1
|
Do HN, Kubicek-Sutherland JZ, Gnanakaran S. Diverse toxins exhibit a common binding mode to the nicotinic acetylcholine receptors. Biophys J 2025; 124:1195-1207. [PMID: 40017033 PMCID: PMC12044393 DOI: 10.1016/j.bpj.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are critical ligand-gated ion channels in the human nervous system. They are targets for various neurotoxins produced by algae, plants, and animals. While many structures of nAChRs bound by neurotoxins have been published, the binding mechanism of toxins to the nAChRs remains unclear. In this work, we have performed extensive Gaussian accelerated molecular dynamics simulations on several Aplysia californica nAChRs in complex with α-conotoxins, strychnine, and pinnatoxins, as well as human nAChRs in complex with α-bungarotoxin and α-conotoxin, to determine the binding and dissociation pathways of the toxins to the nAChRs and the associated effects. We uncovered two common binding and dissociation pathways shared by toxins and nAChRs. In the first binding pathway, the toxins diffused from the bulk solvent to bind a region near the extracellular pore before moving downwards along the nAChRs to the nAChR orthosteric pocket. The second binding pathway involved a direct diffusion of the toxins from the bulk solvent into the nAChR orthosteric pocket. The dissociation pathways were the reverse of the observed binding pathways. Notably, we determined that the electrostatically bipolar interactions between the nAChR orthosteric pocket and toxins provided an explanation for the common binding mode shared by diverse toxins.
Collapse
Affiliation(s)
- Hung N Do
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
2
|
Ramones CMV, Taguchi RS, Gamba EME, Johann E Isagan AE, Watkins M, Chicote MO, Velarde MC, Villaraza AJL, Yu ET, Olivera BM, Concepcion GP, Lluisma AO. Variable peptide processing of a Conus (Asprella) neocostatus α-conotoxin generates bioactive toxiforms that are potent against distinct nicotinic acetylcholine receptor subtypes. Biochem Pharmacol 2025; 233:116781. [PMID: 39880316 DOI: 10.1016/j.bcp.2025.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Conusvenoms are composed of peptides that are commonly post-translationally modified, increasing their chemical diversity beyond what is encoded in the genome and enhancing their potency and selectivity. This study describes how PTMs alter an α-conotoxin's selectivity for specific nAChR subtypes. Venom from the cone snailConus(Asprella)neocostatuswas fractionated using high-performance liquid chromatography and tested using a behavioral intracranial mouse bioassay and a cholinergic calcium imaging assay using SH-SY5Y neuroblastoma cells. Four peptides were isolated from three HPLC fractions and found to have similar amino acid sequences using tandem mass spectrometry; they all containC-terminal amidation. The four peptides appear to be encoded by a single gene as indicated by transcriptomic analysis. One of these, NcIA, contains no additional PTM. NcIB lacked the two glycine residues found in the N-terminus of NcIA and contained two hydroxylated prolines. Analogs of both peptides containing a ɣ-carboxylated glutamic residue (NcIA[E15γ] and NcIB[E13γ]) were also isolated. Functional assays revealed distinct receptor selectivity: NcIA inhibited nicotine-evoked responses by over 70 %, while NcIA[E15γ] did not. Conversely, NcIB[E13γ] was inhibitory (∼60 %), but NcIB was not. Against choline-evoked responses, NcIA was weakly inhibitory (∼40 %), whereas the other three were nearly fully inhibitory. The IC50values for NcIB and NcIB[E13γ] were 91.0 nM and 64.7 nM, respectively. These findings indicate that PTMs andN-terminal modifications influence peptide potency and receptor specificity, suggesting that cone snails use variable peptide processing not only to generate chemical diversity in their venom but also to fine-tune the pharmacology of its components.
Collapse
Affiliation(s)
- Cydee Marie V Ramones
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ryoichi S Taguchi
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ella Mae E Gamba
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | | | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Meljune O Chicote
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Michael C Velarde
- Institute of Biology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | | | - Eizadora T Yu
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Gisela P Concepcion
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Arturo O Lluisma
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
3
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
4
|
Hone AJ, Santiago U, Harvey PJ, Tekarli B, Gajewiak J, Craik DJ, Camacho CJ, McIntosh JM. Design, Synthesis, and Structure-Activity Relationships of Novel Peptide Derivatives of the Severe Acute Respiratory Syndrome-Coronavirus-2 Spike-Protein that Potently Inhibit Nicotinic Acetylcholine Receptors. J Med Chem 2024; 67:9587-9598. [PMID: 38814877 PMCID: PMC11444331 DOI: 10.1021/acs.jmedchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The spike-protein of SARS-CoV-2 has a distinctive amino-acid sequence (682RRARS686) that forms a cleavage site for the enzyme furin. Strikingly, the structure of the spike-protein loop containing the furin cleavage site bears substantial similarity to neurotoxin peptides found in the venoms of certain snakes and marine cone snails. Leveraging this relationship, we designed and synthesized disulfide-constrained peptides with amino-acid sequences corresponding to the furin cleavage-sites of wild-type (B.1 variant) SARS-CoV-2 or the Alpha, Delta, and Omicron variants. Remarkably, some of these peptides potently inhibited α7 and α9α10 nicotinic acetylcholine receptors (nAChR) with nM affinity and showed SARS-CoV-2 variant and nAChR subtype-dependent potencies. Nuclear magnetic resonance spectroscopy and molecular dynamics were used to rationalize structure-activity relationships between peptides and their cognate receptors. These findings delineate nAChR subtypes that can serve as high-affinity spike-protein targets in tissues central to COVID-19 pathophysiology and identify ligands and target receptors to inform the development of novel SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bassel Tekarli
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - J Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Psychiatry, University of Utah, Salt Lake City, Utah 84112, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| |
Collapse
|
5
|
O’Brien BCV, Thao S, Weber L, Danielson HL, Boldt AD, Hueffer K, Weltzin MM. The human alpha7 nicotinic acetylcholine receptor is a host target for the rabies virus glycoprotein. Front Cell Infect Microbiol 2024; 14:1394713. [PMID: 38836054 PMCID: PMC11148329 DOI: 10.3389/fcimb.2024.1394713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4β2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.
Collapse
Affiliation(s)
- Brittany C. V. O’Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Shelly Thao
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Helen L. Danielson
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Agatha D. Boldt
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Maegan M. Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
6
|
Haufe Y, Kuruva V, Samanani Z, Lokaj G, Kamnesky G, Shadamarshan P, Shahoei R, Katz D, Sampson JM, Pusch M, Brik A, Nicke A, Leffler AE. Basic Residues at Position 11 of α-Conotoxin LvIA Influence Subtype Selectivity between α3β2 and α3β4 Nicotinic Receptors via an Electrostatic Mechanism. ACS Chem Neurosci 2023; 14:4311-4322. [PMID: 38051211 DOI: 10.1021/acschemneuro.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3β2 nAChR over the related α3β4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3β4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3β2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3β4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that β2[K79A] (I79 on β4), but not β2[K78A] (N78 on β4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.
