1
|
Stark AK, Penn JS. Prostanoid signaling in retinal vascular diseases. Prostaglandins Other Lipid Mediat 2024; 174:106864. [PMID: 38955261 DOI: 10.1016/j.prostaglandins.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Woodward DF, Wang JW, Spada CS, Carling RW, Martos JL, Pettit S, Kangasmetsa J, Waterbury LD, Lawrence M, Hu W, Poloso NJ. A Second Generation Prostanoid Receptor Antagonist Acting at Multiple Receptor Subtypes. ACS Pharmacol Transl Sci 2020; 3:1199-1210. [PMID: 33344897 DOI: 10.1021/acsptsci.0c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/15/2022]
Abstract
It has previously been reported that a prototypical compound (AGN 211377), which blocks pro-inflammatory prostanoid receptors (DP1, DP2, EP1, EP4, FP, TP) and leaves open IP and EP2 receptors so that their anti-inflammatory properties could be exerted, produced superior inhibitory effects on cytokine release from human macrophages compared to cyclooxygenase (COX) inhibitors. This favorable activity profile translated into animal studies, with AGN 211377 exceeding the level of inhibition afforded by COX inhibition. AGN 211377 was not, however, a practical drug candidate, having poor bioavailability and cost of goods concerns. Compound 1 (designated AGN 225660) represents a second-generation compound with an entirely different "druggable" core structure. Such a dramatic change in chemical scaffold created uncertainty with respect to matching the effects of AGN 211377. AGN 225660 inhibited RANTES, IL-8, and MCP-1 secretion by at least 50%, from TNFα activated human macrophages. Although AGN 225660 reduced TNFα-evoked MCP-1 release from human monocyte-derived macrophages, it increased LPS-induced MCP-1 secretion (up to 2-fold) from human monocyte-derived dendritic cells. However, AGN 225660 inhibited the release of IL12p 70 and IL-23 from human monocyte-derived dendritic cells stimulated by LPS by more than 70%. This effect of AGN 225660 was reproduced in part by the prototype compound AGN 211377 and a combination of selective DP1, EP1, EP4, FP, and TP antagonists. These findings suggest important effects on T cell skewing and disease modification by this class of therapeutic agents. AGN 225660 exhibited good ocular bioavailability and was active in reducing ocular inflammation associated with phacoemulsification surgery, LPS, and arachidonic acid induced uveitis.
Collapse
Affiliation(s)
- David F Woodward
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | - Jenny W Wang
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | - Clayton S Spada
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| | | | - Jose L Martos
- Discovery Department, Selcia Ltd., Ongar, Essex, CM5 0GS, U.K
| | - Simon Pettit
- Discovery Department, Selcia Ltd., Ongar, Essex, CM5 0GS, U.K
| | | | | | | | - Wenzheng Hu
- RxGen Inc., Hamden, Connecticut 06511, United States
| | - Neil J Poloso
- Research and External Scientific Innovation, Allergan Inc., Irvine, California 92612, United States
| |
Collapse
|
3
|
Mora-Ramiro B, Jiménez-Estrada M, Zentella-Dehesa A, Ventura-Gallegos JL, Gomez-Quiroz LE, Rosiles-Alanis W, Alarcón-Aguilar FJ, Almanza-Pérez JC. Cacalol Acetate, a Sesquiterpene from Psacalium decompositum, Exerts an Anti-inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages. JOURNAL OF NATURAL PRODUCTS 2020; 83:2447-2455. [PMID: 32672964 DOI: 10.1021/acs.jnatprod.0c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inflammatory diseases remain critical health problems worldwide. The search for anti-inflammatory drugs is a primary activity in the pharmaceutical industry. Cacalol is a sesquiterpene with anti-inflammatory potential that is isolated from Psacalium decompositum, a medicinal plant with several scientific reports supporting its anti-inflammatory activity. Cacalol acetate (CA) is the most stable form. Nevertheless, the participation of CA in the main signaling pathway associated with inflammation is unknown. Our aim was to study the anti-inflammatory effect of CA and to determine its participation in NF-κB signaling. In TPA-induced edema in mice, CA produced 70.3% inhibition. To elucidate the influence of CA on the NF-κB pathway, RAW 264.7 macrophages were pretreated with CA and then stimulated with LPS, evaluating NF-ΚB activation, IKK phosphorylation, IΚB-α, p65, cytokine expression, and COX-2 release and activity. CA inhibited NF-κB activation and its upstream signaling, decreasing phosphorylation IKB-α and p65 levels. CA also reduced expression and secretion of TNF-α, IL-1β, and IL-6. Additionally, it decreased the activity and expression of COX-2 mRNA. These data support that CA regulates the NF-κB signaling pathway, which might explain, at least in part, its anti-inflammatory effect. CA is a bioactive molecule useful for the development of anti-inflammatory agents with innovative mechanisms of action.
