1
|
Azari A, Goodarzi A, Jafarkhani B, Eghbali M, Karimi Z, Hosseini Balef SS, Irannejad H. Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Cent Nerv Syst Agents Med Chem 2022; 22:88-107. [PMID: 35713146 DOI: 10.2174/1871524922666220616092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis that their precise pathophysiology have not yet been elucidated. According to various studies the prohibition is the best therapy with neuroprotective approaches which are advanced and safe methods. METHODS This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies that their experimental effects have been reported. Accordingly, literature was studied from 2000 to 2021 and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the Keywords section of the current review. RESULTS Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-Synuclein is its major protein. Alpha-Synuclein's toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways including ubiquitin-proteasome system and autophagy-lysosome Pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β that their accumulation proceeds extensive neuronal damage and up to the minute approach such as Proteolysis Targeting Chimera promotes its degradation in cells. As various studies demonstrated that Mendelian gene mutations can result into the neurodegenerative diseases, additional target that has gained much interest is epigenetics such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1. CONCLUSION The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against the neurodegenerative diseases. And also the genes in which their mutations can lead to the α-synuclein aggregation or accumulation are discussed and considered a valuable information of epigenetics in dementia.
Collapse
Affiliation(s)
- Aala Azari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Goodarzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behrouz Jafarkhani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Karimi
- Department of Obstetrics & Gynecology, Imam Khomeini hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sajad Hosseini Balef
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
3
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
4
|
He S, Wang F, Yung KKL, Zhang S, Qu S. Effects of α-Synuclein-Associated Post-Translational Modifications in Parkinson's Disease. ACS Chem Neurosci 2021; 12:1061-1071. [PMID: 33769791 DOI: 10.1021/acschemneuro.1c00028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
α-Synuclein (α-syn), a small highly conserved presynaptic protein containing 140 amino acids, is thought to be the main pathological hallmark in related neurodegenerative disorders. Although the normal function of α-syn is closely involved in the regulation of vesicular neurotransmission in these diseases, the underlying mechanisms of post-translational modifications (PTMs) of α-syn in the pathogenesis of Parkinson's disease (PD) have not been fully characterized. The pathological accumulation of misfolded α-syn has a critical role in PD pathogenesis. Recent studies of factors contributing to α-syn-associated aggregation and misfolding have expanded our understanding of the PD disease process. In this Review, we summarize the structure and physiological function of α-syn, and we further highlight the major PTMs (namely phosphorylation, ubiquitination, nitration, acetylation, truncation, SUMOylation, and O-GlcNAcylation) of α-syn and the effects of these modifications on α-syn aggregation, which may elucidate mechanisms for PD pathogenesis and lay a theoretical foundation for clinical treatment of PD.
Collapse
Affiliation(s)
- Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
- Department of Neurosurgery, University of Rochester Medical Center, New York, 14643, United States
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Samantha Sykioti V, Karampetsou M, Chalatsa I, Polissidis A, Michael IP, Pagaki-Skaliora M, Nagy A, Emmanouilidou E, Sotiropoulou G, Vekrelli S K. Deficiency of the serine peptidase Kallikrein 6 does not affect the levels and the pathological accumulation of a-synuclein in mouse brain. J Neurochem 2020; 157:2024-2038. [PMID: 32974895 DOI: 10.1111/jnc.15199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Several lines of evidence indicate that the propagation of misfolded α-synuclein (α-syn) plays a central role in the progression and manifestation of Parkinson's disease. Pathogenic α-syn species can be present in the extracellular space. Thus, the identification and modulation of the key enzymes implicated in extracellular α-syn turnover becomes vital. Kallikrein peptidase 6 has been identified as one of the major α-syn degrading enzymes and has been implicated in the clearance of extracellular α-syn. However, the physiological role of this enzyme in regulating α-syn, in vivo, still remains elusive. Here, by utilizing Klk6 knock-out (Klk6-/- ) mice as our experimental model, we provide insight into the physiologic relevance of endogenous KLK6 expression on α-syn processing. Behavioral phenotyping showed that Klk6-/- mice display no gross behavioral abnormalities. Further in vivo characterization of this mouse model, in the context of α-syn accumulation, showed that KLK6 deletion had no impact on the protein levels of intracellular or extracellular α-syn. Upon in vivo administration of α-syn pre-formed fibrils (PFF), α-syn pathologic accumulations were evident both in the brains of Klk6-/- mice and wt mice without significant differences. Intrastriatal delivery of active KLK6, did not affect secreted α-syn levels observed in the A53T α-syn over-expressing mice. These findings suggest that in the in vivo setting of PFF pathology induction, KLK6 alone is not able to modulate pathology transmission. Our study raises implications for the use of recombinant α-syn fibrils in α-syn turnover studies.
