1
|
Snoke DB, Atwood GS, Bellefleur ER, Stokes AM, Toth MJ. Body composition alterations in patients with lung cancer. Am J Physiol Cell Physiol 2025; 328:C872-C886. [PMID: 39887975 DOI: 10.1152/ajpcell.01048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Most patients with lung cancer experience cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting. Knowledge of body composition changes in patients is limited, however, because most studies have been cross-sectional, comparing patients with noncancer controls or patients with and without CC. Few studies, in contrast, have evaluated body composition in patients with lung cancer over time. This review examines our current understanding of longitudinal body composition changes in patients with lung cancer and identifies modifying factors contributing to variation in muscle and adipose tissue wasting, focusing on biological sex. We identified 32 studies conducting longitudinal measurements of body composition by computed tomography, bioelectrical impedance, dual X-ray absorptiometry, or total body nitrogen, with a total of n = 3,951 patients (35% female). All studies evaluated changes following diagnosis while patients were receiving treatment. Most studies reporting muscle-specific outcomes show decreased skeletal muscle mass, with more pronounced muscle wasting in males and male-enriched populations. In a small number of studies reporting muscle density, the majority show increased myosteatosis. Adiposity changes are less frequently reported, although wasting appears more prevalent in late-stage disease. Further studies are needed to define adipose changes along the lung cancer continuum. Our review emphasizes the need for balanced recruitment based on biological sex and sex-based analyses. In addition, consensus reporting of relevant patient data and outcomes in future studies will allow for meta-analysis and assist in the development of effective treatments for lung CC.
Collapse
Affiliation(s)
- Deena B Snoke
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Gary S Atwood
- Dana Health Sciences Library, University of Vermont, Burlington, Vermont, United States
| | - Emma R Bellefleur
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Alice M Stokes
- Dana Health Sciences Library, University of Vermont, Burlington, Vermont, United States
| | - Michael J Toth
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
2
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Wu R, Zhu H, He Q, Yuan T, Yang B. Metabolic reprogramming in KRAS-mutant cancers: Proven targetable vulnerabilities and potential therapeutic strategies. Drug Discov Today 2024; 29:104220. [PMID: 39481592 DOI: 10.1016/j.drudis.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Kras (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), one of the most frequently mutated oncogenes in the human genome, is considered 'untargetable'. Although specific KRASG12C inhibitors have been developed, their overall impact is limited, highlighting the need for further research on targeting KRAS-mutant cancers. Metabolic abnormalities are key hallmarks of cancer, with KRAS-driven tumors exhibiting traits like glycolysis upregulation, glutamine addiction, lipid droplet accumulation, highly active macropinocytosis, and metabolic reprogramming-associated tumor microenvironment remodeling. Targeting these unique metabolic characteristics offers a promising strategy for new cancer treatments. This review summarizes recent advances in our understanding of the metabolic network in KRAS-mutated tumor cells, discusses potential targetable vulnerabilities, and outlines clinical developments in relevant therapies, while also addressing challenges to improve strategies against these aggressive cancers.
Collapse
Affiliation(s)
- Ruilin Wu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Li D, Yuan X, Ma J, Lu T, Zhang J, Liu H, Zhang G, Wang Y, Liu X, Xie Q, Zhou L, Xu M. Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy. Biomed Pharmacother 2024; 180:117510. [PMID: 39341077 DOI: 10.1016/j.biopha.2024.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets. METHODS Mitochondrial function was assessed by measuring the mitochondrial membrane potential, mitochondrial ultrastructure, oxygen consumption, and ATP levels. Mor-induced mitophagy was confirmed using western blotting, immunofluorescence, and fluorescent probes. Transcriptomics, flow cytometry, western blotting, qRT-PCR and biochemical assays were used to reveal the molecular mechanisms and targets of Mor against HCC. We further validated the interaction between Mor and the target proteins using molecular docking and biolayer interferometry (BLI). The inhibitory effect of Mor in vivo was evaluated using a Hep3B murine xenograft model. RESULTS Mor significantly reduced the ATP citrate lyase (ACLY) expression and inhibited ACLY activity in HCC cells. BLI analysis demonstrated a direct interaction between Mor and the ACLY active domain. Mor-induced ACLY inhibition led to ROS accumulation in HCC cells, which caused mitochondrial damage, triggered PINK1/Parkin-mediated mitophagy, and ultimately induced mitochondrial apoptosis. We further verified that ROS is crucial in the apoptotic action of Mor through experiments regarding an ROS scavenger. Mor also significantly inhibited tumour xenograft growth in vivo. In addition, analysis of human liver cancer clinical samples revealed elevated ACLY levels positively correlated with histologic grade. CONCLUSION Collectively, our findings highlight Mor as a potent bioactive inhibitor of ACLY and a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jianjun Ma
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong 264002, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai 264003, PR China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yue Wang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaohan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qiqiang Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
5
|
Cenigaonandia‐Campillo A, Garcia‐Bautista A, Rio‐Vilariño A, Cebrian A, del Puerto L, Pellicer JA, Gabaldón JA, Pérez‐Sánchez H, Carmena‐Bargueño M, Meroño C, Traba J, Fernandez‐Aceñero MJ, Baños‐Herraiz N, Mozas‐Vivar L, Núñez‐Delicado E, Garcia‐Foncillas J, Aguilera Ó. Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest. Mol Oncol 2024; 18:2212-2233. [PMID: 38425123 PMCID: PMC11467799 DOI: 10.1002/1878-0261.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.
