii) MCAO + NEP1‑40 group. Rats of each group were divided into five subgroups by time points as follows: days 1, 3, 7, 14 and 28. Animals that only received sham operation were used as controls. The Nogo‑A immunoreactivity was located primarily in the cytoplasm of oligodendrocytes. The number of Nogo‑A immunoreactive cells significantly increased from day 1 to day 3 after MCAO, nearly returning to the control level at day 7, increased again at day 14 and decreased at day 28. Myelin basic protein (MBP) immunoreactivity in the ipsilateral striatum gradually decreased from day 1 to day 28 after ischemia, indicating myelin loss appeared at early time points and continuously advanced during ischemia. Then, intracerebroventricular infusion of NEP1‑40, which is a Nogo‑66 receptor antagonist peptide, was administered at days 1, 3 and 14 after MCAO. It was observed that GAP‑43 considerably increased from day 1 to day 7 and then decreased to a baseline level at day 28 compared with the control. MAP‑2 expression across days 1‑28 significantly decreased after MCAO. Administration of NEP1‑40 attenuated the reduction of MBP, and upregulated GAP‑43 and MAP‑2 expression at the corresponding time points after MCAO compared with the MCAO + saline group. The present results indicated that NEP1‑40 ameliorated myelin damage and promoted regeneration by upregulating the expression of GAP‑43 and MAP‑2 related to neuronal and axonal plasticity, which may aid with the identification of a novel molecular mechanism of restriction in CNS regeneration mediated by Nogo‑A after ischemia in rats.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China,Correspondence to: Professor Hong Zhao, Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, 826 Xi Nan Road, Dalian, Liaoning 116033, P.R. China, E-mail:
| | - Zhen-Dong Liu
- Department of General Medicine, Central Hospital Affiliated to Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiao-Yu Gao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xun-Fen Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
7
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
8
|
Alibardi L. Regeneration in anamniotes was replaced by regengrow and scarring in amniotes after land colonization and the evolution of terrestrial biological cycles. Dev Dyn 2021; 251:1404-1413. [PMID: 33793005 DOI: 10.1002/dvdy.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
An evolutionary hypothesis explaining failure of regeneration among vertebrates is presented. Regeneration derives from postembryonic processes present during the life cycles of fish and amphibians that include larval and metamorphic phases with broad organ reorganizations. Developmental programs imprinted in their genomes are re-utilized with variations also in adults for regeneration. When vertebrates colonized land adopting the amniotic egg, some genes driving larval changes, and metamorphosis were lost and new genes evolved, further limiting regeneration. These included neural inhibitors for maintaining complex nervous systems, behavior and various levels of intelligence, and adaptive immune cells. The latter, that in anamniotes are executioners of metamorphic reorganization, became intolerant to embryonic-oncofetal-antigens impeding organ regeneration, a process that requires de-differentiation of adult cells and/or expansion of stem cells where these early antigens are formed. The evolution of terrestrial lifecycles produced vertebrates with complex bodies but no longer capable to regenerate their organs, mainly repaired by regengrow. Efforts of regenerative medicine to improve healing in humans should determine the diverse developmental pathways evolved between anamniotes and amniotes before attempting genetic manipulations such as the introduction of "anamniote regenerative genes" in amniotes. This operation may determine alteration in amniote developmental programs leading to teratomes, cancer, or death.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Guillemain A, Laouarem Y, Cobret L, Štefok D, Chen W, Bloch S, Zahaf A, Blot L, Reverchon F, Normand T, Decoville M, Grillon C, Traiffort E, Morisset-Lopez S. LINGO family receptors are differentially expressed in the mouse brain and form native multimeric complexes. FASEB J 2020; 34:13641-13653. [PMID: 32862444 DOI: 10.1096/fj.202000826r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
Leucine-rich repeat and immunoglobin-domain containing (LRRIG) proteins that are commonly involved in protein-protein interactions play important roles in nervous system development and maintenance. LINGO-1, one of this family members, is characterized as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. Three LINGO-1 homologs named LINGO-2, LINGO-3, and LINGO-4 have been described. However, their relative expression and functions remain unexplored. Here, we show by in situ hybridization and quantitative polymerase chain reaction that the transcripts of LINGO homologs are differentially expressed in the central nervous system. The immunostaining of brain slices confirmed this observation and showed the co-expression of LINGO-1 with its homologs. Using BRET (bioluminescence resonance energy transfer) analysis, we demonstrate that LINGO proteins can physically interact with each of the other ones with comparable affinities and thus form the oligomeric states. Furthermore, co-immunoprecipitation experiments indicate that LINGO proteins form heterocomplexes in both heterologous systems and cortical neurons. Since LINGO-1 is a promising target for the treatment of demyelinating diseases, its ability to form heteromeric complexes reveals a new level of complexity in its functioning and opens the way for new strategies to achieve diverse and nuanced LINGO-1 regulation.