Collapse
Affiliation(s)
- Yves Haufe
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Veeresh Kuruva
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ziyana Samanani
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Gonxhe Lokaj
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - PranavKumar Shadamarshan
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Rezvan Shahoei
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Dana Katz
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Jared M Sampson
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, Genova 16149, Italy
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Abba E Leffler
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| |
Collapse
|
7
|
Wu Y, Zhang J, Ren J, Zhu X, Li R, Zhangsun D, Luo S. Substitution of D-Arginine at Position 11 of α-RgIA Potently Inhibits α7 Nicotinic Acetylcholine Receptor. Mar Drugs 2023; 21:326. [PMID: 37367650 DOI: 10.3390/md21060326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Conotoxins are a class of disulfide-rich peptides found in the venom of cone snails, which have attracted considerable attention in recent years due to their potent activity on ion channels and potential for therapeutics. Among them, α-conotoxin RgIA, a 13-residue peptide, has shown great promise as a potent inhibitor of α9α10 nAChRs for pain management. In this study, we investigated the effect of substituting the naturally occurring L-type arginine at position 11 of the RgIA sequence with its D-type amino acid. Our results indicate that this substitution abrogated the ability of RgIA to block α9α10 nAChRs, but instead endowed the peptide with the ability to block α7 nAChR activity. Structural analyses revealed that this substitution induced significant alteration of the secondary structure of RgIA[11r], which consequently affected its activity. Our findings underscore the potential of D-type amino acid substitution as a promising strategy for designing novel conotoxin-based ligands targeting different types of nAChRs.
Collapse
Affiliation(s)
- Yong Wu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Junjie Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jie Ren
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Rui Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Xie T, Qin Y, Zhao J, Dong J, Qi P, Zhang P, Zhangsun D, Zhu X, Yu J, Luo S. Molecular Determinants of Species Specificity of α-Conotoxin TxIB towards Rat and Human α6/α3β4 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:ijms24108618. [PMID: 37239959 DOI: 10.3390/ijms24108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3β2β3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3β2β3 nAChR but also human α6/α3β4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and β4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3β4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]β4L107V, V115I was 22.5 μM, a 42-fold decrease in potency compared to the native hα6/α3β4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human β4 subunit, together, were found to determine the species differences in the α6/α3β4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Collapse
Affiliation(s)
- Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinyuan Zhao
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Qi
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Dong J, Zhang P, Xie J, Xie T, Zhu X, Zhangsun D, Yu J, Luo S. Loop2 Size Modification Reveals Significant Impacts on the Potency of α-Conotoxin TxID. Mar Drugs 2023; 21:md21050286. [PMID: 37233480 DOI: 10.3390/md21050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
α4/6-conotoxin TxID, which was identified from Conus textile, simultaneously blocks rat (r) α3β4 and rα6/α3β4 nicotinic acetylcholine receptors (nAChRs) with IC50 values of 3.6 nM and 33.9 nM, respectively. In order to identify the effects of loop2 size on the potency of TxID, alanine (Ala) insertion and truncation mutants were designed and synthesized in this study. An electrophysiological assay was used to evaluate the activity of TxID and its loop2-modified mutants. The results showed that the inhibition of 4/7-subfamily mutants [+9A]TxID, [+10A]TxID, [+14A]TxID, and all the 4/5-subfamily mutants against rα3β4 and rα6/α3β4 nAChRs decreased. Overall, ala-insertion or truncation of the 9th, 10th, and 11th amino acid results in a loss of inhibition and the truncation of loop2 has more obvious impacts on its functions. Our findings have strengthened the understanding of α-conotoxin, provided guidance for further modifications, and offered a perspective for future studies on the molecular mechanism of the interaction between α-conotoxins and nAChRs.
Collapse
Affiliation(s)
- Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Junjie Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
11
|
Zhu X, Wang S, Kaas Q, Yu J, Wu Y, Harvey PJ, Zhangsun D, Craik DJ, Luo S. Discovery, Characterization, and Engineering of LvIC, an α4/4-Conotoxin That Selectively Blocks Rat α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2023; 66:2020-2031. [PMID: 36682014 DOI: 10.1021/acs.jmedchem.2c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
α6β4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6β4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3β4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3β2β3 and α3β4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3β4 nAChR were defined. It is a potent and specific antagonist of α6β4 nAChRs that could potentially serve as a novel molecular probe to explore α6β4 nAChR-related neurophysiological and pharmacological functions.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Shuai Wang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yong Wu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Straub CJ, Rusali LE, Kremiller KM, Riley AP. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders. J Med Chem 2023; 66:107-121. [PMID: 36440853 PMCID: PMC10034762 DOI: 10.1021/acs.jmedchem.2c01562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For decades, ibogaine─the main psychoactive alkaloid found in Tabernanthe iboga─has been investigated as a possible treatment for substance use disorders (SUDs) due to its purported ability to interrupt the addictive properties of multiple drugs of abuse. Of the numerous pharmacological actions of ibogaine and its derivatives, the inhibition of α3β4 nicotinic acetylcholine receptors (nAChRs), represents a probable mechanism of action for their apparent anti-addictive activity. In this Perspective, we examine several classes of compounds that have been discovered and developed to target α3β4 nAChRs. Specifically, by focusing on compounds that have proven efficacious in pre-clinical models of drug abuse and have been evaluated clinically, we highlight the promising potential of the α3β4 nAChRs as viable targets to treat a wide array of SUDs. Additionally, we discuss the challenges faced by the existing classes of α3β4 nAChR ligands that must be overcome to develop them into therapeutic treatments.
