1
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Mingledorff GA, Sharlow ER. Deletion of PTP4A3 phosphatase in high-grade serous ovarian cancer cells decreases tumorigenicity and produces marked changes in intracellular signaling pathways and cytokine release. J Pharmacol Exp Ther 2025; 392:100010. [PMID: 39892999 DOI: 10.1124/jpet.124.002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and extracellular signal-regulated kinase. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3, to assess their tumorigenicity, to examine their cellular phenotype, and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/CRISPR-associated protein 9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by western blotting in the clonal cell lines compared with the sham-transfected wild-type population. The wild-type and polyclonal knockout cell lines shared similar monolayer growth rates, whereas the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal Ptp4a3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared with the wild-type cells and were less tumorigenic in vivo. The clonal knockout cells were markedly less responsive to interleukin-6-stimulated migration in a scratch wound assay compared with the wild-type cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the Ptp4a3-deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. SIGNIFICANCE STATEMENT: Clones of high-grade serous ovarian cancer cells were isolated, in which the oncogenic phosphatase Ptp4a3 gene was deleted using CRISPR/CRISPR-associated protein 9 methodologies. The Ptp4a3-null cells exhibited loss of in vitro proliferation, colony formation, and migration and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed Ptp4a3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity, and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia.
| | | | | | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia
| |
Collapse
|
2
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
3
|
Lazo JS, Colunga-Biancatelli RML, Solopov PA, Catravas JD. An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:249-254. [PMID: 36796645 PMCID: PMC9930264 DOI: 10.1016/j.slasd.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| | | | - Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
4
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Rastelli EJ, Wipf P, Sharlow ER. Disruption of Ovarian Cancer STAT3 and p38 Signaling with a Small-Molecule Inhibitor of PTP4A3 Phosphatase. J Pharmacol Exp Ther 2023; 384:429-438. [PMID: 36627205 PMCID: PMC9976793 DOI: 10.1124/jpet.122.001401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Protein tyrosine phosphatase type IVA member 3 (PTP4A3 or PRL-3) is a nonreceptor, oncogenic, dual-specificity phosphatase that is highly expressed in many human tumors, including ovarian cancer, and is associated with a poor patient prognosis. Recent studies suggest that PTP4A3 directly dephosphorylates SHP-2 phosphatase as part of a STAT3-PTP4A3 feedforward loop and directly dephosphorylates p38 kinase. The goal of the current study was to examine the effect of a PTP4A phosphatase inhibitor, 7-imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053), on ovarian cancer STAT3, SHP-2, and p38 kinase phosphorylation. JMS-053 caused a concentration- and time-dependent decrease in the activated form of STAT3, Y705 phospho-STAT3, in ovarian cancer cells treated in vitro. In contrast, the phosphorylation status of two previously described direct PTP4A3 substrates, SHP-2 phosphatase and p38 kinase, were rapidly increased with JMS-053 treatment. We generated A2780 and OVCAR4 ovarian cancer cells resistant to JMS-053, and the resulting cells were not crossresistant to paclitaxel, cisplatin, or teniposide. JMS-053-resistant A2780 and OVCAR4 cells exhibited a 95% and 50% decrease in basal Y705 phospho-STAT3, respectively. JMS-053-resistant OVCAR4 cells had an attenuated phosphorylation and migratory response to acute exposure to JMS-053. These results support a regulatory role for PTP4A phosphatase in ovarian cancer cell STAT3 and p38 signaling circuits. SIGNIFICANCE STATEMENT: This study demonstrates that chemical inhibition of PTP4A phosphatase activity with JMS-053 decreases STAT3 activation and increases SHP-2 phosphatase and p38 kinase phosphorylation activation in ovarian cancer cells. The newly developed JMS-053-resistant ovarian cancer cells should provide useful tools to further probe the role of PTP4A phosphatase in ovarian cancer cell survival and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Kelly N Isbell