Collapse
Affiliation(s)
| | - Ana Garcia‐Bautista
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Anxo Rio‐Vilariño
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Laura del Puerto
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Horacio Pérez‐Sánchez
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Miguel Carmena‐Bargueño
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Carolina Meroño
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | - Javier Traba
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | | | | | - Lorena Mozas‐Vivar
- Preclinical programe START Madrid‐FJD Hospital fundación Jiménez DíazSpain
| | - Estrella Núñez‐Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Jesús Garcia‐Foncillas
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
- Universidad Católica de Murcia (UCAM)Spain
| |
Collapse
|
6
|
Ghosh S, Bhuniya T, Dey A, Koley M, Roy P, Bera A, Gol D, Chowdhury A, Chowdhury R, Sen S. An Updated Review on KRAS Mutation in Lung Cancer (NSCLC) and Its Effects on Human Health. Appl Biochem Biotechnol 2024; 196:4661-4678. [PMID: 37897621 DOI: 10.1007/s12010-023-04748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The largest cause of cancer-related fatalities worldwide is lung cancer. In its early stages, lung cancer often exhibits no signs or symptoms. Its signs and symptoms often appear when the condition is advanced. The Kirsten rat sarcoma virus oncogene homolog is one of the most frequently mutated oncogenes found in non-small cell lung cancer. Patients who have these mutations may do worse than those who do not, in terms of survival. To understand the nuances in order to choose the best treatment options for each patient, including combination therapy and potential resistance mechanisms, given the quick development of pharmaceuticals, it is necessary to know the factors that might contribute to this disease. It has been observed that single nucleotide polymorphisms altering let-7 micro-RNA might impact cancer propensity. On the other hand, gefitinib fails to stop the oncogenic protein from directly interacting with phosphoinositide3-kinase, which may explain its resistance towards cancer cells. Additionally, Atorvastatin may be able to overpower gefitinib resistance in these cancer cells that have this mutation regardless of the presence of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. De novo lipogenesis is also regulated by this virus. To overcome these effects, several targeted therapies have been proposed. One such therapy is to use inhibitors of focal adhesion kinases. When this is inhibited, viral oncogene mutant cancers are effectively stopped because it functions downstream of the virus. Mutant oncoproteins like epidermal growth factor receptor may depend on Heat Shock protein90 chaperones more frequently than they do on natural counterparts that make it more attractive therapeutic target for this virus. Inhibition of the phosphoinositide 3-kinase pathway is frequent in lung cancer, and fabrication of inhibitors against this pathway can also be an effective therapeutic strategy. Blocking programmed cell death ligand1 is another therapy that may help T cells to recognize and eliminate cancerous cells. This homolog is a challenging therapeutic target due to its complex structural makeup and myriad biological characteristics. Thanks to the unrelenting efforts of medical research, with the use of some inhibitors, immunotherapy, and other combination methods, this problem is currently expected to be overcome.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, Tamil Nadu, 600036, India.