Collapse
Affiliation(s)
- Carolyn J Straub
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
13
|
Liang J, Tae HS, Zhao Z, Li X, Zhang J, Chen S, Jiang T, Adams DJ, Yu R. Mechanism of Action and Structure-Activity Relationship of α-Conotoxin Mr1.1 at the Human α9α10 Nicotinic Acetylcholine Receptor. J Med Chem 2022; 65:16204-16217. [PMID: 36137181 DOI: 10.1021/acs.jmedchem.2c00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α-Conotoxins (α-CTxs) can selectively target nicotinic acetylcholine receptors (nAChRs) and are important drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α7 nAChR targeting α-CTx Mr1.1 and evaluated its activity at human nAChRs. Mr1.1 was most potent at the human (h) α9α10 nAChR with a half-maximal inhibitory concentration (IC50) of 92.0 nM. Molecular dynamic simulations suggested that Mr1.1 favorably binds at the α10(+)α9(-) and α9(+)α9(-) sites via hydrogen bonds and salt bridges, stabilizing the channel in a closed conformation. Although Mr1.1 and another antagonist, α-CTx Vc1.1 share high sequence similarity and disulfide-bond framework, Mr1.1 has distinct orientations at hα9α10. Based on the Mr1.1-hα9α10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized hα9α10 with an IC50 of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury (CCI) pain model and therefore presents a promising drug candidate.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao266003, China
| |
Collapse
|
14
|
Huang M, Zhu X, Yang Y, Tan Y, Luo S, Zhangsun D. Fluorescently Labeled α-Conotoxin TxID, a New Probe for α3β4 Neuronal Nicotinic Acetylcholine Receptors. Mar Drugs 2022; 20:511. [PMID: 36005514 PMCID: PMC9410468 DOI: 10.3390/md20080511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are important ion channel membrane proteins that are widely distributed in the central nervous system (CNS) and peripheral nervous system (PNS). As an important member, α3β4 nAChRs are related to pain sensation in PNS and nicotine addiction in CNS. However, research related to the α3β4 nAChRs is greatly limited by the lack of subtype-selective pharmacological tools. The α-conotoxin (α-CTx) TxID from the marine cone snail, Conus textile, is a selective α3β4 nAChR antagonist with relatively high potency. In this study, a fluorescent dye (5-TAMRA SE) was used to label TxID on the N-terminus of α-CTx TxID, and pure TxID-F (fluorescent analogue of TxID) was obtained by HPLC. At the same time, the potency and selectivity of TxID-F were detected by high-performance liquid chromatography (HPLC). Additionally, the potency and selectivity of TxID-F were determined by using a two-electrode voltage-clamp technique on various nAChRs expressed in the Xenopus oocyte expression system. The results obtained by electrophysiology showed that TxID-F maintained the same order of potency (IC50 73 nM) as the native toxin (IC50 25 nM) for the α3β4 nAChR subtype. In addition, the results of fluorescent spectroscopy and circular dichroism showed TxID-F has the same fluorescence as 5-TAMRA SE, as well as similar profiles as TxID. The results of flow cytometry showed that the histogram shifted significantly to the right for the RAW264.7 cells expressing α3β4-containing nAChRs stained with TxID-F and confirmed by live cell imaging. The study of fluorescent-labeled α-CTx TxID provides a rich pharmacological tool to explore the structure-function relationship, distribution, and ligand-binding domain of α3β4 nAChR subtype in the future.
Collapse
Affiliation(s)
- Meiling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China
| | - Yishuai Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yao Tan
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou 570228, China
- Medical School, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy. Mar Drugs 2022; 20:md20020146. [PMID: 35200675 PMCID: PMC8878501 DOI: 10.3390/md20020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
α6β4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6β4 nAChR is relatively poor, partly because of the lack of available target-specific α-CTxs. In this study, we synthesized a novel α-4/7 conotoxin QuIA that was found from Conus quercinus. We investigated the efficacy of this peptide to different nAChR subtypes using a two-electrode voltage-clamp technique. Remarkably, we found α-QuIA inhibited the neuronal α3β2 and α6/α3β4 nAChR subtypes with significantly high affinity (IC50 was 55.7 nM and 90.68 nM, respectively), and did not block other nAChR subtypes even at a high concentration of 10 μM. In contrast, most α-CTxs have been determined so far to effectively block the α6/α3β4 nAChR subtype while also maintaining a similar higher efficacy against the closely related α6β2β3 and/or α3β4 subtypes, which are different from QuIA. In conclusion, α-QuIA is a novel α4/7-CTx, which has the potential to develop as an effective neuropharmacology tool to detect the function of α6β4 nAChR.
Collapse
|
16
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
17
|
Guo M, Yu J, Zhu X, Zhangsun D, Luo S. Characterization of an α 4/7-Conotoxin LvIF from Conus lividus That Selectively Blocks α3β2 Nicotinic Acetylcholine Receptor. Mar Drugs 2021; 19:md19070398. [PMID: 34356823 PMCID: PMC8306566 DOI: 10.3390/md19070398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Nicotinic acetylcholine receptor (nAChR), a member of pentameric ligand-gated ion channel transmembrane protein composed of five subunits, is widely distributed in the central and peripheral nervous system. The nAChRs are associated with various neurological diseases, including schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and neuralgia. Receptors containing the α3 subunit are associated with analgesia, generating our interest in their role in pharmacological studies. In this study, α-conotoxin (α-CTx) LvIF was identified as a 16 amino acid peptide using a genomic DNA clone of Conus lividus (C. lividus). The mature LvIF with natural structure was synthesized by a two-step oxidation method. The blocking potency of α-CTx lvIF on nAChR was detected by a two-electrode voltage clamp. Our results showed that α-CTx LvIF was highly potent against rα3β2 and rα6/α3β2β3 nAChR subtypes, The half-maximal inhibitory concentration (IC50) values of α-CTx LvIF against rα3β2 and rα6/α3β2β3 nAChRs expressed in Xenopus oocytes were 8.9 nM and 14.4 nM, respectively. Furthermore, α-CTx LvIF exhibited no obvious inhibition on other nAChR subtypes. Meanwhile, we also conducted a competitive binding experiment between α-CTxs MII and LvIF, which showed that α-CTxs LvIF and MII bind with rα3β2 nAChR at the partial overlapping domain. These results indicate that the α-CTx LvIF has high potential as a new candidate tool for the studying of rα3β2 nAChR related neurophysiology and pharmacology.
Collapse
Affiliation(s)
- Man Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
- Correspondence: (D.Z.); (S.L.)
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
- Correspondence: (D.Z.); (S.L.)
| |
Collapse
|
18
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
19
|
Ning H, Huang B, Tae HS, Liu Z, Yu S, Li L, Zhang L, Adams DJ, Guo C, Dai Q. α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholine receptor subtypes. J Neurochem 2021; 159:90-100. [PMID: 34008858 DOI: 10.1111/jnc.15434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022]
Abstract
α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3β2β3 and rα3β2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3β2β3 and hα3β2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3β2β3 subtype compared to rα3β2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3β2β3 and α3β2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3β2β3 nAChRs.
