1
|
Petrisková L, Kodedová M, Balážová M, Sychrová H, Valachovič M. Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159523. [PMID: 38866087 DOI: 10.1016/j.bbalip.2024.159523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.
Collapse
Affiliation(s)
- Lívia Petrisková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marie Kodedová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mária Balážová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Valachovič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Okamoto M, Takahashi-Nakaguchi A, Tejima K, Sasamoto K, Yamaguchi M, Aoyama T, Nagi M, Tanabe K, Miyazaki Y, Nakayama H, Sasakawa C, Kajiwara S, Brown AJP, Teixeira MC, Chibana H. Erg25 Controls Host-Cholesterol Uptake Mediated by Aus1p-Associated Sterol-Rich Membrane Domains in Candida glabrata. Front Cell Dev Biol 2022; 10:820675. [PMID: 35399500 PMCID: PMC8988197 DOI: 10.3389/fcell.2022.820675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
The uptake of cholesterol from the host is closely linked to the proliferation of pathogenic fungi and protozoa during infection. For some pathogenic fungi, cholesterol uptake is an important strategy for decreasing susceptibility to antifungals that inhibit ergosterol biosynthesis. In this study, we show that Candida glabrata ERG25, which encodes an enzyme that demethylates 4,4-dimethylzymosterol, is required for cholesterol uptake from host serum. Based on the screening of C. glabrata conditional knockdown mutants for each gene involved in ergosterol biosynthesis, ERG25 knockdown was found to decrease lethality of infected mice. ERG25 knockdown impairs the plasma membrane localization of the sterol importer Aus1p, suggesting that the accumulated 4,4-dimethylzymosterol destabilizes the lipid domain with which Aus1p functionally associates. ERG25 knockdown further influences the structure of the membrane compartment of Can1p (MCC)/eisosomes (ergosterol-rich lipid domains), but not the localization of the membrane proteins Pma1p and Hxt1p, which localize to sterol-poor domains. In the sterol-rich lipid domain, Aus1p-contining domain was mostly independent of MCC/eisosomes, and the nature of these domains was also different: Ausp1-contining domain was a dynamic network-like domain, whereas the MCC/eisosomes was a static dot-like domain. However, deletion of MCC/eisosomes was observed to influence the localization of Aus1p after Aus1p was transported from the endoplasmic reticulum (ER) through the Golgi apparatus to the plasma membrane. These findings suggest that ERG25 plays a key role in stabilizing sterol-rich lipid domains, constituting a promising candidate target for antifungal therapy.
Collapse
Affiliation(s)
- Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Kengo Tejima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Toshihiro Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Suzuka, Japan
| | - Minoru Nagi
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohichi Tanabe
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | | | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Miguel C. Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Functional Analysis of Sterol O-Acyltransferase Involved in the Biosynthetic Pathway of Pachymic Acid in Wolfiporia cocos. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010143. [PMID: 35011377 PMCID: PMC8746942 DOI: 10.3390/molecules27010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022]
Abstract
Pachymic acid from Wolfiporia cocos possesses important medicinal values including anti-bacterial, anti-inflammatory, anti-viral, invigorating, anti-rejection, anti-tumor, and antioxidant activities. However, little is known about the biosynthetic pathway from lanostane to pachymic acid. In particular, the associated genes in the biosynthetic pathway have not been characterized, which limits the high-efficiency obtaining and application of pachymic acid. To characterize the synthetic pathway and genes involved in pachymic acid synthesis, in this study, we identified 11 triterpenoids in W. cocos using liquid chromatography tandem mass spectrometry (LC-MS/MS), and inferred the putative biosynthetic pathway from lanostane to pachymic acid based on analyzing the chemical structure of triterpenoids and the transcriptome data. In addition, we identified a key gene in the biosynthetic pathway encoding W. cocos sterol O-acyltransferase (WcSOAT), which catalyzes tumolusic acid to pachymic acid. The results show that silence of WcSOAT gene in W. cocos strain led to reduction of pachymic acid production, whereas overexpression of this gene increased pachymic acid production, indicating that WcSOAT is involved in pachymic acid synthesis in W. cocos and the biosynthesis of W. cocos pachymic acid is closely dependent on the expression of WcSOAT gene. In summary, the biosynthetic pathway of pachymic acid and the associated genes complement our knowledge on the biosynthesis of W. cocos pachymic acid and other triterpenoids, and also provides a reference for target genes modification for exploring high-efficiency obtaining of active components.