Collapse
Affiliation(s)
- Vasia Samantha Sykioti
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Mantia Karampetsou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioanna Chalatsa
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Alexia Polissidis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Iacovos P Michael
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marina Pagaki-Skaliora
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | | | - Kostas Vekrelli S
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K, Emmanouilidou E. Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J 2020; 34:15123-15145. [PMID: 32931072 DOI: 10.1096/fj.202001344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is biochemically characterized by the deposition of aberrant aggregated α-synuclein in the affected neurons. The aggregation properties of α-synuclein greatly depend on its affinity to bind cellular membranes via a dynamic interaction with specific lipid moieties. In particular, α-synuclein can interact with arachidonic acid (AA), a polyunsaturated fatty acid, in a manner that promotes the formation of α-helix enriched assemblies. In a cellular context, AA is released from membrane phospholipids by phospholipase A2 (PLA2 ). To investigate the impact of PLA2 activity on α-synuclein aggregation, we have applied selective PLA2 inhibitors to a SH-SY5Y cellular model where the expression of human wild-type α-synuclein is correlated with a gradual accumulation of soluble oligomers and subsequent cell death. We have found that pharmacological and genetic inhibition of GIVA cPLA2 resulted in a dramatic decrease of intracellular oligomeric and monomeric α-synuclein significantly promoting cell survival. Our data suggest that alterations in the levels of free fatty acids, and especially AA and adrenic acid, promote the formation of α-synuclein conformers which are more susceptible to proteasomal degradation. This mechanism is active only in living cells and is generic since it does not depend on the absolute quantity of α-synuclein, the presence of disease-linked point mutations, the expression system or the type of cells. Our findings indicate that the α-synuclein-fatty acid interaction can be a critical determinant of the conformation and fate of α-synuclein in the cell interior and, as such, cPLA2 inhibitors could serve to alleviate the intracellular, potentially pathological, α-synuclein burden.
Collapse
Affiliation(s)
- Mary Xylaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioanna Boumpoureka
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Papadimitriou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Cholak E, Bucciarelli S, Bugge K, Johansen NT, Vestergaard B, Arleth L, Kragelund BB, Langkilde AE. Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry 2019; 58:5052-5065. [DOI: 10.1021/acs.biochem.9b00925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ersoy Cholak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, and REPIN, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen N, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, and REPIN, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| |
Collapse
|
8
|
Eftekhari R, de Lima SG, Liu Y, Mihara K, Saifeddine M, Noorbakhsh F, Scarisbrick IA, Hollenberg MD. Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation. Biol Chem 2019; 399:1023-1039. [PMID: 29924723 DOI: 10.1515/hsz-2018-0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Abstract
We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Stacy G de Lima
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Yu Liu
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mahmoud Saifeddine
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Departments of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
9
|
Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E. Plasma alpha-synuclein levels in patients with Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2019; 40:929-938. [PMID: 30715632 DOI: 10.1007/s10072-019-03738-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To date, there are no definitive biomarkers for diagnose Parkinson's disease (PD). The detection of α-synuclein (α-Syn) in plasma of PD patients has yielded promising but inconclusive results. To determine the performance of α-Syn as a diagnostic biomarker of PD, we used a meta-analysis. METHODS We identified 173 studies through a systematic literature review. From those, only studies reporting data on total α-Syn levels were included in the meta-analysis (10 publications, 1302 participants). Quality of studies was assessed by Newcastle-Ottawa scale. RESULTS The α-Syn levels were significantly higher in PD patients than healthy controls (standardized mean difference [SMD] = 0.778, 95% confidence interval = 0.284 to 1.272, p = 0.002). Similar results were found after omitting any individual study from meta-analysis, with SMD ranges from 0.318 (95% CI = 0.064 to 0.572, p = 0.014) to 0.914 (95% CI = 0.349 to 1.480, p = 0.002). According to meta-regression analysis, increased mean patients age (slope = - 0.232, 95% CI = - 0.456 to - 0.008, p = 0.042), increased total number of participants (slope = - 0.007, 95% CI = - 0.013 to - 0.0004, p = 0.038), and increased percentage of males (slope = - 6.444, 95% CI = - 10.841 to - 2.047, p = 0.004) were associated with decreased SMD of α-Syn levels across studies. We did not find any significant association between the SMD in α-Syn levels and disease duration, disease severity, and quality of studies. Most of studies applied ELISA assays. CONCLUSION Total plasma α-Syn levels were higher in PD patients than controls. Analytical factors were important limitations.
Collapse
Affiliation(s)
- Anastasia Bougea
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece.
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Leonidas Stefanis
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Paraskevas
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| | - Evangelia Emmanouilidou
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Vekrelis
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elisabeth Kapaki
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| |
Collapse
|
10
|
Kiely AP, Miners JS, Courtney R, Strand C, Love S, Holton JL. Exploring the putative role of kallikrein-6, calpain-1 and cathepsin-D in the proteolytic degradation of α-synuclein in multiple system atrophy. Neuropathol Appl Neurobiol 2018; 45:347-360. [PMID: 29993134 DOI: 10.1111/nan.12512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
AIMS There is evidence that accumulation of α-synuclein (α-syn) in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) results from impaired removal of α-syn rather than its overproduction. Kallikrein-6 (KLK6), calpain-1 (CAPN1) and cathepsin-D (CTSD) are among a small number of proteases that cleave α-syn and are dysregulated in PD and DLB. Our aim in this study was to determine whether protease activity is altered in another α-synucleinopathy, multiple system atrophy (MSA), and might thereby modulate the regional distribution of α-syn accumulation. METHODS mRNA and protein level and/or activity of KLK6, CAPN1 and CTSD were measured and assessed in relation to α-syn load in multiple brain regions (posterior frontal cortex, caudate nucleus, putamen, occipital cortex, pontine base and cerebellar white matter), in MSA (n = 20) and age-matched postmortem control tissue (n = 20). RESULTS CTSD activity was elevated in MSA in the pontine base and cerebellar white matter. KLK6 and CAPN1 levels were elevated in MSA in the putamen and cerebellar white matter. However, the activity or level of these proteolytic enzymes did not correlate with the regional distribution of α-syn. CONCLUSIONS Accumulation of α-syn in MSA is not due to reduced activity of the proteases we have studied. We suggest that their upregulation is likely to be a compensatory response to increased α-syn in MSA.