Collapse
Affiliation(s)
- Huying Ning
- Beijing Institute of Biotechnology, Beijing, China
| | - Biling Huang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Liang Li
- Beijing Institute of Biotechnology, Beijing, China
| | | | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
20
|
Wang S, Zhu X, Zhangsun M, Wu Y, Yu J, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021; 64:5620-5631. [PMID: 33902275 DOI: 10.1021/acs.jmedchem.0c02079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in the central nervous system and plays an important role in cognitive function and memory. α-Conotoxin LvIB, identified from genomic DNA of Conus lividus, its three isomers and four globular isomer analogues were synthesized and screened at a wide range of nAChR subtypes. One of the analogues, amidated [Q1G,ΔR14]LvIB, was found to be a potent blocker of rat α7 nAChRs. Importantly, it differentiates between α7 nAChRs of human (IC50: 1570 nM) and rat (IC50: 97 nM). Substitutions between rat and human α7 nAChRs at three key mutation sites revealed that no single mutant could completely change the activity profile of amidated [Q1G,ΔR14]LvIB. Rather, we found that the combined influence of Gln141, Asn184, and Lys186 determines the α7 nAChR species specificity of this peptide. This engineered α4/4 conotoxin has potential applications as a template for designing ligands to selectively block human α7 nAChRs.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - Manqi Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yong Wu
- Medical School, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
21
|
Discovery and characterization of the novel conotoxin Lv1d from Conus lividus that presents analgesic activity. Toxicon 2021; 194:70-78. [PMID: 33610632 DOI: 10.1016/j.toxicon.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Cone snails are predatory gastropod mollusks that are distributed in all tropical marine environments and contain small peptides (conotoxins) in their venom to capture prey. However, the biochemical and molecular aspects of conotoxins remain poorly understood. In this article, a novel α4/7-conotoxin, Lv1d, was obtained from the venom duct cDNA library of the worm-hunting Conus lividus collected from the South China Sea. The cDNA of Lv1c encodes a 65 residue conopeptide precursor, which consists of a 21 residue signal peptide, a 27 residue Pro region, and 17 residues of mature peptide. The mature peptide Lv1d was chemically synthesized according to the sequence GCCSDPPCRHKHQDLCG. It was found that 10 μM Lv1d can completely inhibit frog sciatic nerve-gastrocnemius muscle contractility within 60 min. Moreover, 100 μg/kg Lv1d showed good analgesic effects in mouse hot plate model and formalin test. Patch clamp experiments showed that 5 μM Lv1d can inhibit the cholinergic microexcitatory postsynaptic currents (mEPSCs) requency and amplitude of projection neurons in Drosophila. In conclusion, the synthesis of Lv1d and its biological and physiological data might contribute to the development of this peptide as a novel potential drug for therapeutic applications. This finding also expands the knowledge of the targeting mechanism of the α4/7-subfamily conotoxins.
Collapse
|
22
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
23
|
Zhu X, Pan S, Xu M, Zhang L, Yu J, Yu J, Wu Y, Fan Y, Li H, Kasheverov IE, Kudryavtsev DS, Tsetlin VI, Xue Y, Zhangsun D, Wang X, Luo S. High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. J Med Chem 2020; 63:13656-13668. [PMID: 33196189 DOI: 10.1021/acs.jmedchem.0c00975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α3β2 and α3β4 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central and peripheral nervous systems, playing critical roles in various physiological processes and in such pathologies as addiction to nicotine and other drugs of abuse. α-Conotoxin LvIA, which we previously isolated from Conus lividus, modestly discriminates α3β2 and α3β4 rat nAChRs exhibiting a ∼17-fold tighter binding to the former. Here, alanine scanning resulted in two more selective analogues [N9A]LvIA and [D11A]LvIA, the former having a >2000-fold higher selectivity for α3β2. The determined crystal structures of [N9A]LvIA and [D11A]LvIA bound to the acetylcholine-binding protein (AChBP) were followed by homologous modeling of the complexes with the α3β2 and α3β4 nAChRs and by receptor mutagenesis, which revealed Phe106, Ser108, Ser113, and Ser168 residues in the β2 subunit as essential for LvIA binding. These results may be useful for the design of novel compounds of therapeutic potential targeting α3β2 nAChRs.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Si Pan
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Manyu Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Lu Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Medical School, Guangxi University, Nanning 530004, China
| | - Yingxu Fan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haonan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Street 8, bld. 2, Moscow 119991, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.,PhysBio of MePhi, Kashirskoe Ave. 31, Moscow 115409, Russia
| | - Yi Xue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dongting Zhangsun
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Sulan Luo
- Medical School, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
24
|
Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2020; 2068:129-162. [PMID: 31576526 DOI: 10.1007/978-1-4939-9845-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has over the last few decades proven to be an extremely useful technique for, and indeed an integral part of, investigating the structural features of peptides and small proteins directly in solution, without the need for crystallization. This advantage over X-ray methods is important when dealing with peptides and small proteins that do not readily form crystals. In this chapter we outline what specific NMR experiments are useful, considerations about how to acquire and interpret these experiments, and how information derived from the NMR data can be used to determine solution structures of small peptides.