Collapse
|
4
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020; 11:genes11070795. [PMID: 32679672 PMCID: PMC7397035 DOI: 10.3390/genes11070795] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.
Collapse
|
6
|
Papay M, Klein C, Hapala I, Petriskova L, Kuchler K, Valachovic M. Mutations in the nucleotide‐binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast. Yeast 2019; 37:5-14. [DOI: 10.1002/yea.3456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Marek Papay
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Cornelia Klein
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter Medical University of Vienna Vienna Austria
| | - Ivan Hapala
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Livia Petriskova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter Medical University of Vienna Vienna Austria
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
7
|
Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane. Theor Biol Med Model 2019; 16:13. [PMID: 31412941 PMCID: PMC6694696 DOI: 10.1186/s12976-019-0108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background The transbilayer sterol distribution between both plasma membrane (PM) leaflets has long been debated. Recent studies in mammalian cells and in yeast show that the majority of sterol resides in the inner PM leaflet. Since sterol flip-flop in model membranes is rapid and energy-independent, a mechanistic understanding for net enrichment of sterol in one leaflet is lacking. Import of ergosterol in yeast can take place via the ABC transporters Aus1/Pdr11 under anaerobic growth conditions, eventually followed by rapid non-vesicular sterol transport to the endoplasmic reticulum (ER). Little is known about how these transport steps are dynamically coordinated. Methods Here, a kinetic steady state model is presented which considers sterol import via Aus1/Pdr11, sterol flip-flop across the PM, bi-molecular complex formation and intracellular sterol release followed by eventual transport to and esterification of sterol in the ER. The steady state flux is calculated, and a thermodynamic analysis of feasibility is presented. Results It is shown that the steady state sterol flux across the PM can be entirely controlled by irreversible sterol import via Aus1/Pdr11. The transbilayer sterol flux at steady state is a non-linear function of the chemical potential difference of sterol between both leaflets. Non-vesicular release of sterol on the cytoplasmic side of the PM lowers the attainable sterol enrichment in the inner leaflet. Including complex formation of sterol with phospholipids or proteins can explain several puzzling experimental observations; 1) rapid sterol flip-flop across the PM despite net sterol enrichment in one leaflet, 2) a pronounced steady state sterol gradient between PM and ER despite fast non-vesicular sterol exchange between both compartments and 3) a non-linear dependence of ER sterol on ergosterol abundance in the PM. Conclusions A steady state model is presented that can account for the observed sterol asymmetry in the yeast PM, the strong sterol gradient between PM and ER and threshold-like expansion of ER sterol for increasing sterol influx into the PM. The model also provides new insight into selective uptake of cholesterol and its homeostasis in mammalian cells, and it provides testable predictions for future experiments.