Collapse
Affiliation(s)
- A P Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - J S Miners
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - R Courtney
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - C Strand
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - S Love
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - J L Holton
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
Khoury N, Zingkou E, Pampalakis G, Sofopoulos M, Zoumpourlis V, Sotiropoulou G. KLK6 protease accelerates skin tumor formation and progression. Carcinogenesis 2018; 39:1529-1536. [DOI: 10.1093/carcin/bgy110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nikolas Khoury
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| | | | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio Patras, Greece
| |
Collapse
|
12
|
Pampalakis G, Sykioti VS, Ximerakis M, Stefanakou-Kalakou I, Melki R, Vekrellis K, Sotiropoulou G. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 2017; 8:14502-14515. [PMID: 27845893 PMCID: PMC5362421 DOI: 10.18632/oncotarget.13264] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023] Open
Abstract
KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in “a prion-like mechanism”. Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Athens, Greece
| | - Vasia-Samantha Sykioti
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Methodios Ximerakis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Stefanakou-Kalakou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Athens, Greece
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-Sur-Yvette, France
| | - Kostas Vekrellis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Athens, Greece.,Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Korbakis D, Soosaipillai A, Diamandis EP. Study of kallikrein-related peptidase 6 (KLK6) and its complex with α1-antitrypsin in biological fluids. Clin Chem Lab Med 2017; 55:1385-1396. [PMID: 28672746 DOI: 10.1515/cclm-2017-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human kallikrein-related peptidase 6 (KLK6) is a member of the kallikrein family of serine proteases. KLK6 is synthesized as a preproenzyme, mainly in tissues of the central nervous system (CNS), and secreted as an inactive precursor. Serum KLK6 is a biomarker of unfavorable prognosis for ovarian cancer, but its sensitivity for early detection is relatively low. Differential glycosylation of KLK6 has been identified in ascites fluid obtained from ovarian cancer patients, suggesting the presence of unique KLK6 isoforms in biological samples. METHODS In the present study, we applied a two-step enrichment approach for KLK6 in ovarian cancer ascites, followed by mice immunization and production of monoclonal antibodies. Immunoaffinity techniques coupled to mass spectrometric methods were employed for hybridoma screening and target antigen identification. RESULTS We found that the main target of the newly-generated monoclonal antibodies target was the serine protease inhibitor α1-antitrypsin (A1AT). Additional experiments confirmed that A1AT is the main inhibitor of KLK6 in biological fluids. One new antibody (24ED138) was chosen to build a hybrid assay for the accurate quantification of the A1AT-KLK6 complex in biological samples. The aforementioned assay was evaluated with serum samples collected from patients with ovarian cancer (n=24) and normal donors (n=16) and showed slight improvement in sensitivity (~12%) compared to the standard in-house KLK6 assay. CONCLUSIONS We conclude that KLK6 is present in biological fluids either as free form, or bound to A1AT, and the bound form performs better than total KLK6 as a biomarker of ovarian carcinoma.
Collapse
|
14
|
Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes. DISEASE MARKERS 2015; 2015:946572. [PMID: 26783378 PMCID: PMC4689925 DOI: 10.1155/2015/946572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets and may have important applications in clinical oncology. Despite being intensively studied, many gaps in our knowledge on several molecular aspects of KLK functions still exist. This review aims to summarize recent data on their involvement in different processes related to health and disease, in particular those directly or indirectly linked to the neoplastic process.
Collapse
|
15
|
Spencer B, Valera E, Rockenstein E, Trejo-Morales M, Adame A, Masliah E. A brain-targeted, modified neurosin (kallikrein-6) reduces α-synuclein accumulation in a mouse model of multiple system atrophy. Mol Neurodegener 2015; 10:48. [PMID: 26394760 PMCID: PMC4580347 DOI: 10.1186/s13024-015-0043-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive, neurodegenerative disease characterized by parkinsonism, resistance to dopamine therapy, ataxia, autonomic dysfunction, and pathological accumulation of α-synuclein (α-syn) in oligodendrocytes. Neurosin (kallikrein-6) is a serine protease capable of cleaving α-syn in the CNS, and we have previously shown that lentiviral (LV) vector delivery of neurosin into the brain of a mouse model of dementia with Lewy body/ Parkinson’s disease reduces the accumulation of α-syn and improves neuronal synaptic integrity. Results In this study, we investigated the ability of a modified, systemically delivered neurosin to reduce the levels of α-syn in oligodendrocytes and reduce the cell-to-cell spread of α-syn to glial cells in a mouse model of MSA (MBP-α-syn). We engineered a viral vector that expresses a neurosin genetically modified for increased half-life (R80Q mutation) that also contains a brain-targeting sequence (apoB) for delivery into the CNS. Peripheral administration of the LV-neurosin-apoB to the MBP-α-syn tg model resulted in accumulation of neurosin-apoB in the CNS, reduced accumulation of α-syn in oligodendrocytes and astrocytes, improved myelin sheath formation in the corpus callosum and behavioral improvements. Conclusion Thus, the modified, brain-targeted neurosin may warrant further investigation as potential therapy for MSA. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Oueslati A, Ximerakis M, Vekrellis K. Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation. Exp Neurobiol 2014; 23:324-36. [PMID: 25548532 PMCID: PMC4276803 DOI: 10.5607/en.2014.23.4.324] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023] Open
Abstract
Converging lines of evidence suggest that cell-to-cell transmission and the self-propagation of pathogenic amyloidogenic proteins play a central role in the initiation and the progression of several neurodegenerative disorders. This "prion-like" hypothesis has been recently reported for α-synuclein, a presynaptic protein implicated in the pathogenesis of Parkinson's disease (PD) and related disorders. This review summarizes recent findings on α-synuclein prion-like propagation, focusing on its transmission, seeding and degradation and discusses some key questions that remain to be explored. Understanding how α-synuclein exits cells and propagates from one brain region to another will lead to the development of new therapeutic strategies for the treatment of PD, aiming at slowing or stopping the disease progression.