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Sai Ashish Vasa
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Ettore J Rastelli
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Peter Wipf
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| |
Collapse
|
5
|
Richter GM, Kruppa J, Keceli HG, Ataman-Duruel ET, Graetz C, Pischon N, Wagner G, Rendenbach C, Jockel-Schneider Y, Martins O, Bruckmann C, Staufenbiel I, Franke A, Nohutcu RM, Jepsen S, Dommisch H, Schaefer AS. Epigenetic adaptations of the masticatory mucosa to periodontal inflammation. Clin Epigenetics 2021; 13:203. [PMID: 34732256 PMCID: PMC8567676 DOI: 10.1186/s13148-021-01190-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background In mucosal barrier interfaces, flexible responses of gene expression to long-term environmental changes allow adaptation and fine-tuning for the balance of host defense and uncontrolled not-resolving inflammation. Epigenetic modifications of the chromatin confer plasticity to the genetic information and give insight into how tissues use the genetic information to adapt to environmental factors. The oral mucosa is particularly exposed to environmental stressors such as a variable microbiota. Likewise, persistent oral inflammation is the most important intrinsic risk factor for the oral inflammatory disease periodontitis and has strong potential to alter DNA-methylation patterns. The aim of the current study was to identify epigenetic changes of the oral masticatory mucosa in response to long-term inflammation that resulted in periodontitis. Methods and results Genome-wide CpG methylation of both inflamed and clinically uninflamed solid gingival tissue biopsies of 60 periodontitis cases was analyzed using the Infinium MethylationEPIC BeadChip. We validated and performed cell-type deconvolution for infiltrated immune cells using the EpiDish algorithm. Effect sizes of DMPs in gingival epithelial and fibroblast cells were estimated and adjusted for confounding factors using our recently developed “intercept-method”. In the current EWAS, we identified various genes that showed significantly different methylation between periodontitis-inflamed and uninflamed oral mucosa in periodontitis patients. The strongest differences were observed for genes with roles in wound healing (ROBO2, PTP4A3), cell adhesion (LPXN) and innate immune response (CCL26, DNAJC1, BPI). Enrichment analyses implied a role of epigenetic changes for vesicle trafficking gene sets. Conclusions Our results imply specific adaptations of the oral mucosa to a persistent inflammatory environment that involve wound repair, barrier integrity, and innate immune defense. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01190-7.
Collapse
Affiliation(s)
- Gesa M Richter
- Department of Periodontology and Synoptic Dentistry, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
| | - Jochen Kruppa
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - H Gencay Keceli
- Periodontology Department, Faculty of Dentistry, Hacettepe University, 06230, Sihhiye/Altindag/Ankara, Turkey
| | - Emel Tuğba Ataman-Duruel
- Periodontology Department, Faculty of Dentistry, Hacettepe University, 06230, Sihhiye/Altindag/Ankara, Turkey
| | - Christian Graetz
- Clinic of Conservative Dentistry and Periodontology, University Medical Center Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Nicole Pischon
- Private Practice, Karl-Marx-Straße 24, 12529, Schönefeld, Germany
| | - Gunar Wagner
- Department of Restorative Dentistry and Periodontology, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Yvonne Jockel-Schneider
- Department of Periodontology, Clinic of Preventive Dentistry and Periodontology, University Medical Center of the Julius-Maximilians-University, Pleicherwall, 97070, Würzburg, Germany