| | - Tiyasa Bhuniya
- Department of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, 713209, India
| | - Anuvab Dey
- Department of Biological Sciences and Bioengineering, North Guwahati, Assam, IIT Guwahati, Assam-781039, India
| | - Madhurima Koley
- Department of Chemistry and Chemical Biology, IIT(ISM), Dhanbad, 826004, India
| | - Preeti Roy
- Department of Biotechnology, Indian Institute of Technology, Mandi, India
| | - Aishi Bera
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Debarshi Gol
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Ankita Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Shinjini Sen
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| |
Collapse
|
7
|
Gai X, Liu Y, Lan X, Chen L, Yuan T, Xu J, Li Y, Zheng Y, Yan Y, Yang L, Fu Y, Tang S, Cao S, Dai X, Zhu H, Geng M, Ding J, Pu C, Huang M. Oncogenic KRAS Induces Arginine Auxotrophy and Confers a Therapeutic Vulnerability to SLC7A1 Inhibition in Non-Small Cell Lung Cancer. Cancer Res 2024; 84:1963-1977. [PMID: 38502865 DOI: 10.1158/0008-5472.can-23-2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/08/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypoacetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC. SIGNIFICANCE ASS1 deficiency is induced by mutant KRAS in NSCLC to facilitate DNA synthesis and creates a dependency on SLC7A1, revealing dietary arginine restriction and SLC7A1 inhibition as potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiameng Gai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Luoyi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yize Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiyang Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liya Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixian Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Siyuwei Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyang Dai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Ding
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Congying Pu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
8
|
Serhan HA, Bao L, Cheng X, Qin Z, Liu CJ, Heth JA, Udager AM, Soellner MB, Merajver SD, Morikawa A, Merrill NM. Targeting fatty acid synthase in preclinical models of TNBC brain metastases synergizes with SN-38 and impairs invasion. NPJ Breast Cancer 2024; 10:43. [PMID: 38858374 PMCID: PMC11164988 DOI: 10.1038/s41523-024-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Fatty acid synthesis (FAS) has been shown to play a key role in the survival of brain-metastatic (BM) breast cancer. We demonstrate that the fatty acid synthase inhibitor TVB-2640 synergizes with the topoisomerase inhibitor SN-38 in triple-negative breast cancer (TNBC) BM cell lines, upregulates FAS and downregulates cell cycle progression gene expression, and slows the motility of TNBC BM cell lines. The combination of SN-38 and TVB-2640 warrants further consideration as a potential therapeutic option in TNBC BMs.
Collapse
Affiliation(s)
- Habib A Serhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xu Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chia-Jen Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew B Soellner
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aki Morikawa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan M Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Terry AR, Hay N. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol Sci 2024; 45:537-551. [PMID: 38762377 PMCID: PMC11162322 DOI: 10.1016/j.tips.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells perturb lipid metabolic pathways for a variety of pro-tumorigenic functions, and deregulated cellular metabolism is a hallmark of cancer cells. Although alterations in lipid metabolism in cancer cells have been appreciated for over 20 years, there are no FDA-approved cancer treatments that target lipid-related pathways. Recent advances pertaining to cancer cell fatty acid synthesis (FAS), desaturation, and uptake, microenvironmental and dietary lipids, and lipid metabolism of tumor-infiltrating immune cells have illuminated promising clinical applications for targeting lipid metabolism. This review highlights emerging pathways and targets for tumor lipid metabolism that may soon impact clinical treatment.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Lin P, Yang X, Wang L, Zou X, Mu L, Xu C, Yang X. Novel artesunate-metformin conjugate inhibits bladder cancer cell growth associated with Clusterin/SREBP1/FASN signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:219-227. [PMID: 38682170 PMCID: PMC11058549 DOI: 10.4196/kjpp.2024.28.3.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 05/01/2024]
Abstract
Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.