Collapse
Affiliation(s)
- B Mora-Ramiro
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - M Jiménez-Estrada
- Departamento de Productos Naturales, Instituto de Química, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
| | - A Zentella-Dehesa
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - J L Ventura-Gallegos
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - L E Gomez-Quiroz
- Departamento de Ciencias de la Salud, CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - W Rosiles-Alanis
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - F J Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - J C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| |
Collapse
|
4
|
Terao R, Kaneko H. Lipid Signaling in Ocular Neovascularization. Int J Mol Sci 2020; 21:ijms21134758. [PMID: 32635437 PMCID: PMC7369954 DOI: 10.3390/ijms21134758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis and angiogenesis play a crucial role in embryonic development. Pathological neovascularization in ocular tissues can lead to vision-threatening vascular diseases, including proliferative diabetic retinopathy, retinal vein occlusion, retinopathy of prematurity, choroidal neovascularization, and corneal neovascularization. Neovascularization involves various cellular processes and signaling pathways and is regulated by angiogenic factors such as vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF). Modulating these circuits may represent a promising strategy to treat ocular neovascular diseases. Lipid mediators derived from membrane lipids are abundantly present in most tissues and exert a wide range of biological functions by regulating various signaling pathways. In particular, glycerophospholipids, sphingolipids, and polyunsaturated fatty acids exert potent pro-angiogenic or anti-angiogenic effects, according to the findings of numerous preclinical and clinical studies. In this review, we summarize the current knowledge regarding the regulation of ocular neovascularization by lipid mediators and their metabolites. A better understanding of the effects of lipid signaling in neovascularization may provide novel therapeutic strategies to treat ocular neovascular diseases and other human disorders.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: ; Tel.: +81-3-3815-5411
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
5
|
Woodward DF, Wang JW, Stamer WD, Lütjen-Drecoll E, Krauss AHP, Toris CB. Antiglaucoma EP 2 Agonists: A Long Road That Led Somewhere. J Ocul Pharmacol Ther 2019; 35:469-474. [PMID: 31329508 DOI: 10.1089/jop.2019.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For >2 decades, EP2 agonists have been the subject of antiglaucoma research and development by scientists in industry and academia around the world. The road has led to the recent approval of the first drug of this class. This article reviews the development of EP2 agonists from conception to clinical approval, discussing pharmacology, structure, biodistribution, therapeutics, and drug delivery. An extensive list of source references is provided for the reader's benefit.
Collapse
Affiliation(s)
- David F Woodward
- Department of Bioengineering, Imperial College London, London, United Kingdom.,JeniVision, Inc., Irvine, California
| | | | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | | | - Carol B Toris
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
Pastorino F, Brignole C, Di Paolo D, Perri P, Curnis F, Corti A, Ponzoni M. Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804591. [PMID: 30706636 DOI: 10.1002/smll.201804591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
- Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
7
|
Woodward DF, Wang JW, Ni M, Bauer AJ, Poloso NJ. In Vivo Choroidal Neovascularization and Macrophage Studies Provide Further Evidence for a Broad Role of Prostacyclin in Angiogenesis. J Ocul Pharmacol Ther 2019; 35:98-105. [DOI: 10.1089/jop.2018.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- David F. Woodward
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Jenny W. Wang
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Ming Ni
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Alex J. Bauer
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Neil J. Poloso
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| |
Collapse
|
8
|
Ligresti A, Silvestri C, Vitale RM, Martos JL, Piscitelli F, Wang JW, Allarà M, Carling RW, Luongo L, Guida F, Illiano A, Amoresano A, Maione S, Amodeo P, Woodward DF, Di Marzo V, Marino G. FAAH-Catalyzed C-C Bond Cleavage of a New Multitarget Analgesic Drug. ACS Chem Neurosci 2019; 10:424-437. [PMID: 30226747 DOI: 10.1021/acschemneuro.8b00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The discovery of extended catalytic versatilities is of great importance in both the chemistry and biotechnology fields. Fatty acid amide hydrolase (FAAH) belongs to the amidase signature superfamily and is a major endocannabinoid inactivating enzyme using an atypical catalytic mechanism involving hydrolysis of amide and occasionally ester bonds. FAAH inhibitors are efficacious in experimental models of neuropathic pain, inflammation, and anxiety, among others. We report a new multitarget drug, AGN220653, containing a carboxyamide-4-oxazole moiety and endowed with efficacious analgesic and anti-inflammatory activities, which are partly due to its capability of achieving inhibition of FAAH, and subsequently increasing the tissue concentrations of the endocannabinoid anandamide. This inhibitor behaves as a noncompetitive, slowly reversible inhibitor. Autoradiography of purified FAAH incubated with AGN220653, opportunely radiolabeled, indicated covalent binding followed by fragmentation of the molecule. Molecular docking suggested a possible nucleophilic attack by FAAH-Ser241 on the carbonyl group of the carboxyamide-4-oxazole moiety, resulting in the cleavage of the C-C bond between the oxazole and the carboxyamide moieties, instead of either of the two available amide bonds. MRM-MS analyses only detected the Ser241-assisted formation of the carbamate intermediate, thus confirming the cleavage of the aforementioned C-C bond. Quantum mechanics calculations were fully consistent with this mechanism. The study exemplifies how FAAH structural features and mechanism of action may override the binding and reactivity propensities of substrates. This unpredicted mechanism could pave the way to the future development of a completely new class of amidase inhibitors, of potential use against pain, inflammation, and mood disorders.
Collapse
Affiliation(s)
- Alessia Ligresti
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | - Cristoforo Silvestri
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | - Jose L. Martos
- Discovery Department, Selcia Limited, Ongar CM5 0GS, United Kingdom
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | - Jenny W. Wang
- Department of Biological Sciences, Allergan Inc., Irvine, California 92623, United States
| | - Marco Allarà
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | | | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania, Naples 80138, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania, Naples 80138, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples 80126, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples 80126, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania, Naples 80138, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
| | - David F. Woodward
- Department of Biological Sciences, Allergan Inc., Irvine, California 92623, United States
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council of Italy, Pozzuoli 80078, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Universitè Laval, Quebec City G1V 0A6, Canada
| | - Gennaro Marino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples 80126, Italy
- University “Suor Orsola Benincasa”, Naples 80132, Italy
| |
Collapse
|