| | - Orlando Martins
- Institute of Periodontology, Institute of Medicine and Oral Surgery, Dentistry Department, Faculty of Medicine, University of Coimbra, Av. Bissaya Barreto, Bloco de Celas, 3000-075, Coimbra, Portugal
| | - Corinna Bruckmann
- Department of Conservative Dentistry and Periodontology, Medical University Vienna, School of Dentistry, Sensengasse 2a, 1090, Vienna, Austria
| | - Ingmar Staufenbiel
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of Dentistry, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Rahime M Nohutcu
- Periodontology Department, Faculty of Dentistry, Hacettepe University, 06230, Sihhiye/Altindag/Ankara, Turkey
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstraße 17, 53111, Bonn, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology and Synoptic Dentistry, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| |
Collapse
|
6
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
7
|
EMID1, a multifunctional molecule identified in a murine model for the invasion independent metastasis pathway. Sci Rep 2021; 11:16372. [PMID: 34385585 PMCID: PMC8361151 DOI: 10.1038/s41598-021-96006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
EMI Domain Containing 1 (EMID1) was identified as a potential candidate metastasis-promoting gene. We sought to clarify the molecular function of EMID1 and the protein expression. Overexpression and knockdown studies using mouse tumor cell lines identified two novel functions of EMID1: intracellular signaling involving enhancement of cell growth via cell cycle promotion and suppression of cell motility, and inhibition of cell–matrix adhesion by extracellularly secreted EMID1. EMID1 deposited on the culture dish induced self-detachment of cells that overexpressed the protein and inhibited adhesion of additionally seeded cells. This multifunctional property involving both intracellular signaling and the extracellular matrix suggests that EMID1 may be a matricellular proteins. Expression analysis using immunohistochemical staining revealed expression of EMID1 that was limited to chief cells of the gastric fundic gland and β cells of the pancreatic islets in normal adult human tissues, implying cell-specific functions of this molecule. In addition, increased expression of EMID1 protein detected in some cases of human cancers implies that EMID1 might be a new therapeutic target for cancer treatment.
Collapse
|
8
|
Lazo JS, Sharlow ER, Cornelison R, Hart DJ, Llaneza DC, Mendelson AJ, Rastelli EJ, Tasker NR, Landen CN, Wipf P. Credentialing and Pharmacologically Targeting PTP4A3 Phosphatase as a Molecular Target for Ovarian Cancer. Biomolecules 2021; 11:969. [PMID: 34209460 PMCID: PMC8329922 DOI: 10.3390/biom11070969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
High grade serous ovarian cancer (OvCa) frequently becomes drug resistant and often recurs. Consequently, new drug targets and therapies are needed. Bioinformatics-based studies uncovered a relationship between high Protein Tyrosine Phosphatase of Regenerating Liver-3 (PRL3 also known as PTP4A3) expression and poor patient survival in both early and late stage OvCa. PTP4A3 mRNA levels were 5-20 fold higher in drug resistant or high grade serous OvCa cell lines compared to nonmalignant cells. JMS-053 is a potent allosteric small molecule PTP4A3 inhibitor and to explore further the role of PTP4A3 in OvCa, we synthesized and interrogated a series of JMS-053-based analogs in OvCa cell line-based phenotypic assays. While the JMS-053 analogs inhibit in vitro PTP4A3 enzyme activity, none were superior to JMS-053 in reducing high grade serous OvCa cell survival. Because PTP4A3 controls cell migration, we interrogated the effect of JMS-053 on this cancer-relevant process. Both JMS-053 and CRISPR/Cas9 PTP4A3 depletion blocked cell migration. The inhibition caused by JMS-053 required the presence of PTP4A3. JMS-053 caused additive or synergistic in vitro cytotoxicity when combined with paclitaxel and reduced in vivo OvCa dissemination. These results indicate the importance of PTP4A3 in OvCa and support further investigations of the lead inhibitor, JMS-053.