Collapse
Affiliation(s)
- Anthony Guillemain
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Yousra Laouarem
- Diseases and Hormones of the Nervous System U1195, INSERM-Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Laetitia Cobret
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Dora Štefok
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Wanyin Chen
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Solal Bloch
- Diseases and Hormones of the Nervous System U1195, INSERM-Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195, INSERM-Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Lauren Blot
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Flora Reverchon
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Martine Decoville
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| | - Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195, INSERM-Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, Université d'Orléans et INSERM, Orléans Cedex 02, France
| |
Collapse
|
11
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
12
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
13
|
Papuć E, Rejdak K. The role of myelin damage in Alzheimer's disease pathology. Arch Med Sci 2020; 16:345-351. [PMID: 32190145 PMCID: PMC7069444 DOI: 10.5114/aoms.2018.76863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Although Alois Alzheimer described myelin disruption in Alzheimer's disease (AD) as early as in 1911, his observation has escaped the attention of researchers since that time. Alzheimer's disease has been mainly considered as a grey matter disorder; nevertheless, recent evidence suggests that myelin impairment may play an important role in AD pathology. Classical neuropathological changes in AD, e.g. the accumulation of aggregated Aβ 42 and the presence of neurofibrillary tangles, are responsible for neuronal loss, but they may also induce death of oligodendrocytes and myelin damage. There is also evidence that myelin pathology may even precede Aβ and tau pathologies in AD. The state of the art does not allow us to determine whether myelin damage is a primary or a secondary injury in AD subjects. The article presents an overview of current knowledge on the role of myelin in AD pathology and its interactions with Aβ and tau pathologies.
Collapse
Affiliation(s)
- Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
- Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Alakbarzade V, Iype T, Chioza BA, Singh R, Harlalka GV, Hardy H, Sreekantan-Nair A, Proukakis C, Peall K, Clark LN, Caswell R, Lango Allen H, Wakeling M, Chilton JK, Baple EL, Louis ED, Warner TT, Crosby AH. Copy number variation of LINGO1 in familial dystonic tremor. NEUROLOGY-GENETICS 2019; 5:e307. [PMID: 30842974 PMCID: PMC6384021 DOI: 10.1212/nxg.0000000000000307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
Objective To elucidate the genetic cause of a large 5 generation South Indian family with multiple individuals with predominantly an upper limb postural tremor and posturing in keeping with another form of tremor, namely, dystonic tremor. Methods Whole-genome single nucleotide polymorphism (SNP) microarray analysis was undertaken to look for copy number variants in the affected individuals. Results Whole-genome SNP microarray studies identified a tandem duplicated genomic segment of chromosome 15q24 present in all affected family members. Whole-genome sequencing demonstrated that it comprised a ∼550-kb tandem duplication encompassing the entire LINGO1 gene. Conclusions The identification of a genomic duplication as the likely molecular cause of this condition, resulting in an additional LINGO1 gene copy in affected cases, adds further support for a causal role of this gene in tremor disorders and implicates increased expression levels of LINGO1 as a potential pathogenic mechanism.
Collapse
Affiliation(s)
- Vafa Alakbarzade
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Thomas Iype
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Barry A Chioza
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Royana Singh
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Gaurav V Harlalka
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Holly Hardy
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Ajith Sreekantan-Nair
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Christos Proukakis
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Kathryn Peall
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Lorraine N Clark
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Richard Caswell
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Hana Lango Allen
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Matthew Wakeling
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - John K Chilton
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Emma L Baple
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Elan D Louis
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Thomas T Warner
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| | - Andrew H Crosby
- Medical Research (Level 4) (V.A., B.A.C., G.V.H., H.H., A.S.-N., J.K.C., E.L.B., A.H.C.), University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, United Kingdom; Reta Lila Weston Institute of Neurological Studies (V.A., T.T.W.), UCL Institute of Neurology, London, United Kingdom; Department of Neurology (T.I.), Government Medical College, Thiruvananthapuram, Kerala, India; Department of Anatomy and Microbiology (R.S.), Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Clinical Neuroscience (C.P.), Royal Free Campus, UCL Institute of Neurology, London, United Kingdom; Institute of Psychological Medicine and Clinical Neurosciences (K.P.), Cardiff University, Cardiff, United Kingdom; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (L.N.C.), Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY; Institute of Biomedical and Clinical Science (R.C., H.L.A., M.W.), University of Exeter Medical School, United Kingdom; and Departments of Neurology and Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research (E.D.L.), Yale School of Medicine and Yale School of Public Health, Yale University, New Haven, CT
| |
Collapse
|
15
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
16
|
Sun J, Zhou H, Bai F, Zhang Z, Ren Q. Remyelination: A Potential Therapeutic Strategy for Alzheimer's Disease? J Alzheimers Dis 2018; 58:597-612. [PMID: 28453483 DOI: 10.3233/jad-170036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is a lipid-rich multilamellar membrane that wraps around long segments of neuronal axons and it increases the conduction of action potentials, transports the necessary trophic support to the neuronal axons, and reduces the energy consumed by the neuronal axons. Together with axons, myelin is a prerequisite for the higher functions of the central nervous system and complex forms of network integration. Myelin impairments have been suggested to lead to neuronal dysfunction and cognitive decline. Accumulating evidence, including brain imaging and postmortem and genetic association studies, has implicated myelin impairments in Alzheimer's disease (AD). Increasing data link myelin impairments with amyloid-β (Aβ) plaques and tau hyperphosphorylation, which are both present in patients with AD. Moreover, aging and apolipoprotein E (ApoE) may be involved in the myelin impairments observed in patients with AD. Decreased neuronal activity, increased Aβ levels, and inflammation further damage myelin in patients with AD. Furthermore, treatments that promote myelination contribute to the recovery of neuronal function and improve cognition. Therefore, strategies targeting myelin impairment may provide therapeutic opportunities for patients with AD.