Collapse
Affiliation(s)
- Peiyu Lin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Xiyue Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Linghui Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Xin Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410000, Hunan, China
| |
Collapse
|
11
|
Pandey S, Singh R, Habib N, Tripathi RM, Kushwaha R, Mahdi AA. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia. Asian Pac J Cancer Prev 2024; 25:1121-1134. [PMID: 38679971 PMCID: PMC11162727 DOI: 10.31557/apjcp.2024.25.4.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ranjana Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Nimra Habib
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ramesh Mani Tripathi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Rashmi Kushwaha
- Department of Pathology, King George’s Medical University, Lucknow, U.P., India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| |
Collapse
|
12
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
13
|
Chhichholiya Y, Singh HV, Vashistha R, Singh S, Munshi A. Deciphering the role of KRAS gene in oncogenesis: Focus on signaling pathways, genetic alterations in 3'UTR, KRAS specific miRNAs and therapeutic interventions. Crit Rev Oncol Hematol 2024; 194:104250. [PMID: 38143047 DOI: 10.1016/j.critrevonc.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer is a significant cause of death after cardiovascular disease. The genomic, epigenetic and environmental factors have been found to be the risk factor for the disease. The most important genes that develop cancer are oncogenes and tumor suppressor genes. Among oncogenes, KRAS has emerged as a significant player in the development of many cancers. Dysregulation of the RAS signaling pathway either on account of mutation in significant genes involved in the pathway or aberrant expression of different miRNAs targeting these genes including KRAS. The focus is also on the alterations in 3'UTR of the KRAS gene sequence as well as the changes in the miRNA encoding genes especially the one targeting the KRAS gene. Efforts are also being put in to target the dysregulated KRAS gene as a therapeutic approach to treat different cancers. However, there are some challenges like resistance to KRAS inhibitors that need to be addressed.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harsh Vikram Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Saliakoura M, Konstantinidou G. Lipid Metabolic Alterations in KRAS Mutant Tumors: Unmasking New Vulnerabilities for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021793. [PMID: 36675307 PMCID: PMC9864058 DOI: 10.3390/ijms24021793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
KRAS is one of the most commonly mutated genes, an event that leads to development of highly aggressive and resistant to any type of available therapy tumors. Mutated KRAS drives a complex network of lipid metabolic rearrangements to support the adaptation of cancer cells to harsh environmental conditions and ensure their survival. Because there has been only a little success in the continuous efforts of effectively targeting KRAS-driven tumors, it is of outmost importance to delineate the exact mechanisms of how they get rewired, leading to this distinctive phenotype. Therefore, the aim of this review is to summarize the available data acquired over the last years with regard to the lipid metabolic regulation of KRAS-driven tumors and elucidate their specific characteristics in an attempt to unravel novel therapeutic targets.
Collapse
|
16
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
17
|
Balakrishnan K, Ganesan K. Identification of oncogenic signaling pathways associated with the dimorphic metabolic dysregulations in gastric cancer subtypes. Med Oncol 2022; 39:132. [PMID: 35723749 DOI: 10.1007/s12032-022-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Metabolic dysregulations have been identified as intrinsic hallmarks of cancer cells. Investigations of altered metabolic processes, in the context of the associated oncogenic signaling pathways are expected to pave way for the development of targeted cancer therapeutics. We have recently identified the enrichment of glucose and glutamine metabolism in a subset of intestinal subtype gastric tumors at the level of expression of genes, gene sets and the occurrence of metabolites. On the other hand, glucose transport, glucan and fatty acid metabolism were enriched in a subset of diffuse subtype gastric tumors. In the current study, along with glucose metabolism, mTOR, HSP90, MYC, E2F, P53 and proteasome pathways were found enriched in a subset of intestinal subtype and a part of MSI subtype gastric tumors. On the other hand, along with fatty acid metabolism, the oncogenic pathway KRAS was found to be enriched in a subset of GS tumors among diffuse subtype gastric tumors. Thus, oncogenic signaling pathways associated with two distinct metabolic rewiring which differentially occurs between major gastric cancer subtypes were identified. These pathways seem the potential targets to differentially target these gastric cancer subtypes. Exploratory integrative genomic analyses reveal HSP90 inhibitors, AKT/mTOR inhibitors, and cell cycle inhibitors as potential agents to target the gastric tumors with the rewired glucose metabolism and MEK/MAPK inhibitors as suitable drug candidates to target the diffuse subtype tumors with the dysregulated fatty acid metabolism. This observation would pave way for the selective and targeted use of signaling pathway modulators for targeted and stratified gastric cancer therapeutics.
Collapse
Affiliation(s)
- Karthik Balakrishnan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
18
|
Garcia KA, Costa ML, Lacunza E, Martinez ME, Corsico B, Scaglia N. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci 2022; 301:120621. [PMID: 35545133 DOI: 10.1016/j.lfs.2022.120621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
AIMS Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.