Collapse
Affiliation(s)
- John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Elizabeth R. Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Robert Cornelison
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Duncan J. Hart
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Danielle C. Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Anna J. Mendelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Ettore J. Rastelli
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| | - Nikhil R. Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA;
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| |
Collapse
|
9
|
Czub MP, Boulton AM, Rastelli EJ, Tasker NR, Maskrey TS, Blanco IK, McQueeney KE, Bushweller JH, Minor W, Wipf P, Sharlow ER, Lazo JS. Structure of the Complex of an Iminopyridinedione Protein Tyrosine Phosphatase 4A3 Phosphatase Inhibitor with Human Serum Albumin. Mol Pharmacol 2020; 98:648-657. [PMID: 32978326 PMCID: PMC7658597 DOI: 10.1124/molpharm.120.000131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine phosphatase (PTP) 4A3 is frequently overexpressed in human solid tumors and hematologic malignancies and is associated with tumor cell invasion, metastasis, and a poor patient prognosis. Several potent, selective, and allosteric small molecule inhibitors of PTP4A3 were recently identified. A lead compound in the series, JMS-053 (7-imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione), has a long plasma half-life (∼ 24 hours) in mice, suggesting possible binding to serum components. We confirmed by isothermal titration calorimetry that JMS-053 binds to human serum albumin. A single JMS-053 binding site was identified by X-ray crystallography in human serum albumin at drug site 3, which is also known as subdomain IB. The binding of JMS-053 to human serum albumin, however, did not markedly alter the overall albumin structure. In the presence of serum albumin, the potency of JMS-053 as an in vitro inhibitor of PTP4A3 and human A2780 ovarian cancer cell growth was reduced. The reversible binding of JMS-053 to serum albumin may serve to increase JMS-053's plasma half-life and thus extend the delivery of the compound to tumors. SIGNIFICANCE STATEMENT: X-ray crystallography revealed that a potent, reversible, first-in-class small molecule inhibitor of the oncogenic phosphatase protein tyrosine phosphatase 4A3 binds to at least one site on human serum albumin, which is likely to extend the compound's plasma half-life and thus assist in drug delivery into tumors.
Collapse
Affiliation(s)
- Mateusz P Czub
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Adam M Boulton
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Ettore J Rastelli
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Nikhil R Tasker
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Taber S Maskrey
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Isabella K Blanco
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Kelley E McQueeney
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - John H Bushweller
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Wladek Minor
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Peter Wipf
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - Elizabeth R Sharlow
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| | - John S Lazo
- Departments of Molecular Physiology and Biological Physics (M.P.C., A.M.B., J.H.B., W.M.) and Pharmacology (K.E.M., E.R.S., J.S.L.) and Center for Structural Genomics of Infectious Diseases (CSGID) (M.P.C., W.M.), University of Virginia, Charlottesville, Virginia; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., N.R.T., T.S.M., P.W.); and KeViRx, Inc., Charlottesville, Virginia (I.K.B., E.R.S., J.S.L.)
| |
Collapse
|
10
|
Aguilar-Sopeña O, Hernández-Pérez S, Alegre-Gómez S, Castro-Sánchez P, Iglesias-Ceacero A, Lazo JS, Roda-Navarro P. Effect of Pharmacological Inhibition of the Catalytic Activity of Phosphatases of Regenerating Liver in Early T Cell Receptor Signaling Dynamics and IL-2 Production. Int J Mol Sci 2020; 21:E2530. [PMID: 32260565 PMCID: PMC7177812 DOI: 10.3390/ijms21072530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS. Pharmacological inhibition was used to compare the role of the catalytic activity of PRLs in antigen-induced early signaling and late IL-2 production. Although the phosphatase activity of PRLs was not critical for early signaling triggered by antigen, it seemed to regulate signaling dynamics and was necessary for proper IL-2 production. We propose that enzymatic activity of PRLs has a higher significance for cytokine production than for early signaling at the IS. However, further research will be necessary to deeply understand the regulatory role of PRLs during lymphocyte activation and effector function.