Collapse
|
25
|
Marquart LA, Turner MW, Warner LR, King MD, Groome JR, McDougal OM. Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors. Mar Drugs 2019; 17:E669. [PMID: 31795126 PMCID: PMC6950571 DOI: 10.3390/md17120669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 0.19 ± 0.02 nM), and inhibition of the same nAChR isoform by α-CTx MII (IC50 = 0.35 ± 0.8 nM). The three-dimensional structure of KTM was determined by NMR spectroscopy, and the final set of 20 structures derived from 32 distance restraints, four dihedral angle constraints, and two disulfide bond constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for which it was designed, but instead adopted a flexible ribbon backbone and disulfide connectivity of C2-C16 and C3-C8 with an estimated 12.5% α-helical content. In contrast, α-CTx MII, which has a native fold of C2-C8 and C3-C16, has an estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar inhibitory potency of rα3β2-nAChR subtypes.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Lisa R. Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew D. King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| |
Collapse
|
26
|
Marquart LA, Turner MW, McDougal OM. Qualitative Assay to Detect Dopamine Release by Ligand Action on Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:toxins11120682. [PMID: 31757080 PMCID: PMC6949981 DOI: 10.3390/toxins11120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
A pheochromocytoma of the rat adrenal medulla derived (a.k.a. PC12) cell-based assay for dopamine measurement by luminescence detection was customized for the qualitative evaluation of agonists and antagonists of nicotinic acetylcholine receptors (nAChRs). The assay mechanism begins with ligand binding to transmembrane nAChRs, altering ion flow into the cell and inducing dopamine release from the cell. Following release, dopamine is oxidized by monoamine oxidase generating hydrogen peroxide that catalyzes a chemiluminescence reaction involving luminol and horseradish peroxidase, thus producing a detectable response. Results are presented for the action of nAChR agonists (acetylcholine, nicotine, and cytisine), and antagonists (α-conotoxins (α-CTxs) MII, ImI, LvIA, and PeIA) that demonstrate a luminescence response correlating to the increase or decrease of dopamine release. A survey of cell growth and treatment conditions, including nerve growth factor, nicotine, ethanol, and temperature, led to optimal assay requirements to achieve maximal signal intensity and consistent response to ligand treatment. It was determined that PC12 cells treated with a combination of nerve growth factor and nicotine, and incubated at 37 °C, provided favorable results for a reduction in luminescence signal upon treatment of cells with α-CTxs. The PC12 assay is intended for use as a fast, efficient, and economic qualitative method to assess the bioactivity of molecules that act on nAChRs, in which testing of ligand-nAChR binding hypotheses and computational predictions can be validated. As a screening method for nAChR bioactivity, lead compounds can be assessed for their likelihood of exhibiting desired bioactivity prior to being subjected to more complex quantitative methods, such as electrophysiology or live animal studies.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA;
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Owen M. McDougal
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
- Correspondence:
| |
Collapse
|
27
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
28
|
Yue Y, Zhang Q, Wang J. Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica. Mar Drugs 2019; 17:md17070395. [PMID: 31277424 PMCID: PMC6669569 DOI: 10.3390/md17070395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
The sea slater Ligia exotica is believed to have effects of reducing swelling and relieving pain in Chinese folk medicine. However, the scientific foundation of using the sea slater Ligia spp. as an analgesic and anti-inflammatory material remains elusive. In the present study, various organic extracts from sea slater L. exotica were subjected to biological screening employing in vitro and in vivo models, and chemical phenotypes of the biologically active extract were deciphered by integrated gas chromatograph-mass spectrometry (GC-MS) profiling and MS/MS-based molecular networking. The results demonstrated, for the first time, that petroleum ether extract (PE) from L. exotica possessed remarkable anti-inflammatory and analgesic effects. Moreover, intragastric administration of PE at 200 mg/kg produced analgesic effects in both the writhing test and hot plate test. GC-MS analysis revealed that Z-9-hexadecenoic acid and 6-octadecenoic acid dominated in the volatile compositions of PE. Molecular networking (MN) suggested great chemical diversity within L. exotica. In total, 69 known compounds were identified in Ligia extracts by MS/MS spectral matching, and at least 7 analogues from two clusters of nitrogen-containing compounds (MN3,4) were strongly suggested as novel compounds. The molecular families MN1,3,4 were almost exclusively detected in the biologically active PE and ethyl acetate extract (EE). Importantly, various known compounds identified in MN1 were reported to possess analgesic and anti-inflammatory effects in the literature, which may contribute to the observed analgesic and anti-inflammatory effects of L. exotica. The present study not only demonstrated the ethnopharmaceutical value of L. exotica for pain-relief in Chinese folk medicine, but also suggested that sea slaters may represent a promising source for discovery of novel analgesic and anti-inflammatory compounds in the near future.
Collapse
Affiliation(s)
- Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
29
|
Hone AJ, Fisher F, Christensen S, Gajewiak J, Larkin D, Whiteaker P, McIntosh JM. PeIA-5466: A Novel Peptide Antagonist Containing Non-natural Amino Acids That Selectively Targets α3β2 Nicotinic Acetylcholine Receptors. J Med Chem 2019; 62:6262-6275. [PMID: 31194549 DOI: 10.1021/acs.jmedchem.9b00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacologically distinguishing α3β2 nicotinic acetylcholine receptors (nAChRs) from closely related subtypes, particularly α6β2, has been challenging due to the lack of subtype-selective ligands. We created analogs of α-conotoxin (α-Ctx) PeIA to identify ligand-receptor interactions that could be exploited to selectively increase potency and selectivity for α3β2 nAChRs. A series of PeIA analogs were synthesized by replacing amino acid residues in the second disulfide loop with standard or nonstandard residues and assessing their activity on α3β2 and α6/α3β2β3 nAChRs heterologously expressed in Xenopus laevis oocytes. Asparagine11 was found to occupy a pivotal position, and when replaced with negatively charged amino acids, selectivity for α3β2 over α6/α3β2β3 nAChRs was substantially increased. Second generation peptides were then designed to further improve both potency and selectivity. One peptide, PeIA-5466, was ∼300-fold more potent on α3β2 than α6/α3β2β3 and is the most α3β2-selective antagonist heretofore reported.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center , Salt Lake City , Utah 84148 , United States
| |
Collapse
|
30
|
Abstract
In order to improve stability of a peptide marine drug lead, α-conotoxin TxID, we synthesized and modified TxID at the N-terminal with DSPE-PEG-NHS by a nucleophilic substitution reaction to prepare the DSPE-PEG-TxID for the first time. The reaction conditions, including solvent, ratio, pH, and reaction time, were optimized systematically and the optimal one was reacted in dimethyl formamide at pH 8.2 with triethylamine at room temperature for 120 h. The in vitro stabilities in serum, simulated gastric juice, and intestinal fluid were tested, and improved dramatically compared with TxID. The PEG-modified peptide was functionally tested on α3β4 nicotinic acetylcholine receptor (nAChR) heterologously expressed in Xenopus laevis oocytes. The DSPE-PEG-TxID showed an obvious inhibition effect on α3β4 nAChR. All in all, the PEG modification of TxID was improved in stability, resistance to enzymatic degradation, and may prolong the half-life in vivo, which may pave the way for the future application in smoking cessation and drug rehabilitation, as well as small cell lung cancer.