Collapse
|
8
|
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 2019; 10:1445. [PMID: 31379756 PMCID: PMC6647914 DOI: 10.3389/fmicb.2019.01445] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette (ABC) superfamily members have a key role as nutrient importers and exporters in bacteria. However, their role as drug exporters in eukaryotes brought this superfamily member to even greater prominence. The capacity of ABC transporters to efflux a broad spectrum of xenobiotics represents one of the major mechanisms of clinical multidrug resistance in pathogenic fungi including Candida species. Candida auris, a newly emerged multidrug-resistant fungal pathogen of humans, has been responsible for multiple outbreaks of drug-resistant infections in hospitals around the globe. Our study has analyzed the entire complement of ABC superfamily transporters to assess whether these play a major role in drug resistance mechanisms of C. auris. Our bioinformatics analyses identified 28 putative ABC proteins encoded in the genome of the C. auris type-strain CBS 10913T; 20 of which contain transmembrane domains (TMDs). Quantitative real-time PCR confirmed the expression of all 20 TMD transporters, underlining their potential in contributing to the C. auris drug-resistant phenotype. Changes in transcript levels after short-term exposure of drugs and in drug-resistant C. auris isolates suggested their importance in the drug resistance phenotype of this pathogen. CAUR_02725 orthologous to CDR1, a major multidrug exporter in other yeasts, showed consistently higher expression in multidrug-resistant strains of C. auris. Homologs of other ABC transporter genes, such as CDR4, CDR6, and SNQ2, also displayed raised expression in a sub-set of clinical isolates. Together, our analysis supports the involvement of these transporters in multidrug resistance in C. auris.
Collapse
Affiliation(s)
- Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Remya Nair
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Gustavo Bravo Ruiz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Zoe K. Ross
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Lorenz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Andrew M. Lynn
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| |
Collapse
|
9
|
Weill U, Cohen N, Fadel A, Ben-Dor S, Schuldiner M. Protein Topology Prediction Algorithms Systematically Investigated in the Yeast Saccharomyces cerevisiae. Bioessays 2019; 41:e1800252. [PMID: 31297843 DOI: 10.1002/bies.201800252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane proteins perform a variety of functions, all crucially dependent on their orientation in the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the topology of most proteins have been experimentally determined. Due to this, most scientists rely primarily on prediction algorithms to determine topology and TMD assignments. Since these can give contradictory results, single-algorithm-based predictions are unreliable. To map the extent of potential misanalysis, the predictions of nine algorithms on the yeast proteome are compared and it is found that they have little agreement when predicting TMD number and termini orientation. To view all predictions in parallel, a webpage called TopologYeast: http://www.weizmann.ac.il/molgen/TopologYeast was created. Each algorithm is compared with experimental data and a poor agreement is found. The analysis suggests that more systematic data on protein topology are required to increase the training sets for prediction algorithms and to have accurate knowledge of membrane protein topology.
Collapse
Affiliation(s)
- Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
10
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
11
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
12
|
Wasi M, Khandelwal NK, Vishwakarma P, Lynn AM, Mondal AK, Prasad R. Inventory of ABC proteins and their putative role in salt and drug tolerance in Debaryomyces hansenii. Gene 2018; 676:227-242. [DOI: 10.1016/j.gene.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
13
|
Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, Rice WJ, Chan RB, Di Paolo G, Beh CT, Menon AK. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS Biol 2018; 16:e2003864. [PMID: 29782498 PMCID: PMC5983861 DOI: 10.1371/journal.pbio.2003864] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/01/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These results support a model in which ER-PM contact sites provide a nexus for coordinating the complex interrelationship between sterols, sphingolipids, and phospholipids that maintain PM composition and integrity. Almost half of the inner surface area of the yeast plasma membrane (PM) is covered with closely associated cortical endoplasmic reticulum (ER). In yeast and human cells, it has been proposed that ER-anchored tether proteins staple the ER to the PM, creating membrane contact sites at which lipid transport between the ER and PM and membrane lipid synthesis are coordinately regulated, but the potential mechanisms are unclear. Here, we test this idea by creating yeast cells that lack all ER-PM tethers. We find that whereas the bidirectional transport of sterols between the ER and PM is unaffected in these cells, sterols within the PM are disorganized due to disruptions in phospholipid biosynthesis that alter PM lipid composition. In particular, we show that phosphatidylinositol-4-phosphate, a phospholipid needed for intracellular signaling and membrane trafficking, accumulates within the PM. Some of these defects can be rescued by reinstating membrane contacts via expression of an artificial tether. However, correction is also achieved without the creation of contacts by supplementing the growth medium with a precursor of membrane phospholipids. Based on these results, we propose that ER-PM contacts do not play a major role as physical conduits for lipid exchange but rather serve as regulatory interfaces to integrate lipid synthesis pathways.