Collapse
Affiliation(s)
- Oscar Aguilar-Sopeña
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sara Hernández-Pérez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sergio Alegre-Gómez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Patricia Castro-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Alba Iglesias-Ceacero
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - John S. Lazo
- Departments of Pharmacology and Chemistry, University of Virginia, Charlottesville, VA 22908, USA;
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| |
Collapse
|
11
|
Abstract
Supplemental Digital Content is available in the text Background: Fusion genes may play an important role in tumorigenesis, prognosis, and drug resistance; however, studies on fusion genes in endometrial cancer (EC) are rare. This study aimed to identify new fusion genes and to explore their clinical significance in EC. Methods: A total of 28 patients diagnosed with EC were enrolled in this study. RNA sequencing was used to obtain entire genomes and transcriptomes. STAR-comparison and STAR-fusion prediction were applied to predict the fusion genes. Chi-square tests and Student t tests were used to verify the clinical significance with SPSS 13.0 software. Results: New fusion genes were found, and the number of fusion genes varied from 3 to 110 among all patients with EC. The type of fusion genes varied and included messenger RNA (mRNA)-mRNA, long non-coding RNA (lncRNA)-lncRNA, and lncRNA-mRNA. There were six fusion genes with high fusion rates, namely, RP11–123O10.4–GRIP1, RP11–444D3.1–SOX5, RP11–680G10.1–GSE1, NRIP1–AF127936.7, RP11–96H19.1–RP11–446N19.1, and DPH7–PTP4A3. Further studies showed that these fusion genes are related to stage, grade, and recurrence, in which NRIP1–AF127936.7 and DPH7–PTP4A3 were found only in stage III patients with EC. DPH7–PTP4A3 was found in grades 2 and 3, and recurrent patients with EC. Conclusion: Fusion genes play an essential role in EC. Six genes that are overexpressed with high fusion rates are identified. NRIP1–AF127936.7 and DPH7–PTP4A3 might be related to stage, and DPH7–PTP4A3 be related to grade and recurrence.
Collapse
|
12
|
Lazo JS, Blanco IK, Tasker NR, Rastelli EJ, Burnett JC, Garrott SR, Hart DJ, McCloud RL, Hsu KL, Wipf P, Sharlow ER. Next-Generation Cell-Active Inhibitors of the Undrugged Oncogenic PTP4A3 Phosphatase. J Pharmacol Exp Ther 2019; 371:652-662. [PMID: 31601683 PMCID: PMC6856870 DOI: 10.1124/jpet.119.262188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Oncogenic protein tyrosine phosphatases (PTPs) are overexpressed in numerous human cancers but they have been challenging pharmacological targets. The emblematic oncogenic PTP4A tyrosine phosphatase family regulates many fundamental malignant processes. 7-Imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053) is a novel, potent, and selective PTP4A inhibitor but its mechanism of action has not been fully elucidated, nor has the chemotype been fully investigated. Because tyrosine phosphatases are notoriously susceptible to oxidation, we interrogated JMS-053 and three newly synthesized analogs with specific attention on the role of oxidation. JMS-053 and its three analogs were potent in vitro PTP4A3 inhibitors, but 7-imino-5-methyl-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (NRT-870-59) appeared unique among the thienopyridinediones with respect to its inhibitory specificity for PTP4A3 versus both a PTP4A3 A111S mutant and an oncogenic dual specificity tyrosine phosphatase, CDC25B. Like JMS-053, NRT-870-59 was a reversible PTP4A3 inhibitor. All of the thienopyridinediones retained cytotoxicity against human ovarian and breast cancer cells grown as pathologically relevant three-dimensional spheroids. Inhibition of cancer cell colony formation by NRT-870-59, like JMS-053, required PTP4A3 expression. JMS-053 failed to generate significant detectable reactive oxygen species in vitro or in cancer cells. Mass spectrometry results indicated no disulfide bond formation or oxidation of the catalytic Cys104 after in vitro incubation of PTP4A3 with JMS-053 or NRT-870-59. Gene expression profiling of cancer cells exposed to JMS-053 phenocopied many of the changes seen with the loss of PTP4A3 and did not indicate oxidative stress. These data demonstrate that PTP4A phosphatases can be selectively targeted with small molecules that lack prominent reactive oxygen species generation and encourage further studies of this chemotype. SIGNIFICANCE STATEMENT: Protein tyrosine phosphatases are emerging as important contributors to human cancers. We report on a new class of reversible protein phosphatase small molecule inhibitors that are cytotoxic to human ovarian and breast cancer cells, do not generate significant reactive oxygen species in vitro and in cells, and could be valuable lead molecules for future studies of PTP4A phosphatases.