Collapse
Affiliation(s)
- Karina Andrea Garcia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Lucía Costa
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Elizabeth Martinez
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, D’Alessandro A, Amelio I. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol Direct 2022; 17:6. [PMID: 35255936 PMCID: PMC8902766 DOI: 10.1186/s13062-022-00319-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Adaptation of the lipid metabolism participates in cancer pathogenesis, facilitating energy storage and influencing cell fate and control of molecular signalling. The tumour suppressor protein p53 is a molecular hub of cell metabolism, supporting antioxidant capabilities and counteracting oncogene-induced metabolic switch. Despite extensive work has described the p53-dependent metabolic pathways, a global profiling of p53 lipidome is still missing. By high-throughput untargeted lipidomic analysis of pancreatic ductal adenocarcinoma (PDAC) cells, we profile the p53-dependent lipidome, revealing intracellular and secreted lysophospholipids as one of the most affected class. Lysophospholipids are hydrolysed forms of phospholipids that results from phospholipase activity, which can function as signalling molecules, exerting non-cell-autonomous effects and instructing cancer microenvironment and immunity. Here, we reveal that p53 depletion reduces abundance of intracellular lysophosphatidyl-choline, -ethanolamine and -serine and their secretion in the extracellular environment. By integrating this with genomic and transcriptomic studies from in vitro models and human PDAC patients, we identified potential clinically relevant candidate p53-dependent phospholipases. In particular PLD3, PLCB4 and PLCD4 expression is regulated by p53 and chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) indicates a direct transcriptional control on their chromatin accessible genomic loci. Consistently, PLD3, PLCB4 and PLCD4 expression correlates with p53 mutational status in PDAC patients, and these genes display prognostic significance. Overall, our data provide insights into lipidome rewiring driven by p53 loss and identify alterations of lysophospholipids as a potential molecular mechanism for p53-mediated non-cell-autonomous molecular signalling that instructs cancer microenvironment and immunity during PDAC pathogenesis.
Collapse
Affiliation(s)
- Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Micaela Roy
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Carlotta Zampieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Mammarella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
20
|
Zhang Z, TeSlaa T, Xu X, Zeng X, Yang L, Xing G, Tesz GJ, Clasquin MF, Rabinowitz JD. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat Metab 2021; 3:1608-1620. [PMID: 34845393 PMCID: PMC8721747 DOI: 10.1038/s42255-021-00487-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Carbohydrate can be converted into fat by de novo lipogenesis, a process upregulated in fatty liver disease. Chemically, de novo lipogenesis involves polymerization and reduction of acetyl-CoA, using NADPH as the electron donor. The feedstocks used to generate acetyl-CoA and NADPH in lipogenic tissues remain, however, unclear. Here we show using stable isotope tracing in mice that de novo lipogenesis in adipose is supported by glucose and its catabolism via the pentose phosphate pathway to make NADPH. The liver, in contrast, derives acetyl-CoA for lipogenesis from acetate and lactate, and NADPH from folate-mediated serine catabolism. Such NADPH generation involves the cytosolic serine pathway in liver running in the opposite direction to that observed in most tissues and tumours, with NADPH made by the SHMT1-MTHFD1-ALDH1L1 reaction sequence. SHMT inhibition decreases hepatic lipogenesis. Thus, liver folate metabolism is distinctively wired to support cytosolic NADPH production and lipogenesis. More generally, while the same enzymes are involved in fat synthesis in liver and adipose, different substrates are used, opening the door to tissue-specific pharmacological interventions.
Collapse
Affiliation(s)
- Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lifeng Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gang Xing
- Pfizer Inc. Internal Medicine, Cambridge, MA, USA
| | | | | | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Yan Y, Zhou Y, Li J, Zheng Z, Hu Y, Li L, Wu W. Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis. Cell Death Dis 2021; 12:917. [PMID: 34620841 PMCID: PMC8497537 DOI: 10.1038/s41419-021-04198-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome–lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome–lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.
Collapse
Affiliation(s)
- Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing, China.,Capital Medical University, No. 10, Xitoutiao, Beijing, 100069, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.
| |
Collapse
|
22
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
DeLiberty JM, Robb R, Gates CE, Bryant KL. Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Adv Cancer Res 2021; 153:267-304. [PMID: 35101233 DOI: 10.1016/bs.acr.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire E Gates
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
24
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Wang Y, Pan H, chen D, Guo D, Wang X. Targeting at cancer energy metabolism and lipid droplet formation as new treatment strategies for epigallocatechin-3-gallate (EGCG) in colorectal cancer cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Orlistat induces ferroptosis-like cell death of lung cancer cells. Front Med 2021; 15:922-932. [PMID: 34085184 DOI: 10.1007/s11684-020-0804-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Aberrant de novo lipid synthesis is involved in the progression and treatment resistance of many types of cancers, including lung cancer; however, targeting the lipogenetic pathways for cancer therapy remains an unmet clinical need. In this study, we tested the anticancer activity of orlistat, an FDA-approved anti-obesity drug, in human and mouse cancer cells in vitro and in vivo, and we found that orlistat, as a single agent, inhibited the proliferation and viabilities of lung cancer cells and induced ferroptosis-like cell death in vitro. Mechanistically, we found that orlistat reduced the expression of GPX4, a central ferroptosis regulator, and induced lipid peroxidation. In addition, we systemically analyzed the genome-wide gene expression changes affected by orlistat treatment using RNA-seq and identified FAF2, a molecule regulating the lipid droplet homeostasis, as a novel target of orlistat. Moreover, in a mouse xenograft model, orlistat significantly inhibited tumor growth and reduced the tumor volumes compared with vehicle control (P < 0.05). Our study showed a novel mechanism of the anticancer activity of orlistat and provided the rationale for repurposing this drug for the treatment of lung cancer and other types of cancer.