Collapse
|
17
|
Song XJ, Han W, He R, Li TY, Xie LL, Cheng L, Chen HS, Jiang L. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats. Neurochem Res 2018; 43:721-735. [PMID: 29383653 DOI: 10.1007/s11064-018-2474-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022]
Abstract
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.
Collapse
Affiliation(s)
- Xiao-Jie Song
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Wei Han
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Rong He
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Tian-Yi Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Ling-Ling Xie
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Heng-Sheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Jiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China. .,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China.
| |
Collapse
|
18
|
Abdominal Vagal Afferents Modulate the Brain Transcriptome and Behaviors Relevant to Schizophrenia. J Neurosci 2018; 38:1634-1647. [PMID: 29326171 DOI: 10.1523/jneurosci.0813-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Reduced activity of vagal efferents has long been implicated in schizophrenia and appears to be responsible for diminished parasympathetic activity and associated peripheral symptoms such as low heart rate variability and cardiovascular complications in affected individuals. In contrast, only little attention has been paid to the possibility that impaired afferent vagal signaling may be relevant for the disorder's pathophysiology as well. The present study explored this hypothesis using a model of subdiaphragmatic vagal deafferentation (SDA) in male rats. SDA represents the most complete and selective vagal deafferentation method existing to date as it leads to complete disconnection of all abdominal vagal afferents while sparing half of the abdominal vagal efferents. Using next-generation mRNA sequencing, we show that SDA leads to brain transcriptional changes in functional networks annotating with schizophrenia. We further demonstrate that SDA induces a hyperdopaminergic state, which manifests itself as increased sensitivity to acute amphetamine treatment and elevated accumbal levels of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Our study also shows that SDA impairs sensorimotor gating and the attentional control of associative learning, which were assessed using the paradigms of prepulse inhibition and latent inhibition, respectively. These data provide converging evidence suggesting that the brain transcriptome, dopamine neurochemistry, and behavioral functions implicated in schizophrenia are subject to visceral modulation through abdominal vagal afferents. Our findings may encourage the further establishment and use of therapies for schizophrenia that are based on vagal interventions.SIGNIFICANCE STATEMENT The present work provides a better understanding of how disrupted vagal afferent signaling can contribute to schizophrenia-related brain and behavioral abnormalities. More specifically, it shows that subdiaphragmatic vagal deafferentation (SDA) in rats leads to (1) brain transcriptional changes in functional networks related to schizophrenia, (2) increased sensitivity to dopamine-stimulating drugs and elevated dopamine levels in the nucleus accumbens, and (3) impairments in sensorimotor gating and the attentional control of associative learning. These findings may encourage the further establishment of novel therapies for schizophrenia that are based on vagal interventions.
Collapse
|
19
|
Expression of Nogo receptor 1 in the regeneration process of the mouse olfactory epithelium. Neuroreport 2018; 27:717-23. [PMID: 27138950 DOI: 10.1097/wnr.0000000000000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nogo receptor 1 (NgR1) is the most important Nogo-A receptor. By its interaction with myelin-associated inhibitory proteins, NgR1 inhibits the regeneration of axons and is extensively expressed in the central nervous system. However, the expression of NgR1 in regenerable neurons, such as olfactory neurons, and its expression in the regeneration progress of olfactory neurons have not been reported. In this study, we demonstrated that NgR1 was expressed in the cell bodies of certain mature olfactory receptor neurons (ORNs) but was not expressed in immature ORNs in the olfactory epithelium (OE) of normal adult mice. On day 21 after OE injury, NgR1 was expressed not only in the cell bodies of mature ORNs but also in the cell bodies of glial fibrillary acidic protein (GFAP)-positive cells in the top and submucosal layers of the OE. On day 48 after model establishment, NgR1 expression decreased in the cell bodies of the GFAP-positive cells. On day 56 after model establishment, no NgR1 expression was found in the cell bodies of the GFAP-positive cells, and NgR1 was again expressed only in the mature ORNs. Our results demonstrated that NgR1 expression is upregulated in the OE after injury, which suggests that NgR1 might be involved in the regeneration of the OE.
Collapse
|
20
|
Sutherland DM, Aravamudhan P, Dermody TS. An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Adv Virus Res 2017; 100:223-246. [PMID: 29551138 DOI: 10.1016/bs.aivir.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viruses are constantly engaged in a molecular arms race with the host, where efficient and tactical use of cellular receptors benefits critical steps in infection. Receptor use dictates initiation, establishment, and spread of viral infection to new tissues and hosts. Mammalian orthoreoviruses (reoviruses) are pervasive pathogens that use multiple receptors to overcome protective host barriers to disseminate from sites of initial infection and cause disease in young mammals. In particular, reovirus invades the central nervous system (CNS) with serotype-dependent tropism and disease. A single viral gene, encoding the attachment protein σ1, segregates with distinct patterns of CNS injury. Despite the identification and characterization of several reovirus receptors, host factors that dictate tropism via interaction with σ1 remain undefined. Here, we summarize the state of the reovirus receptor field and discuss open questions toward understanding how the reovirus attachment protein dictates CNS tropism.
