1
|
Kruk D, Yeung ACY, Faiz A, ten Hacken NHT, Timens W, van Kuppevelt TH, Daamen W, Hof D, Harmsen MC, Rojas M, Heijink IH. Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls. Respir Res 2023; 24:22. [PMID: 36681830 PMCID: PMC9863276 DOI: 10.1186/s12931-023-02314-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. AIM To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls. METHODS We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq). RESULTS We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene. CONCLUSION Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.
Collapse
Affiliation(s)
- Dennis Kruk
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna C. Y. Yeung
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia ,grid.1013.30000 0004 1936 834XWoolcock Institute of Medical Research, The University of Sydney, Glebe, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia
| | - Nick H. T. ten Hacken
- grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toin H. van Kuppevelt
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke Daamen
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danique Hof
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin C. Harmsen
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands
| | - Mauricio Rojas
- grid.261331.40000 0001 2285 7943Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH USA
| | - Irene H. Heijink
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Sunkara RR, Mehta D, Sarate RM, Waghmare SK. BMP-AKT-GSK3β signalling restores hair follicle stem cells decrease associated with loss of Sfrp1. Stem Cells 2022; 40:802-817. [PMID: 35689817 DOI: 10.1093/stmcls/sxac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
Wnt signaling plays a pivotal role in regulating activation, proliferation, stem cell renewal and differentiation of hair follicle stem cells (HFSCs). Secreted frizzled related protein-1 (Sfrp1), a Wnt antagonist is up regulated in the HFSCs; however, its role in the HFSCs regulation is still obscure. Here, we show that Sfrp1 loss showed a depletion of HFSCs, enhanced HFSC proliferation and faster hair follicle cycle at PD21 to PD28, HFSC markers such as Lgr5 and Axin2 were decreased in both the Sfrp1 +/- and Sfrp1 -/- HFSCs. In addition, the second hair follicle cycle was also faster as compared to WT. Importantly, Sfrp1 -/- showed a restoration of HFSC by 2 nd telogen (PD49), while Sfrp1+/- did not show restoration with still having a decreased HFSC. Infact, restoration of HFSCs was due to a pronounced down-regulation of β-CATENIN activity mediated through a cross-talk of BMP-AKT-GSK3β signalling in Sfrp1-/- as compared to Sfrp1+/-, where down regulation was less pronounced. In cultured keratinocytes, Sfrp1 loss resulted in enhanced proliferation and clonogenicity, which were reversed by treating with either BMPR1A or GSK3β inhibitor thereby confirming BMP-AKT-GSK3β signaling involved in β-CATENIN regulation in both the Sfrp1 +/- and Sfrp1 -/- mice. Our study reveals a novel function of Sfrp1 by unravelling an in vivo molecular mechanism that regulate the HFSCs pool mediated through a hitherto unknown cross-talk of BMP-AKT-GSK3β signalling that maintain stem cell pool balance, which in turn maintain skin tissue homeostasis.
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
3
|
Rai N, Arteaga-Solis E, Goldklang M, Zelonina T, D’Armiento J. The Role of Secreted Frizzled-related Protein-1 in Allergic Asthma. Am J Respir Cell Mol Biol 2022; 66:293-301. [PMID: 34929134 PMCID: PMC8937247 DOI: 10.1165/rcmb.2020-0314oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Although allergic asthma is a highly prevalent chronic inflammatory condition, the underlying pathogenesis driving T-helper cell type 2 inflammation is not well understood. Wnt/β-catenin signaling has been implicated, but the influence of individual members of the pathway is not clear. We hypothesized that SFRP-1 (secreted frizzled-related protein-1), a Wnt signaling modulator, plays an important role in the development of allergic inflammation in asthma. Using an in vivo house dust mite asthma model, SFRP-1-/- mice were sensitized, and their BAL fluid was collected to evaluate airway inflammation. SFRP-1-/- mice exhibited less inflammation with reduced cellular infiltration and concentration of IL-5 in bronchoalveolar lavage fluid compared with wild-type (WT) mice. Similar findings were observed in WT mice treated with SFRP-1 inhibitor, WAY316606. Alveolar macrophages from sensitized SFRP-1-/- mice demonstrated reduced alternative polarization compared with WT, indicating that macrophages could mediate the alteration in inflammation seen in these mice. These findings suggest that SFRP-1 is an important potentiator of asthmatic airway inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Jeanine D’Armiento
- Department of Anesthesiology
- Department of Medicine, and
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| |
Collapse
|
4
|
Esteve P, Crespo I, Kaimakis P, Sandonís A, Bovolenta P. Sfrp1 Modulates Cell-signaling Events Underlying Telencephalic Patterning, Growth and Differentiation. Cereb Cortex 2020; 29:1059-1074. [PMID: 30084950 DOI: 10.1093/cercor/bhy013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/βcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Inmaculada Crespo
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Africa Sandonís
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
5
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, Esposito G, Russo R, Tartaglione G, De Palma R, Rossi F, D’Agostino B. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS One 2016; 11:e0158746. [PMID: 27434719 PMCID: PMC4951036 DOI: 10.1371/journal.pone.0158746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/21/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. OBJECTIVES To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. METHODS GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. RESULTS Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. CONCLUSION Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue remodeling.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Intubation, Intratracheal
- Lung/immunology
- Lung/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/immunology
- Mice
- Mice, Inbred BALB C
- Ovalbumin
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/immunology
- Respiratory Hypersensitivity/chemically induced
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/therapy
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Bruno D’Agostino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| |
Collapse
|
7
|
Rolandsson Enes S, Andersson Sjöland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 2016; 6:29160. [PMID: 27381039 PMCID: PMC4933903 DOI: 10.1038/srep29160] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are multipotent cells with regenerative and immune-modulatory properties. Therefore, MSC have been proposed as a potential cell-therapy for bronchiolitis obliterans syndrome (BOS). On the other hand, there are publications demonstrating that MSC might be involved in the development of BOS. Despite limited knowledge regarding the functional role of tissue-resident lung-MSC, several clinical trials have been performed using MSC, particularly bone marrow (BM)-derived MSC, for various lung diseases. We aimed to compare lung-MSC with the well-characterized BM-MSC. Furthermore, MSC isolated from lung-transplanted patients with BOS were compared to patients without BOS. Our study show that lung-MSCs are smaller, possess a higher colony-forming capacity and have a different cytokine profile compared to BM-MSC. Utilizing gene expression profiling, 89 genes including lung-specific FOXF1 and HOXB5 were found to be significantly different between BM-MSC and lung-MSC. No significant differences in cytokine secretion or gene expression were found between MSC isolated from BOS patients compared recipients without BOS. These data demonstrate that lung-resident MSC possess lung-specific properties. Furthermore, these results show that MSC isolated from lung-transplanted patients with BOS do not have an altered phenotype compared to MSC isolated from good outcome recipients.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | | | - Ingrid Skog
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lennart Hansson
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Hillevi Larsson
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology; Centre for Allogeneic Stem Cell Transplantation, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Leif Eriksson
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stefan Scheding
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
8
|
Li F, He J, Wei J, Cho WC, Liu X. Diversity of epithelial stem cell types in adult lung. Stem Cells Int 2015; 2015:728307. [PMID: 25810726 PMCID: PMC4354973 DOI: 10.1155/2015/728307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.
Collapse
Affiliation(s)
- Feng Li
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jinxi He
- Department of Thoracic Surgery of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Wei
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xiaoming Liu
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|