Collapse
|
28
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
29
|
Grachan JJ, Kery M, Giaccia AJ, Denko NC, Papandreou I. Lipid droplet storage promotes murine pancreatic tumor growth. Oncol Rep 2021; 45:21. [PMID: 33649859 PMCID: PMC8889526 DOI: 10.3892/or.2021.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/20/2020] [Indexed: 11/06/2022] Open
Abstract
Hypoxia Inducible Lipid Droplet Associated (HILPDA) is frequently overexpressed in tumors and promotes neutral lipid storage. The impact of Hilpda on pancreatic ductal adenocarcinoma (PDAC) tumor growth is not known. In order to evaluate Hilpda‑dependent lipid storage mechanisms, expression of Hilpda in murine pancreatic cells (KPC) was genetically manipulated. Lipid droplet (LD) abundance and triglyceride content in vitro were measured, and model tumor growth in nu/nu mice was determined. The results showed that excess lipid supply increased triglyceride storage and LD formation in KPC cells in a HILPDA‑dependent manner. Contrary to published results, inhibition of Adipose Triglyceride Lipase (ATGL) did not ameliorate the triglyceride abundance differences between Hilpda WT and KO cells. Hilpda ablation significantly decreased the growth rate of model tumors in immunocompromised mice. In conclusion, Hilpda is a positive regulator of triglyceride storage and lipid droplet formation in murine pancreatic cancer cells in vitro and lipid accumulation and tumor growth in vivo. Our data suggest that deregulated ATGL is not responsible for the absence of LDs in KO cells in this context.
Collapse
Affiliation(s)
- Jeremy J. Grachan
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Nicholas C. Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence to: Dr Ioanna Papandreou, Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 420 W. 12th Avenue, Columbus, OH 43210, USA, E-mail:
| |
Collapse
|
30
|
Chiu CF, Hsu MI, Yeh HY, Park JM, Shen YS, Tung TH, Huang JJ, Wu HT, Huang SY. Eicosapentaenoic Acid Inhibits KRAS Mutant Pancreatic Cancer Cell Growth by Suppressing Hepassocin Expression and STAT3 Phosphorylation. Biomolecules 2021; 11:biom11030370. [PMID: 33801246 PMCID: PMC8001293 DOI: 10.3390/biom11030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation was reported to be the signature genetic event in most cases of pancreatic ductal adenocarcinoma (PDAC). Hepassocin (HPS/FGL1) is involved in regulating lipid metabolism and the progression of several cancer types; however, the underlying mechanism of HPS/FGL1 in the KRAS mutant PDAC cells undergoing eicosapentaenoic acid (EPA) treatment remains unclear. Methods: We measured HPS/FGL1 protein expressions in a human pancreatic ductal epithelial (HPNE) normal pancreas cell line, a KRAS-wild-type PDAC cell line (BxPC-3), and KRAS-mutant PDAC cell lines (PANC-1, MIA PaCa-2, and SUIT-2) by Western blot methods. HEK293T cells were transiently transfected with corresponding KRAS-expressing plasmids to examine the level of HPS expression with KRAS activation. We knocked-down HPS/FGL1 using lentiviral vectors in SUIT-2 cells and measured the cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenicity assays. Furthermore, a lipidomic analysis was performed to profile changes in lipid metabolism after HPS/FGL1 knockdown. Results: We found that the HPS/FGL1 level was significantly upregulated in KRAS-mutated PDAC cells and was involved in KRAS/phosphorylated (p)-signal transduction and activator of transcription 3 (STAT3) signaling, and the knockdown of HPS/FGL1 in SUIT-2 cells decreased cell proliferation through increasing G2/M cell cycle arrest and cyclin B1 expression. In addition, the knockdown of HPS/FGL1 in SUIT-2 cells significantly increased omega-3 polyunsaturated fatty acids (PUFAs) and EPA production but not docosahexaenoic acid (DHA). Moreover, EPA treatment in SUIT-2 cells reduced the expression of de novo lipogenic protein, acetyl coenzyme A carboxylase (ACC)-1, and decreased p-STAT3 and HPS/FGL1 expressions, resulting in the suppression of cell viability. Conclusions: Results of this study indicate that HPS is highly expressed by KRAS-mutated PDAC cells, and HPS/FGL1 plays a crucial role in altering lipid metabolism and increasing cell growth in pancreatic cancer. EPA supplements could potentially inhibit or reduce ACC-1-involved lipogenesis and HPS/FGL1-mediated cell survival in KRAS-mutated pancreatic cancer cells.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-I Hsu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yen Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Yu-Shiuan Shen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Jun-Jie Huang
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan;
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Correspondence: (H.-T.W.); (S.-Y.H.)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
- Correspondence: (H.-T.W.); (S.-Y.H.)