Collapse
Affiliation(s)
| | | | - Terence S Dermody
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
21
|
Kramer B, Tropitzsch A, Müller M, Löwenheim H. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro. Neuroscience 2017; 357:75-83. [PMID: 28596120 DOI: 10.1016/j.neuroscience.2017.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition.
Collapse
Affiliation(s)
- Benedikt Kramer
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| | - Anke Tropitzsch
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany.
| | - Hubert Löwenheim
- Department of Otorhinolaryngology - Head and Neck Surgery, Hearing Research Centre Tübingen (THRC), University Tübingen, Germany
| |
Collapse
|
22
|
Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology 2017; 120:38-55. [DOI: 10.1016/j.neuropharm.2016.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
|
23
|
Galindo LT, Mundim MTVV, Pinto AS, Chiarantin GMD, Almeida MES, Lamers ML, Horwitz AR, Santos MF, Porcionatto M. Chondroitin Sulfate Impairs Neural Stem Cell Migration Through ROCK Activation. Mol Neurobiol 2017; 55:3185-3195. [PMID: 28477140 PMCID: PMC5842503 DOI: 10.1007/s12035-017-0565-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Brain injuries such as trauma and stroke lead to glial scar formation by reactive astrocytes which produce and secret axonal outgrowth inhibitors. Chondroitin sulfate proteoglycans (CSPG) constitute a well-known class of extracellular matrix molecules produced at the glial scar and cause growth cone collapse. The CSPG glycosaminoglycan side chains composed of chondroitin sulfate (CS) are responsible for its inhibitory activity on neurite outgrowth and are dependent on RhoA activation. Here, we hypothesize that CSPG also impairs neural stem cell migration inhibiting their penetration into an injury site. We show that DCX+ neuroblasts do not penetrate a CSPG-rich injured area probably due to Nogo receptor activation and RhoA/ROCK signaling pathway as we demonstrate in vitro with neural stem cells cultured as neurospheres and pull-down for RhoA. Furthermore, CS-impaired cell migration in vitro induced the formation of large mature adhesions and altered cell protrusion dynamics. ROCK inhibition restored migration in vitro as well as decreased adhesion size.
Collapse
Affiliation(s)
- Layla T Galindo
- Department of Biochemistry, Laboratory of Neurobiology, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 3o andar, São Paulo, SP, 04039-032, Brazil
| | - Mayara T V V Mundim
- Department of Biochemistry, Laboratory of Neurobiology, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 3o andar, São Paulo, SP, 04039-032, Brazil
| | - Agnes S Pinto
- Department of Biochemistry, Laboratory of Neurobiology, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 3o andar, São Paulo, SP, 04039-032, Brazil
| | - Gabrielly M D Chiarantin
- Department of Biochemistry, Laboratory of Neurobiology, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 3o andar, São Paulo, SP, 04039-032, Brazil
| | - Maíra E S Almeida
- Physiopathology Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil
| | - Marcelo L Lamers
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, 22903, USA
| | - Marinilce F Santos
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Marimelia Porcionatto
- Department of Biochemistry, Laboratory of Neurobiology, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 3o andar, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
24
|
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16-26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8-13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype-phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotype.
Collapse
Affiliation(s)
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
25
|
Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol 2017; 55:1831-1846. [PMID: 28229330 DOI: 10.1007/s12035-017-0433-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.
Collapse
Affiliation(s)
- Anthony G Boghdadi
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia.
| |
Collapse
|
26
|
Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain 2017; 158 Suppl 1:S55-S65. [DOI: 10.1097/j.pain.0000000000000813] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Lang DM, Romero-Alemán MDM, Dobson B, Santos E, Monzón-Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizardGallotia galloti. J Comp Neurol 2016; 525:936-954. [DOI: 10.1002/cne.24112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Dirk M. Lang
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Maria del Mar Romero-Alemán
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Bryony Dobson
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Elena Santos
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Maximina Monzón-Mayor
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| |
Collapse
|
28
|
Bombeiro AL, Thomé R, Oliveira Nunes SL, Monteiro Moreira B, Verinaud L, de Oliveira ALR. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS One 2016; 11:e0161463. [PMID: 27551751 PMCID: PMC4995013 DOI: 10.1371/journal.pone.0161463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
| | - Sérgio Luiz Oliveira Nunes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
| | - Bárbara Monteiro Moreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083–865, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
29
|
Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Chin J, Curtis M, Rostami A, Zhang GX. LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for Chronic Stage Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2016; 54:4365-4378. [PMID: 27344330 DOI: 10.1007/s12035-016-9994-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