Collapse
|
31
|
El Hamdaoui Y, Wu X, Clark RJ, Giribaldi J, Anangi R, Craik DJ, King GF, Dutertre S, Kaas Q, Herzig V, Nicke A. Periplasmic Expression of 4/7 α-Conotoxin TxIA Analogs in E. coli Favors Ribbon Isomer Formation - Suggestion of a Binding Mode at the α7 nAChR. Front Pharmacol 2019; 10:577. [PMID: 31214027 PMCID: PMC6554660 DOI: 10.3389/fphar.2019.00577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
Peptides derived from animal venoms provide important research tools for biochemical and pharmacological characterization of receptors, ion channels, and transporters. Some venom peptides have been developed into drugs (such as the synthetic ω-conotoxin MVIIA, ziconotide) and several are currently undergoing clinical trials for various clinical indications. Challenges in the development of peptides include their usually limited supply from natural sources, cost-intensive chemical synthesis, and potentially complicated stereoselective disulfide-bond formation in the case of disulfide-rich peptides. In particular, if extended structure–function analysis is performed or incorporation of stable isotopes for NMR studies is required, the comparatively low yields and high costs of synthesized peptides might constitute a limiting factor. Here we investigated the expression of the 4/7 α-conotoxin TxIA, a potent blocker at α3β2 and α7 nicotinic acetylcholine receptors (nAChRs), and three analogs in the form of maltose binding protein fusion proteins in Escherichia coli. Upon purification via nickel affinity chromatography and release of the toxins by protease cleavage, HPLC analysis revealed one major peak with the correct mass for all peptides. The final yield was 1–2 mg of recombinant peptide per liter of bacterial culture. Two-electrode voltage clamp analysis on oocyte-expressed nAChR subtypes demonstrated the functionality of these peptides but also revealed a 30 to 100-fold potency decrease of expressed TxIA compared to chemically synthesized TxIA. NMR spectroscopy analysis of TxIA and two of its analogs confirmed that the decreased activity was due to an alternative disulfide linkage rather than the missing C-terminal amidation, a post-translational modification that is common in α-conotoxins. All peptides preferentially formed in the ribbon conformation rather than the native globular conformation. Interestingly, in the case of the α7 nAChR, but not the α3β2 subtype, the loss of potency could be rescued by an R5D substitution. In conclusion, we demonstrate efficient expression of functional but alternatively folded ribbon TxIA variants in E. coli and provide the first structure–function analysis for a ribbon 4/7-α-conotoxin at α7 and α3β2 nAChRs. Computational analysis based on these data provide evidence for a ribbon α-conotoxin binding mode that might be exploited to design ligands with optimized selectivity.
Collapse
Affiliation(s)
- Yamina El Hamdaoui
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiaosa Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Julien Giribaldi
- CNRS, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sebastien Dutertre
- CNRS, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
32
|
Zouridakis M, Papakyriakou A, Ivanov IA, Kasheverov IE, Tsetlin V, Tzartos S, Giastas P. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Front Pharmacol 2019; 10:474. [PMID: 31118896 PMCID: PMC6504684 DOI: 10.3389/fphar.2019.00474] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(−), the α9(+)/α10(−), and the α10(+)/α9(−). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Å resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(−) or α10(+)/α9(−) rather than the α9(+)/α10(−) interface, in accordance with previous mutational and functional data.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Department of Pharmacy, University of Patras, Patras, Greece
| | - Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
33
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
34
|
Kondasinghe TD, Saraha HY, Jackowski ST, Stockdill JL. Raising the Bar On-Bead: Efficient On-Resin Synthesis of α-Conotoxin LvIA. Tetrahedron Lett 2019; 60:23-28. [PMID: 31564757 PMCID: PMC6764457 DOI: 10.1016/j.tetlet.2018.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
α4/7-Conotoxin LvIA is an isoform-selective inhibitor of the α3β2 nicotinic acetylcholine receptor. An efficient strategy for the synthesis of this toxin is critical to advancing its utility as a probe for receptor function and as a potential pharmaceutical lead target. On-resin methods for peptide synthesis offer potential synthetic advantages; however, strategies for on-resin formation of multiple disulfides have historically been low-yielding. Here, we harness the reactivity of the Allocam protecting group and employ 3-amino acid spacer strategy to synthesize α4/7-conotoxin LvIA via three different on-resin strategies, each of which results in an isolated yield higher than prior fully on-resin approaches.
Collapse
Affiliation(s)
| | - Hasina Y. Saraha
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | | | | |
Collapse
|
35
|
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery Methodology of Novel Conotoxins from Conus Species. Mar Drugs 2018; 16:md16110417. [PMID: 30380764 PMCID: PMC6266589 DOI: 10.3390/md16110417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cone snail venoms provide an ideal resource for neuropharmacological tools and drug candidates discovery, which have become a research hotspot in neuroscience and new drug development. More than 1,000,000 natural peptides are produced by cone snails, but less than 0.1% of the estimated conotoxins has been characterized to date. Hence, the discovery of novel conotoxins from the huge conotoxin resources with high-throughput and sensitive methods becomes a crucial key for the conotoxin-based drug development. In this review, we introduce the discovery methodology of new conotoxins from various Conus species. It focuses on obtaining full N- to C-terminal sequences, regardless of disulfide bond connectivity through crude venom purification, conotoxin precusor gene cloning, venom duct transcriptomics, venom proteomics and multi-omic methods. The protocols, advantages, disadvantages, and developments of different approaches during the last decade are summarized and the promising prospects are discussed as well.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Cheng Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| |
Collapse
|
36
|
Yu J, Zhu X, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist. J Med Chem 2018; 61:9256-9265. [DOI: 10.1021/acs.jmedchem.8b00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Yu J, Zhu X, Zhang L, Kudryavtsev D, Kasheverov I, Lei Y, Zhangsun D, Tsetlin V, Luo S. Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology 2018; 139:226-237. [DOI: 10.1016/j.neuropharm.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023]
|
38
|
Abraham N, Lewis RJ. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Mar Drugs 2018; 16:E208. [PMID: 29899286 PMCID: PMC6024932 DOI: 10.3390/md16060208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Marine cone snails are a large family of gastropods that have evolved highly potent venoms for predation and defense. The cone snail venom has exceptional molecular diversity in neuropharmacologically active compounds, targeting a range of receptors, ion channels, and transporters. These conotoxins have helped to dissect the structure and function of many of these therapeutically significant targets in the central and peripheral nervous systems, as well as unravelling the complex cellular mechanisms modulated by these receptors and ion channels. This review provides an overview of α-conotoxins targeting neuronal nicotinic acetylcholine receptors. The structure and activity of both classical and non-classical α-conotoxins are discussed, along with their contributions towards understanding nicotinic acetylcholine receptor (nAChR) structure and function.