Collapse
Affiliation(s)
- Evan Quon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yves Y. Sere
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Neha Chauhan
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David P. Sullivan
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - William J. Rice
- Simons Electron Microscopy Center at the New York Structural Biology Center, New York, New York, United States of America
| | - Robin B. Chan
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Denali Therapeutics, South San Francisco, California, United States of America
| | - Christopher T. Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (AKM); (CTB)
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (AKM); (CTB)
| |
Collapse
|
14
|
Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 2018; 8:7860. [PMID: 29777118 PMCID: PMC5959924 DOI: 10.1038/s41598-018-26128-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae has the ability to become less sensitive to a broad range of chemically and functionally unrelated cytotoxic compounds. Among multistress resistance mechanisms is the one mediated by plasma membrane efflux pump proteins belonging to the ABC superfamily, questionably proposed to enhance the kinetics of extrusion of all these compounds. This study provides new insights into the biological role and impact in yeast response to acetic acid stress of the multistress resistance determinant Pdr18 proposed to mediate ergosterol incorporation in plasma membrane. The described coordinated activation of the transcription of PDR18 and of several ergosterol biosynthetic genes (ERG2-4, ERG6, ERG24) during the period of adaptation to acetic acid inhibited growth provides further support to the involvement of Pdr18 in yeast response to maintain plasma membrane ergosterol content in stressed cells. Pdr18 role in ergosterol homeostasis helps the cell to counteract acetic acid-induced decrease of plasma membrane lipid order, increase of the non-specific membrane permeability and decrease of transmembrane electrochemical potential. Collectively, our results support the notion that Pdr18-mediated multistress resistance is closely linked to the status of plasma membrane lipid environment related with ergosterol content and the associated plasma membrane properties.
Collapse
Affiliation(s)
- Cláudia P Godinho
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Catarina S Prata
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Sandra N Pinto
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Fábio Fernandes
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
15
|
Sterol synthesis and cell size distribution under oscillatory growth conditions inSaccharomyces cerevisiaescale-down cultivations. Yeast 2017; 35:213-223. [DOI: 10.1002/yea.3281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/07/2022] Open
|
16
|
Joshua IM, Höfken T. From Lipid Homeostasis to Differentiation: Old and New Functions of the Zinc Cluster Proteins Ecm22, Upc2, Sut1 and Sut2. Int J Mol Sci 2017; 18:ijms18040772. [PMID: 28379181 PMCID: PMC5412356 DOI: 10.3390/ijms18040772] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae. These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida. Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida.