The chronic stage multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), remains refractory to current treatments. This refractory nature may be due to the fact that current treatments are primarily immunomodulatory, which prevent further demyelination but lack the capacity to promote remyelination. Several approaches, including transplantation of neural stem cells (NSCs) or antagonists to LINGO-1, a key part of the receptor complex for neuroregeneration inhibitors, have been effective in suppressing the acute stage of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, their effect on the chronic stage EAE is not known. Here, we show that transplantation of NSCs had only a slight therapeutic effect when treatment started at the chronic stage of EAE (e.g., injected at day 40 postimmunization). However, NSCs engineered to produce LINGO-1-Fc, a soluble LINGO-1 antagonist, significantly promoted neurological recovery as demonstrated by amelioration of clinical signs, improvement in axonal integrity, and enhancement of oligodendrocyte maturation and neuron repopulation. Significantly enhanced NAD production and Sirt2 expression were also found in the CNS of mice treated with LINGO-1-Fc-producing NSC. Moreover, differentiation of LINGO-1-Fc-producing NSCs into oligodendrocytes in vitro was largely diminished by an NAMPT inhibitor, indicating that LINGO-1-Fc enhances the NAMPT/NAD/Sirt2 pathway. Together, our study establishes a CNS-targeted, novel LINGO-1-Fc delivery system using NSCs, which represents a novel and effective NSC-based gene therapy approach for the chronic stage of MS.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mark Curtis
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Fink KL, Cafferty WBJ. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics 2016; 13:370-81. [PMID: 26846379 PMCID: PMC4824020 DOI: 10.1007/s13311-016-0422-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurons have a limited capacity to regenerate in the adult central nervous system (CNS). The inability of damaged axons to re-establish original circuits results in permanent functional impairment after spinal cord injury (SCI). Despite abortive regeneration of axotomized CNS neurons, limited spontaneous recovery of motor function emerges after partial SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways spared by the injury, suggesting that plasticity of intact circuits is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy), the intact CST functionally sprouts into the denervated side of the spinal cord. Furthermore, pharmacologic and genetic methods that enhance the intrinsic growth capacity of adult neurons or block extracellular growth inhibitors are effective at significantly enhancing intact CST reorganization and recovery of motor function. Owing to its importance in controlling fine motor behavior in primates, the CST is the most widely studied descending motor pathway; however, additional studies in rodents have shown that plasticity within other spared descending motor pathways, including the rubrospinal tract, raphespinal tract, and reticulospinal tract, can also result in restoration of function after incomplete SCI. Identifying the molecular mechanisms that drive plasticity within intact circuits is crucial in developing novel, potent, and specific therapeutics to restore function after SCI. In this review we discuss the evidence supporting a focus on exploring the capacity of intact motor circuits to functionally repair the damaged CNS after SCI.
Collapse
Affiliation(s)
- Kathren L Fink
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - William B J Cafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
Villoslada P. Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0004-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
von Bernhardi R, Eugenín-von Bernhardi J, Flores B, Eugenín León J. Glial Cells and Integrity of the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:1-24. [PMID: 27714682 DOI: 10.1007/978-3-319-40764-7_1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists' views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells' importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron-glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Pettenkoferstr.12, 80336, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Munich, Germany
| | - Betsi Flores
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jaime Eugenín León
- Department of Biology, Faculty of Chemistry and Biology, USACH, Santiago, Chile
| |
Collapse
|
33
|
Peng WS, Qi C, Zhang H, Gao ML, Wang H, Ren F, Li XQ. Distribution of paired immunoglobulin-like receptor B in the nervous system related to regeneration difficulties after unilateral lumbar spinal cord injury. Neural Regen Res 2015; 10:1139-46. [PMID: 26330840 PMCID: PMC4541248 DOI: 10.4103/1673-5374.160111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 12/21/2022] Open
Abstract
Paired immunoglobulin-like receptor B (PirB) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of PirB on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of PirB (via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for PirB increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, PirB was mainly distributed along neuronal and axonal membranes. PirB was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for PirB was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of PirB immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that PirB may suppress repair after injury.
Collapse
Affiliation(s)
- Wan-Shu Peng
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chao Qi
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hong Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mei-Ling Gao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hong Wang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fei Ren
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xia-Qing Li
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
34
|
Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci 2015; 72:2719-37. [PMID: 25708702 PMCID: PMC11113838 DOI: 10.1007/s00018-015-1869-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.