Collapse
Affiliation(s)
- John S Lazo
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabella K Blanco
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nikhil R Tasker
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ettore J Rastelli
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James C Burnett
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon R Garrott
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Duncan J Hart
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca L McCloud
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ku-Lung Hsu
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth R Sharlow
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Tsantoulis P, Delorenzi M, Bièche I, Vacher S, Mariani P, Cassoux N, Houy A, Stern MH, Roman-Roman S, Dietrich PY, Roth A, Cacheux W. Prospective validation in epithelial tumors of a gene expression predictor of liver metastasis derived from uveal melanoma. Sci Rep 2019; 9:17178. [PMID: 31748560 PMCID: PMC6868129 DOI: 10.1038/s41598-019-52841-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Predicting the risk of liver metastasis can have important prognostic and therapeutic implications, given the availability of liver-directed therapy. Uveal melanoma has a striking predisposition for liver metastasis despite the absence of anatomical proximity. Understanding its biology may uncover factors promoting liver metastasis in other malignancies. We quantified gene expression by RNAseq in 76 uveal melanomas and combined with public data in a meta-analysis of 196 patients. The meta-analysis of uveal melanoma gene expression identified 63 genes which remained prognostic after adjustment for chromosome 3 status. Two genes, PTP4A3 and JPH1, were selected by L1-penalized regression and combined in a prognostic score. The score predicted liver-specific relapse in a public pan-cancer dataset and in two public colorectal cancer datasets. The score varied between colorectal consensus molecular subtypes (CMS), as did the risk of liver relapse, which was lowest in CMS1. Additional prospective validation was done by real-time PCR in 463 breast cancer patients. The score was significantly correlated with liver relapse in hormone receptor positive tumors. In conclusion, the expression of PTP4A3 and JPH1 correlates with risk of liver metastasis in colorectal cancer and breast cancer. The underlying biological mechanism is an interesting area for further research.
Collapse
Affiliation(s)
- Petros Tsantoulis
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland. .,University of Geneva, Geneva, Switzerland. .,SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland.
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland.,University Lausanne, Department of Fundamental Oncology, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | - Ivan Bièche
- Institut Curie, Département de génétique, Paris, France
| | - Sophie Vacher
- Institut Curie, Département de génétique, Paris, France
| | | | | | - Alexandre Houy
- Institut Curie, Département de génétique, Paris, France.,Institut Curie, PSL Research University, INSERM U830, Paris, France
| | - Marc-Henri Stern
- Institut Curie, Département de génétique, Paris, France.,Institut Curie, PSL Research University, INSERM U830, Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Pierre-Yves Dietrich
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Arnaud Roth
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Wulfran Cacheux
- Hôpitaux Universitaires de Genève, Service d'Oncologie, Geneva, Switzerland.,Institut Curie, Département de génétique, Paris, France.,Hôpital Privé - Pays de Savoie, Oncology department, Annemasse, France
| |
Collapse
|
14
|
Tasker NR, Rastelli EJ, Blanco IK, Burnett JC, Sharlow ER, Lazo JS, Wipf P. In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors. Org Biomol Chem 2019; 17:2448-2466. [PMID: 30746541 DOI: 10.1039/c9ob00025a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A continuous flow photooxygenation of 7-aminothieno[3,2-c]pyridin-4(5H)-ones to produce 7-iminothieno[3,2-c]pyridine-4,6(5H,7H)-diones has been developed, utilizing ambient air as the sole reactant. N-H Imines are formed as the major products, and excellent functional group tolerance and conversion on gram-scale without the need for chromatographic purification allow for facile late-stage diversification of the aminothienopyridinone scaffold. Several analogs exhibit potent in vitro inhibition of the cancer-associated protein tyrosine phosphatase PTP4A3, and the SAR supports an exploratory docking model.
Collapse
Affiliation(s)
- Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|