Collapse
Affiliation(s)
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
17
|
Yeast ABC transporters in lipid trafficking. Fungal Genet Biol 2016; 93:25-34. [DOI: 10.1016/j.fgb.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
|
18
|
Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, Bézirard V, Allart S, Payré B, Capilla F, Cartier C, Peres C, Al Saati T, Théodorou V, Nelson DW, Yen CLE, Collet X, Coméra C. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond) 2016; 13:48. [PMID: 27478484 PMCID: PMC4965885 DOI: 10.1186/s12986-016-0107-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background Intestinal absorption of dietary lipids involves their hydrolysis in the lumen of proximal intestine as well as uptake, intracellular transport and re-assembly of hydrolyzed lipids in enterocytes, leading to the formation and secretion of the lipoproteins chylomicrons and HDL. In this study, we examined the potential involvement of cytosolic lipid droplets (CLD) whose function in the process of lipid absorption is poorly understood. Methods Intestinal lipid absorption was studied in mouse after gavage. Three populations of CLD were purified by density ultracentrifugations, as well as the brush border membranes, which were analyzed by western-blots. Immunofluorescent localization of membranes transporters or metabolic enzymes, as well as kinetics of CLD production, were also studied in intestine or Caco-2 cells. Results We isolated three populations of CLD (ranging from 15 to 1000 nm) which showed differential expression of the major lipid transporters scavenger receptor BI (SR-BI), cluster of differentiation 36 (CD-36), Niemann Pick C-like 1 (NPC1L1), and the ATP-binding cassette transporters ABCG5/G8 but also caveolin 2 and fatty acid binding proteins. The enzyme monoacylglycerol acyltransferase 2 (MGAT2) was identified in the brush border membrane (BBM) in addition to the endoplasmic reticulum, suggesting local synthesis of triglycerides and CLD at both places. Conclusions We show a very fast production of CLD by enterocytes associated with a transfer of apical constituents as lipid transporters. Our findings suggest that following their uptake by enterocytes, lipids can be partially metabolized at the BBM and packaged into CLD for their transportation to the ER. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeina Soayfane
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - François Tercé
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Michela Cantiello
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Horst Robenek
- Leibniz-Institut für Arterioskleroseforschung, Universität Münster, Münster, Germany
| | - Michel Nauze
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Valérie Bézirard
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Sophie Allart
- INSERM UMR 1043 (INSERM/UPS/CNRS/USC Inra), CHU Purpan, Toulouse, France
| | - Bruno Payré
- CMEAB, Faculté de Médecine Rangueil, Toulouse, France
| | - Florence Capilla
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Christel Cartier
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Christine Peres
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Talal Al Saati
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Vassilia Théodorou
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Xavier Collet
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Christine Coméra
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France.,UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| |
Collapse
|
19
|
Snider J, Stagljar I. Membrane Yeast Two-Hybrid (MYTH) Mapping of Full-Length Membrane Protein Interactions. Cold Spring Harb Protoc 2016; 2016:pdb.top077560. [PMID: 26729912 DOI: 10.1101/pdb.top077560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mapping of protein interaction networks is a major strategy for obtaining a global understanding of protein function in cells and represents one of the primary goals of proteomics research. Membrane proteins, which play key roles in human disease and as drug targets, are of considerable interest; however, because of their hydrophobic nature, mapping their interactions presents significant technical challenges and requires the use of special methodological approaches. One powerful approach is the membrane yeast two-hybrid (MYTH) assay, a split-ubiquitin-based system specifically suited to the study of full-length membrane protein interactions in vivo using the yeast Saccharomyces cerevisiae as a host. The system can be used in both low- and high-throughput formats to study proteins from a wide range of different organisms. There are two primary variants of MYTH: integrated (iMYTH), which involves endogenous expression and tagging of baits and is suitable for studying native yeast membrane proteins, and traditional (tMYTH), which involves ectopic plasmid-based expression of tagged baits and is suitable for studying membrane proteins from other organisms. Here we provide an introduction to the MYTH assay, including both the iMYTH and tMYTH variants. MYTH can be set up in almost any laboratory environment, with results typically obtainable within 4 to 6 wk.
Collapse
Affiliation(s)
- Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol 2015; 11:848. [PMID: 26681426 PMCID: PMC4704491 DOI: 10.15252/msb.20156351] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying protein interaction networks of all proteins in an organism (“interactomes”) remains one of the major challenges in modern biomedicine. Such information is crucial to understanding cellular pathways and developing effective therapies for the treatment of human diseases. Over the past two decades, diverse biochemical, genetic, and cell biological methods have been developed to map interactomes. In this review, we highlight basic principles of interactome mapping. Specifically, we discuss the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and provide general guidelines for carrying out the necessary follow‐up analyses. In addition, we discuss computational methods to predict, map, and visualize interactomes, and provide a summary of some of the most important interactome resources. We hope that this review serves as both a useful overview of the field and a guide to help more scientists actively employ these powerful approaches in their research.
Collapse
Affiliation(s)
- Jamie Snider
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Punit Saraon
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhong Yao
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|