Collapse
Affiliation(s)
- Nikita Abraham
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Richard J Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
39
|
Chen J, Liang L, Ning H, Cai F, Liu Z, Zhang L, Zhou L, Dai Q. Cloning, Synthesis and Functional Characterization of a Novel α-Conotoxin Lt1.3. Mar Drugs 2018; 16:md16040112. [PMID: 29614714 PMCID: PMC5923399 DOI: 10.3390/md16040112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/28/2023] Open
Abstract
α-Conotoxins (α-CTxs) are small peptides composed of 11 to 20 amino acid residues with two disulfide bridges. Most of them potently and selectively target nicotinic acetylcholine receptor (nAChR) subtypes, and a few were found to inhibit the GABAB receptor (GABABR)-coupled N-type calcium channels (Cav2.2). However, in all of α-CTxs targeting both receptors, the disulfide connectivity arrangement "C¹-C³, C²-C⁴" is present. In this work, a novel α4/7-CTx named Lt1.3 (GCCSHPACSGNNPYFC-NH₂) was cloned from the venom ducts of Conus litteratus (C. litteratus) in the South China Sea. Lt1.3 was then chemically synthesized and two isomers with disulfide bridges "C¹-C³, C²-C⁴" and "C¹-C⁴, C²-C³" were found and functionally characterized. Electrophysiological experiments showed that Lt1.3 containing the common disulfide bridges "C¹-C³, C²-C⁴" potently and selectively inhibited α3β2 nAChRs and not GABABR-coupled Cav2.2. Surprisingly, but the isomer with the disulfide bridges "C¹-C⁴, C²-C³" showed exactly the opposite inhibitory activity, inhibiting only GABABR-coupled Cav2.2 and not α3β2 nAChRs. These findings expand the knowledge of the targets and selectivity of α-CTxs and provide a new structural motif to inhibit the GABABR-coupled Cav2.2.
Collapse
Affiliation(s)
- Jinqin Chen
- Beijing Institute of Biotechnology, Beijing 100071, China.
- Institute of Physical Science and Information Technology, Anhui University, Hefei 236041, China.
| | - Li Liang
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Huying Ning
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Fengtao Cai
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Longxiao Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Liangyi Zhou
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
40
|
α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neurosci Lett 2017; 679:24-34. [PMID: 29199094 DOI: 10.1016/j.neulet.2017.11.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
The vast diversity of neuronal nicotinic acetylcholine subunits expressed in the central and peripheral nervous systems, as well as in non-neuronal tissues, constitutes a formidable challenge for researchers and clinicians to decipher the role of particular subtypes, including complex subunit associations, in physiological and pathophysiological functions. Many natural products target the nAChRs, but there is no richer source of nicotinic ligands than the venom of predatory gastropods known as cone snails. Indeed, every single species of cone snail was shown to produce at least one type of such α-conotoxins. These tiny peptides (10-25 amino acids), constrained by disulfide bridges, proved to be unvaluable tools to investigate the structure and function of nAChRs, some of them having also therapeutic potential. In this review, we provide a recent update on the pharmacology and subtype specificity of several major α-conotoxins.
Collapse
|
41
|
Yu J, Zhu X, Yang Y, Luo S, Zhangsun D. Expression in Escherichia coli of fusion protein comprising α-conotoxin TxIB and preservation of selectivity to nicotinic acetylcholine receptors in the purified product. Chem Biol Drug Des 2017; 91:349-358. [PMID: 28891599 DOI: 10.1111/cbdd.13104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/04/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, which are widely distributed in the central and peripheral nervous system. The α6β2* nAChR is an important subtype, which is closely associated with nicotine addiction and movement disorders etc. α-conotoxin TxIB with 16-amino acid residues specifically targets α6β2* nAChR with no obvious effect on other nAChR subtypes. However, chemical synthesis of TxIB is expensive, and the quantity of native TxIB extracted from cone snail is limited. In the present study, we attempted to obtain TxIB using biological method based on the recombinant expression in Escherichia coli (E. coli). The synthetic gene encoding mature peptide of TxIB was inserted in pET-31b(+) vector and transformed into E. coli strain BLR(DE3)pLysS for expression. The recombinant fusion protein KSI-TxIB-His6 (KSI, ketosteroid isomerase) was expressed successfully as inclusion body in E. coli, which was purified by Ni-NTA affinity chromatography column and cleaved by cyanogen bromide (CNBr) to release recombinant α-conotoxin TxIB (rTxIB). Then, rTxIB was purified by reverse-phase high-performance liquid chromatography (RP-HPLC) and was identified by electrospray ionization mass spectrometry (ESI-MS). Pharmacological activity of rTxIB was assessed by electrophysiological approaches. The results indicated that it preserved about 50% of potency, but, was even more important, had the same selectivity as the natural conotoxin which may provide an alternative method for quantity production of small peptides with low cost on the premise of not changing their potency.
Collapse
Affiliation(s)
- Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China.,College of Agriculture, Hainan University, Haikou, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China
| | - Yang Yang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China.,College of Agriculture, Hainan University, Haikou, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China
| |
Collapse
|
42
|
α-Conotoxin Decontamination Protocol Evaluation: What Works and What Doesn't. Toxins (Basel) 2017; 9:toxins9090281. [PMID: 28906461 PMCID: PMC5618214 DOI: 10.3390/toxins9090281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 11/30/2022] Open
Abstract
Nine publically available biosafety protocols for safely handling conotoxin peptides were tested to evaluate their decontamination efficacy. Circular dichroism (CD) spectroscopy and mass spectrometry (MS) were used to assess the effect of each chemical treatment on the secondary and primary structure of α-CTx MII (L10V, E11A). Of the nine decontamination methods tested, treatment with 1% (m/v) solution of the enzymatic detergent Contrex™ EZ resulted in a 76.8% decrease in α-helical content as assessed by the mean residue ellipticity at 222 nm, and partial peptide digestion was demonstrated using high performance liquid chromatography mass spectrometry (HPLC-MS). Additionally, treatment with 6% sodium hypochlorite (m/v) resulted in 80.5% decrease in α-helical content and complete digestion of the peptide. The Contrex™ EZ treatment was repeated with three additional α-conotoxins (α-CTxs), α-CTxs LvIA, ImI and PeIA, which verified the decontamination method was reasonably robust. These results support the use of either 1% Contrex™ EZ solution or 6% sodium hypochlorite in biosafety protocols for the decontamination of α-CTxs in research laboratories.
Collapse
|
43
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
44
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
45
|
Xu M, Zhu X, Yu J, Yu J, Luo S, Wang X. The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell 2017; 8:675-685. [PMID: 28585176 PMCID: PMC5563285 DOI: 10.1007/s13238-017-0426-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
The α3* nAChRs, which are considered to be promising drug targets for problems such as pain, addiction, cardiovascular function, cognitive disorders etc., are found throughout the central and peripheral nervous system. The α-conotoxin (α-CTx) LvIA has been identified as the most selective inhibitor of α3β2 nAChRs known to date, and it can distinguish the α3β2 nAChR subtype from the α6/α3β2β3 and α3β4 nAChR subtypes. However, the mechanism of its selectivity towards α3β2, α6/α3β2β3, and α3β4 nAChRs remains elusive. Here we report the co-crystal structure of LvIA in complex with Aplysia californica acetylcholine binding protein (Ac-AChBP) at a resolution of 3.4 Å. Based on the structure of this complex, together with homology modeling based on other nAChR subtypes and binding affinity assays, we conclude that Asp-11 of LvIA plays an important role in the selectivity of LvIA towards α3β2 and α3/α6β2β3 nAChRs by making a salt bridge with Lys-155 of the rat α3 subunit. Asn-9 lies within a hydrophobic pocket that is formed by Met-36, Thr-59, and Phe-119 of the rat β2 subunit in the α3β2 nAChR model, revealing the reason for its more potent selectivity towards the α3β2 nAChR subtype. These results provide molecular insights that can be used to design ligands that selectively target α3β2 nAChRs, with significant implications for the design of new therapeutic α-CTxs.