Collapse
Affiliation(s)
- Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Blusson Spinal Cord Centre and Department of Zoology, Faculty of Science, International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Xavier Serra-Picamal
- Integrative cell and tissue dynamics, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Abel Torres-Espín
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Laboratory, . Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Electronics, University of Barcelona, Centro de Investigaciòn Médica en Red, Biomecánica, Biomateriales y Nanotecnologìa (CIBERBBN), Barcelona, Spain
| | - Xavier Trepat
- University of Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
35
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
36
|
Ramasamy S, Yu F, Hong Yu Y, Srivats H, Dawe GS, Ahmed S. NogoR1 and PirB signaling stimulates neural stem cell survival and proliferation. Stem Cells 2015; 32:1636-48. [PMID: 24449409 DOI: 10.1002/stem.1645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Institute of Medical Biology, 8A Biomedical Grove, #05-37 Immunos, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP, de Jong R, Brosofsky K, Ray S, Xu L, Zhao J, Parr E, Cadavid D. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2014; 1:e18. [PMID: 25340070 PMCID: PMC4202679 DOI: 10.1212/nxi.0000000000000018] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/19/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate the safety, tolerability, and pharmacokinetics (PK) of BIIB033 (anti-LINGO-1 monoclonal antibody) in healthy volunteers and participants with multiple sclerosis (MS). METHODS In 2 separate randomized, placebo-controlled studies, single ascending doses (SAD; 0.1-100 mg/kg) of BIIB033 or placebo were administered via IV infusion or subcutaneous injection to 72 healthy volunteers, and multiple ascending doses (MAD; 0.3-100 mg/kg; 2 doses separated by 14 days) of BIIB033 or placebo were administered via IV infusion to 47 participants with relapsing-remitting or secondary progressive MS. Safety assessments included adverse event (AE) monitoring, neurologic examinations, conventional and nonconventional MRI, EEG, optical coherence tomography, retinal examinations, and evoked potentials. Serum and CSF PK as well as the immunogenicity of BIIB033 were also evaluated. RESULTS All 72 healthy volunteers and 47 participants with MS were included in the safety analyses. BIIB033 infusions were well tolerated. The frequency of AEs was similar between BIIB033 and placebo. There were no serious AEs or deaths. No clinically significant changes in any of the safety measures were observed. BIIB033 PK was similar between healthy volunteers and participants with MS. Doses of ≥10 mg/kg resulted in BIIB033 concentrations similar to or higher than the concentration associated with 90% of the maximum remyelination effect in rat remyelination studies. The incidence of anti-drug antibody production was low. CONCLUSIONS The emerging safety, tolerability, and PK of BIIB033 support advancing BIIB033 into phase II clinical development as a potential treatment for CNS demyelination disorders. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that BIIB033 is well tolerated and safe (serious adverse event rate 0%, 95% confidence interval 0-7.6%).
Collapse
Affiliation(s)
- Jonathan Q Tran
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Jitesh Rana
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Frederik Barkhof
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Isaac Melamed
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Hakop Gevorkyan
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Mike P Wattjes
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Remko de Jong
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Kristin Brosofsky
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Soma Ray
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Lei Xu
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Jim Zhao
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Edward Parr
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| | - Diego Cadavid
- Biogen Idec (J.Q.T., J.R., S.R., L.X., D.C.), Cambridge, MA; VU Medical Center (F.B., M.P.W., R.D.), Amsterdam, the Netherlands; IMMUNOe (I.M.), Centennial, CO; PAREXEL International (H.G.), Glendale, CA; ALG Partners (K.B.), Natick, MA; and Excel Scientific Solutions (E.P.), Southport, CT. J.Z. is a former employee of Biogen Idec
| |
Collapse
|
38
|
Ma Y. Relationship between monocularly deprivation and amblyopia rats and visual system development. ASIAN PAC J TROP MED 2014; 7:568-71. [PMID: 25063288 DOI: 10.1016/s1995-7645(14)60095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/15/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat, and visual development plastic stage and visual plasticity in adult rats. METHODS A total of 60 SD rats ages 13 d were randomly divided into A, B, C three groups with 20 in each group, group A was set as the normal control group without any processing, group B was strabismus amblyopic group, using the unilateral extraocular rectus resection to establish the strabismus amblyopia model, group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection + lid suture. At visual developmental early phase (P25), meta phase (P35), late phase (P45) and adult phase (P120), the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry. Neuron morphological changes in lateral geniculate body and visual cortex was observed, the positive neurons differences of C-fos expression induced by light stimulation was measured in each group, and the condition of radiation development of P120 amblyopic adult rats was observed. RESULTS In groups B and C, C-fos positive cells were significantly lower than the control group at P25 (P<0.05), there was no statistical difference of C-fos protein positive cells between group B and group A (P>0.05), C-fos protein positive cells level of group B was significantly lower than that of group A (P<0.05). The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35, P45 and P120 with statistically significant differences (P<0.05). CONCLUSIONS The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
39
|
Lemarchant S, Pruvost M, Hébert M, Gauberti M, Hommet Y, Briens A, Maubert E, Gueye Y, Féron F, Petite D, Mersel M, do Rego JC, Vaudry H, Koistinaho J, Ali C, Agin V, Emery E, Vivien D. tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing neuroplasticity following spinal cord injury. Neurobiol Dis 2014; 66:28-42. [PMID: 24576594 DOI: 10.1016/j.nbd.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Mathilde Pruvost
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Marie Hébert
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Maxime Gauberti
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Yannick Hommet
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Aurélien Briens
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Eric Maubert
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Yatma Gueye
- CNRS UMR-6184, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, IFR Jean Roche, Faculté de Médecine, University of Aix-Marseille, F-13916 Marseille, France
| | - François Féron
- CNRS UMR-6184, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, IFR Jean Roche, Faculté de Médecine, University of Aix-Marseille, F-13916 Marseille, France
| | - Didier Petite
- Inserm UMR-S 583, Institute for Neurosciences of Montpellier, Pathophysiology and Therapy of Sensory and Motor Deficits, Saint Eloi Hospital, F-34091 Montpellier, France
| | - Marcel Mersel
- Inserm UMR-S 583, Institute for Neurosciences of Montpellier, Pathophysiology and Therapy of Sensory and Motor Deficits, Saint Eloi Hospital, F-34091 Montpellier, France
| | - Jean-Claude do Rego
- Inserm UMR-S 982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP 23, University of Rouen, F-76130 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Inserm UMR-S 982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP 23, University of Rouen, F-76130 Mont-Saint-Aignan, France
| | - Jari Koistinaho
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Carine Ali
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Véronique Agin
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Evelyne Emery
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France; Department of Neurosurgery, Caen University Hospital, Avenue de la Côte de Nacre, F-14000 Caen, France.