| |
Collapse
|
31
|
Mukhopadhyay S, Vander Heiden MG, McCormick F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. NATURE CANCER 2021; 2:271-283. [PMID: 33870211 PMCID: PMC8045781 DOI: 10.1038/s43018-021-00184-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Our understanding of how the RAS protein family, and in particular mutant KRAS promote metabolic dysregulation in cancer cells has advanced significantly over the last decade. In this Review, we discuss the metabolic reprogramming mediated by oncogenic RAS in cancer, and elucidating the underlying mechanisms could translate to novel therapeutic opportunities to target metabolic vulnerabilities in RAS-driven cancers.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frank McCormick
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Liu Y, Gao GF, Minna JD, Williams NS, Westover KD. Loss of wild type KRAS in KRAS MUT lung adenocarcinoma is associated with cancer mortality and confers sensitivity to FASN inhibitors. Lung Cancer 2021; 153:73-80. [PMID: 33465697 DOI: 10.1016/j.lungcan.2020.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Wild type RAS (RASWT) suppresses the function of oncogenic RAS mutants (RASMUT) in laboratory models. Loss of RASWT, which we termed loss of heterozygosity (LOH) for any RAS (LAR) or LAKR in the context of KRAS (LOH at KRAS), is found in patients with RASMUT cancers. However, the incidence and prognostic significance of LAR has not been studied in modern patient cohorts. LAR or LAKR in RASMUT cancers is attractive as a potential biomarker for targeted therapy. MATERIALS AND METHODS We evaluated for associations between LAKR and cancer mortality in patients with KRASMUT lung adenocarcinoma (LUAD). We also evaluated for associations between LAKR and the metabolic state of cancer cell lines, given that KRAS has been shown to regulate fatty acid synthesis. In line with this, we investigated fatty acid synthase (FASN) inhibitors as potential therapies for KRASMUT LAKR, including combination strategies involving clinical KRASG12C and FASN inhibitors. RESULTS 24 % of patients with KRASMUT LUAD showed LAKR. KRASMUT LAKR cases had a median survival of 16 vs. 30 months in KRASMUT non-LAKR (p = 0.017) and LAKR was independently associated with death in this cohort (p = 0.011). We also found that KRASMUT LUAD cell lines with LAKR contained elevated levels of FASN and fatty acids relative to non-LAKR cell lines. KRASMUT LUAD cells with LAKR showed higher sensitivity to treatment with FASN inhibitors than those without. FASN inhibitors such as TVB-3664 showed synergistic effects with the KRASG12C inhibitor MRTX849 in LUAD cells with KRASG12C and LAKR, including an in vivo trial using a xenograft model. CONCLUSIONS LAKR in KRASMUT cancers may represent an independent negative prognostic factor for patients with KRASMUT LUAD. It also predicts for response to treatment with FASN inhibitors. Prospective testing of combination therapies including KRASG12C and FASN inhibitors in patients with KRASG12C LAKR is warranted.