Collapse
Affiliation(s)
- Manyu Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Lin B, Xiang S, Li M. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Mar Drugs 2016; 14:173. [PMID: 27727162 PMCID: PMC5082321 DOI: 10.3390/md14100173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12-19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan, China.
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan, China.
| | - Shihua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan, China.
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan, China.
| |
Collapse
|
47
|
Cuny H, Kompella SN, Tae HS, Yu R, Adams DJ. Key Structural Determinants in the Agonist Binding Loops of Human β2 and β4 Nicotinic Acetylcholine Receptor Subunits Contribute to α3β4 Subtype Selectivity of α-Conotoxins. J Biol Chem 2016; 291:23779-23792. [PMID: 27646000 DOI: 10.1074/jbc.m116.730804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 12/16/2022] Open
Abstract
α-Conotoxins represent a large group of pharmacologically active peptides that antagonize nicotinic acetylcholine receptors (nAChRs). The α3β4 nAChR, a predominant subtype in the peripheral nervous system, has been implicated in various pathophysiological conditions. As many α-conotoxins have multiple pharmacological targets, compounds specifically targeting individual nAChR subtypes are needed. In this study, we performed mutational analyses to evaluate the key structural components of human β2 and β4 nAChR subunits that determine α-conotoxin selectivity for α3β4 nAChR. α-Conotoxin RegIIA was used to evaluate the impact of non-conserved human β2 and β4 residues on peptide affinity. Two mutations, α3β2[T59K] and α3β2[S113R], strongly enhanced RegIIA affinity compared with wild-type α3β2, as seen by substantially increased inhibitory potency and slower off-rate kinetics. Opposite point mutations in α3β4 had the contrary effect, emphasizing the importance of loop D residue 59 and loop E residue 113 as determinants for RegIIA affinity. Molecular dynamics simulation revealed the side chains of β4 Lys59 and β4 Arg113 formed hydrogen bonds with RegIIA loop 2 atoms, whereas the β2 Thr59 and β2 Ser113 side chains were not long enough to form such interactions. Residue β4 Arg113 has been identified for the first time as a crucial component facilitating antagonist binding. Another α-conotoxin, AuIB, exhibited low activity at human α3β2 and α3β4 nAChRs. Molecular dynamics simulation indicated the key interactions with the β subunit are different to RegIIA. Taken together, these data elucidate the interactions with specific individual β subunit residues that critically determine affinity and pharmacological activity of α-conotoxins RegIIA and AuIB at human nAChRs.
Collapse
Affiliation(s)
- Hartmut Cuny
- From the Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.,the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia, and
| | - Shiva N Kompella
- the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia, and
| | - Han-Shen Tae
- From the Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- the Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - David J Adams
- From the Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia, .,the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia, and
| |
Collapse
|
48
|
Zhu X, Bi J, Yu J, Li X, Zhang Y, Zhangsun D, Luo S. Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli. Mar Drugs 2016; 14:11. [PMID: 26742048 PMCID: PMC4728508 DOI: 10.3390/md14010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 12/28/2015] [Indexed: 01/17/2023] Open
Abstract
α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His6 tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His6 fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Horticulture and Landscapes, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| | - Jianpeng Bi
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Yaning Zhang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
49
|
Hone AJ, McIntosh JM, Azam L, Lindstrom J, Lucero L, Whiteaker P, Passas J, Blázquez J, Albillos A. α-Conotoxins Identify the α3β4* Subtype as the Predominant Nicotinic Acetylcholine Receptor Expressed in Human Adrenal Chromaffin Cells. Mol Pharmacol 2015; 88:881-93. [PMID: 26330550 PMCID: PMC4613940 DOI: 10.1124/mol.115.100982] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023] Open
Abstract
Ligands that selectively inhibit human α3β2 and α6β2 nicotinic acetylcholine receptor (nAChRs) and not the closely related α3β4 and α6β4 subtypes are lacking. Current α-conotoxins (α-Ctxs) that discriminate among these nAChR subtypes in rat fail to discriminate among the human receptor homologs. In this study, we describe the development of α-Ctx LvIA(N9R,V10A) that is 3000-fold more potent on oocyte-expressed human α3β2 than α3β4 and 165-fold more potent on human α6/α3β2β3 than α6/α3β4 nAChRs. This analog was used in conjuction with three other α-Ctx analogs and patch-clamp electrophysiology to characterize the nAChR subtypes expressed by human adrenal chromaffin cells. LvIA(N9R,V10A) showed little effect on the acetylcholine-evoked currents in these cells at concentrations expected to inhibit nAChRs with β2 ligand-binding sites. In contrast, the β4-selective α-Ctx BuIA(T5A,P6O) inhibited >98% of the acetylcholine-evoked current, indicating that most of the heteromeric receptors contained β4 ligand-binding sites. Additional studies using the α6-selective α-Ctx PeIA(A7V,S9H,V10A,N11R,E14A) indicated that the predominant heteromeric nAChR expressed by human adrenal chromaffin cells is the α3β4* subtype (asterisk indicates the possible presence of additional subunits). This conclusion was supported by polymerase chain reaction experiments of human adrenal medulla gland and of cultured human adrenal chromaffin cells that demonstrated prominent expression of RNAs for α3, α5, α7, β2, and β4 subunits and a low abundance of RNAs for α2, α4, α6, and α10 subunits.
Collapse
Affiliation(s)
- Arik J Hone
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - J Michael McIntosh
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Layla Azam
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jon Lindstrom
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Linda Lucero
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Paul Whiteaker
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Juan Passas
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Jesús Blázquez
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain (A.J.H., A.A.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M., L.A.); George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.); Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania (J.L.); Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (L.L., P.W.); Hospital Doce de Octubre, Madrid, Spain (J.P.); and Hospital Clínico San Carlos Madrid, Spain (J.B.)
| |
Collapse
|
50
|
Bioinformatics-Aided Venomics. Toxins (Basel) 2015; 7:2159-87. [PMID: 26110505 PMCID: PMC4488696 DOI: 10.3390/toxins7062159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.
Collapse
|