| | - Denis Vivien
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France.
| |
Collapse
|
40
|
Delay C, Tremblay C, Brochu E, Paris-Robidas S, Emond V, Rajput AH, Rajput A, Calon F. Increased LINGO1 in the cerebellum of essential tremor patients. Mov Disord 2014; 29:1637-47. [PMID: 24531928 DOI: 10.1002/mds.25819] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
Essential tremor (ET) is the most prevalent adult-onset movement disorder. Despite its health burden, no clear pathognomonic sign has been identified to date because of the rarity of clinicopathological studies. Moreover, treatment options are still scarce and have not significantly changed in the last 30 years, underscoring the urgent need to develop new treatment avenues. In the recent years, leucine-rich repeat (LRR) and immunoglobulin (Ig) domain-containing Nogo receptor-interacting proteins 1 and 2 (LINGO1 and LINGO2, respectively) have been increasingly regarded as possible ET modulators due to emerging genetic association studies linking LINGO with ET. We have investigated LINGO protein and messenger RNA (mRNA) expression in the cerebellum of patients with ET, patients with Parkinson's disease (PD), and a control group using Western immunoblotting and in situ hybridization. Protein levels of LINGO1, but not LINGO2, were significantly increased in the cerebellar cortex of ET patients compared with controls, particularly in individuals with longer disease duration. Compared with controls, LINGO1 protein levels were increased in the cerebellar white matter of PD and ET patients but, for the latter, only when disease duration exceeded 20 years. However, no alteration in LINGO1 mRNA was observed between groups in either the cerebellar cortex or the white matter. We observed alterations in LINGO expression in diseased brain that seemed to progress along with the disease, being initiated in the cerebellar cortex before reaching the white matter. Because LINGO up-regulation has been identified as a potential pathological response to ongoing neurodegenerative processes, the present data suggest that LINGO1 is a potential drug target for ET.
Collapse
Affiliation(s)
- Charlotte Delay
- Faculty of Pharmacy, Université Laval, Québec City, Québec, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
42
|
Seira O, Del Río JA. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration. Mol Neurobiol 2013; 49:931-44. [PMID: 24158777 DOI: 10.1007/s12035-013-8571-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022]
Abstract
Gaining a basic understanding of the inhibitory molecules and the intracellular signaling involved in axon development and repulsion after neural lesions is of clear biomedical interest. In recent years, numerous studies have described new molecules and intracellular mechanisms that impair axonal outgrowth after injury. In this scenario, the role of glycogen synthase kinase 3 beta (GSK3β) in the axonal responses that occur after central nervous system (CNS) lesions began to be elucidated. GSK3β function in the nervous tissue is associated with neural development, neuron polarization, and, more recently, neurodegeneration. In fact, GSK3β has been considered as a putative therapeutic target for promoting functional recovery in injured or degenerative CNS. In this review, we summarize current understanding of the role of GSK3β during neuronal development and regeneration. In particular, we discuss GSK3β activity levels and their possible impact on cytoskeleton dynamics during both processes.
Collapse
Affiliation(s)
- Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), University of Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain,
| | | |
Collapse
|
43
|
Round J, Ross B, Angel M, Shields K, Lom B. Slitrk gene duplication and expression in the developing zebrafish nervous system. Dev Dyn 2013; 243:339-49. [PMID: 24123428 DOI: 10.1002/dvdy.24076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The Slitrk family of leucine-rich repeat (LRR) transmembrane proteins bears structural similarity to the Slits and the Trk receptor families, which exert well-established roles in directing nervous system development. Slitrks are less well understood, although they are highly expressed in the developing vertebrate nervous system. Moreover, slitrk variants are associated with several sensory and neuropsychiatric disorders, including myopia, deafness, obsessive-compulsive disorder (OCD), schizophrenia, and Tourette syndrome. Loss-of-function studies in mice show that Slitrks modulate neurite outgrowth and inhibitory synapse formation, although the molecular mechanisms of Slitrk function remain poorly characterized. RESULTS As a prelude to examining the functional roles of Slitrks, we identified eight slitrk orthologs in zebrafish and observed that seven of the eight orthologs were actively transcribed in the nervous system at embryonic, larval, and adult stages. Similar to previous findings in mice and humans, zebrafish slitrks exhibited unique but overlapping spatial and temporal expression patterns in the developing brain, retina, and spinal cord. CONCLUSIONS Zebrafish express Slitrks in the developing central nervous system at times and locations important to neuronal morphogenesis and synaptogenesis. Future studies will use zebrafish as a convenient, cost-effective model organism to characterize the functional roles of Slitrks in nervous system development.
Collapse
Affiliation(s)
- Jennifer Round
- Department of Biology and Program in Neuroscience, Davidson College, Davidson, North Carolina
| | | | | | | | | |
Collapse
|
44
|
Damage to myelin and oligodendrocytes: a role in chronic outcomes following traumatic brain injury? Brain Sci 2013; 3:1374-94. [PMID: 24961533 PMCID: PMC4061868 DOI: 10.3390/brainsci3031374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence in the experimental and clinical traumatic brain injury (TBI) literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s) of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.