Collapse
Affiliation(s)
- Abid Oueslati
- Centre de Recherche du Centre Hospitalier de Québec, Axe Neuroscience et Département de Médecine Moléculaire de l'Université Laval, Québec G1V4G2, Canada
| | - Methodios Ximerakis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens 11526, Greece
| | - Kostas Vekrellis
- Center for Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens 11526, Greece
| |
Collapse
|
17
|
Miners JS, Renfrew R, Swirski M, Love S. Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1. Acta Neuropathol Commun 2014; 2:164. [PMID: 25476568 PMCID: PMC4271448 DOI: 10.1186/s40478-014-0164-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022] Open
Abstract
Kallikrein-6 and calpain-1 are amongst a small group of proteases that degrade α-synuclein. We have explored the possibility that reduction in the level or activity of these enzymes contributes to the accumulation of α-synuclein in Lewy body diseases. We measured calpain-1 activity by fluorogenic activity assay, kallikrein-6 level by sandwich ELISA, and levels of α-synuclein and α-synuclein phosphorylated at serine 129 (α-synuclein-P129), in post-mortem brain tissue in pure dementia with Lewy bodies (DLB, n = 12), Alzheimer’s disease (AD, n = 20) and age-matched controls (n = 19). Calpain-1 activity was significantly reduced in DLB within the cingulate and parahippocampal cortex, regions with highest α-synuclein and α-synuclein-P129 load, and correlated inversely with the levels of α-synuclein and α-synuclein-P129. Calpain-1 was unaltered in the thalamus and frontal cortex, regions with less α-synuclein pathology. Kallikrein-6 level was reduced in the cingulate cortex in the DLB cohort, and correlated inversely with α-synuclein and α-synuclein-P129. Kallikrein-6 was also reduced in DLB in the thalamus but not in relation to α-synuclein or α-synuclein-P129 load and was unaltered in the frontal and parahippocampal cortex. In SH-SY5Y cells overexpressing wild-type α-synuclein there was partial co-localisation of kallikrein-6 and calpain-1 with α-synuclein, and siRNA-mediated knock-down of kallikrein-6 and calpain-1 increased the amount of α-synuclein in cell lysates. Our results indicate that reductions in kallikrein-6 and calpain-1 may contribute to the accumulation of α-synuclein in DLB.
Collapse
|
18
|
Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2014; 290:2969-82. [PMID: 25425650 PMCID: PMC4317028 DOI: 10.1074/jbc.m114.585703] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Marie Grey
- From the Departments of Physical Chemistry
| | - Christopher J Dunning
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, Biochemistry and Structural Biology, and
| | - Ricardo Gaspar
- From the Departments of Physical Chemistry, Biochemistry and Structural Biology, and
| | | | - Patrik Brundin
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, The Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Emma Sparr
- From the Departments of Physical Chemistry,
| | - Sara Linse
- Biochemistry and Structural Biology, and
| |
Collapse
|