Collapse
|
45
|
WANG YONGXIANG, GU JIAXIANG, FENG XINMIN, WANG HUA, TAO YUPING, WANG JINGCHENG. Effects of Nogo-A receptor antagonist on the regulation of the Wnt signaling pathway and neural cell proliferation in newborn rats with hypoxic ischemic encephalopathy. Mol Med Rep 2013; 8:883-6. [DOI: 10.3892/mmr.2013.1579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/03/2013] [Indexed: 11/05/2022] Open
|
46
|
Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol 2013; 125:879-89. [PMID: 23543187 DOI: 10.1007/s00401-013-1108-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/19/2013] [Accepted: 03/17/2013] [Indexed: 01/08/2023]
Abstract
The Lingo-1 sequence variant has been associated with essential tremor (ET) in several genome-wide association studies. However, the role that Lingo-1 might play in pathogenesis of ET is not understood. Since Lingo-1 protein is a negative regulator of axonal regeneration and neurite outgrowth, it could contribute to Purkinje cell (PC) or basket cell axonal pathology observed in postmortem studies of ET brains. In this study, we used Western blotting and immunohistochemistry to examine Lingo-1 protein in ET vs. control brains. In Western blots, Lingo-1 protein expression level was significantly increased in cerebellar cortex (1.56 ± 0.46 in ET cases vs. 0.99 ± 0.20 in controls, p = 0.002), but was similar in the occipital cortex (p = 1.00) of ET cases vs. controls. Lingo-1 immunohistochemistry in cerebellum revealed that Lingo-1 was enriched in the distal axonal processes of basket cells, which formed a "pinceau" structure around the PC axon initial segment (AIS). We found that some Lingo-1-positive pinceau had abnormally elongated processes, targeting PC axon segments distal to the AIS. In ET cases, the percentage of Lingo-1-positive pinceau that were ≥30 or ≥40 μm in length was increased 2.4- to 4.1-fold, respectively, vs. pinceau seen in control brains (p < 0.0001). Elongated Lingo-1-positive pinceau strongly correlated with number of PC axonal torpedoes and a rating of basket cell axonal pathology. The increased cerebellar Lingo-1 expression and elongated Lingo-1-positive pinceau processes could contribute to the abnormal PC and basket cell axonal pathology and cerebellar dysfunction observed in ET.
Collapse
|
47
|
Differential conserted activity induced regulation of Nogo receptors (1-3), LOTUS and Nogo mRNA in mouse brain. PLoS One 2013; 8:e60892. [PMID: 23593344 PMCID: PMC3623931 DOI: 10.1371/journal.pone.0060892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/04/2013] [Indexed: 01/11/2023] Open
Abstract
Nogo Receptor 1 (NgR1) mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.
Collapse
|
48
|
Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration. Neurosci Bull 2013; 29:177-88. [PMID: 23516141 DOI: 10.1007/s12264-013-1319-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms. As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts, myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development. Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS). in this review, we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS. Then we address recent findings demonstrating that neighboring OLs may compete for available axon space, and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes. Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.
Collapse
|
49
|
VanGuilder Starkey HD, Sonntag WE, Freeman WM. Increased hippocampal NgR1 signaling machinery in aged rats with deficits of spatial cognition. Eur J Neurosci 2013; 37:1643-58. [PMID: 23438185 DOI: 10.1111/ejn.12165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 01/31/2023]
Abstract
Myelin-associated inhibitor/NgR1 signaling has important roles in modulation of synaptic plasticity, with demonstrated effects on cognitive function. We have previously demonstrated that NgR1 and its ligands are upregulated in the hippocampus of aged rats with impaired spatial learning and memory, but it is unknown whether increased expression of these proteins indicates a potential increase in pathway signaling because NgR1 requires co-receptors for signal transduction through RhoA. Two co-receptor complexes have been identified to date, comprised of NgR1 and LINGO-1, and either p75 or TROY. In this study, we assessed the expression of LINGO-1, p75 and TROY, and the downstream effector RhoA in mature adult (12 months) and aged (26 months) male Fischer 344/Brown Norway hybrid rats classified as cognitively impaired or cognitively intact by Morris water maze testing. The hippocampal distribution of NgR1 and its co-receptors was assessed to determine whether receptor/co-receptor interaction, and therefore signaling through this pathway, is possible. Protein expression of LINGO-1, p75, TROY and RhoA was significantly elevated in cognitively impaired, but not intact, aged rats compared with mature adults, and expression levels correlated significantly with water maze performance. Co-localization of NgR1 with LINGO-1, p75 and TROY was observed in hippocampal neurons of aged, cognitively impaired rats. Further, expression profiles of NgR1 pathway components were demonstrated to classify rats as cognitively intact or cognitively impaired with high accuracy. Together, this suggests that hippocampal induction of this pathway is a conserved phenomenon in cognitive decline that may impair learning and memory by suppressing neuronal plasticity.
Collapse
Affiliation(s)
- Heather D VanGuilder Starkey
- Department of Pharmacology, R130 Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
50
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|