Collapse
Affiliation(s)
- Yan Liu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Galen F Gao
- School of Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas, 75390-8593, United States
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States.
| |
Collapse
|
33
|
Dowling CM, Zhang H, Chonghaile TN, Wong KK. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188462. [PMID: 33130228 PMCID: PMC7836022 DOI: 10.1016/j.bbcan.2020.188462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer which contributes to essential processes required for cell survival, growth, and proliferation. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and its genomic classification has given rise to the design of therapies targeting tumors harboring specific gene alterations that cause aberrant signaling. Lung tumors are characterized with having high glucose and lactate use, and high heterogeneity in their metabolic pathways. Here we review how NSCLC cells with distinct mutations reprogram their metabolic pathways and highlight the potential metabolic vulnerabilities that might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA; School of Medicine, University of Limerick, Limerick, Ireland
| | - Hua Zhang
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
34
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
35
|
Ruiz CF, Montal ED, Haley JA, Bott AJ, Haley JD. SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC. FASEB J 2020; 34:10574-10589. [PMID: 32568455 DOI: 10.1096/fj.202000052r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Emily D Montal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
36
|
Qiao S, Koh SB, Vivekanandan V, Salunke D, Patra KC, Zaganjor E, Ross K, Mizukami Y, Jeanfavre S, Chen A, Mino-Kenudson M, Ramaswamy S, Clish C, Haigis M, Bardeesy N, Ellisen LW. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev 2020; 34:751-766. [PMID: 32273287 PMCID: PMC7263146 DOI: 10.1101/gad.335166.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
In this study, Qiao et al. set out to investigate the role of REDD1 in the development of KRAS-driven tumors. Using genetically engineered mouse models, the authors show that loss of REDD1 promotes the development of oncogenic KRAS-driven pancreatic and lung cancers. Additionally, the authors use a combination of transcriptomic and metabolomic analyses to show that REDD1 deficiency induces lipid uptake, enhances fatty acid oxidation, and suppresses de novo lipid biosynthesis, in particular under hypoxia conditions, which plays an important role for the redox homeostasis of tumor cells through the regulation of NADPH levels. Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.
Collapse
Affiliation(s)
- Shuxi Qiao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Devika Salunke
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Krushna Chandra Patra
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elma Zaganjor
- Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Yusuke Mizukami
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah Jeanfavre
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Athena Chen
- Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Massachusetts General Hospital, Massachusetts 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Massachusetts General Hospital, Massachusetts 02114, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Clary Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Marcia Haigis
- Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Reyes-Caballero H, Rao X, Sun Q, Warmoes MO, Lin P, Sussan TE, Park B, Fan TWM, Maiseyeu A, Rajagopalan S, Girnun GD, Biswal S. Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice. Sci Rep 2019; 9:17423. [PMID: 31757983 PMCID: PMC6874681 DOI: 10.1038/s41598-019-53716-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Exposure to ambient air particulate matter (PM2.5) is well established as a risk factor for cardiovascular and pulmonary disease. Both epidemiologic and controlled exposure studies in humans and animals have demonstrated an association between air pollution exposure and metabolic disorders such as diabetes. Given the central role of the liver in peripheral glucose homeostasis, we exposed mice to filtered air or PM2.5 for 16 weeks and examined its effect on hepatic metabolic pathways using stable isotope resolved metabolomics (SIRM) following a bolus of 13C6-glucose. Livers were analyzed for the incorporation of 13C into different metabolic pools by IC-FTMS or GC-MS. The relative abundance of 13C-glycolytic intermediates was reduced, suggesting attenuated glycolysis, a feature found in diabetes. Decreased 13C-Krebs cycle intermediates suggested that PM2.5 exposure led to a reduction in the Krebs cycle capacity. In contrast to decreased glycolysis, we observed an increase in the oxidative branch of the pentose phosphate pathway and 13C incorporations suggestive of enhanced capacity for the de novo synthesis of fatty acids. To our knowledge, this is one of the first studies to examine 13C6-glucose utilization in the liver following PM2.5 exposure, prior to the onset of insulin resistance (IR).
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Qiushi Sun
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Marc O Warmoes
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Penghui Lin
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Tom E Sussan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
- Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Teresa W-M Fan
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Geoffrey D Girnun
- Department of Pharmacological Sciences, Stony Brook University, BST 8-140, Stony Brook, NY, 11794, USA
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
39
|
Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B 2019; 9:871-879. [PMID: 31649840 PMCID: PMC6804475 DOI: 10.1016/j.apsb.2019.03.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
RAS is one of the most well-known proto-oncogenes. Its gain-of-function mutations occur in approximately 30% of all human cancers. As the most frequently mutated RAS isoform, KRAS is intensively studied in the past years. Despite its well-recognized importance in cancer malignancy, continuous efforts in the past three decades failed to develop approved therapies for KRAS mutant cancer. KRAS has thus long been considered to be undruggable. Encouragingly, recent studies have aroused renewed interest in the development of KRAS inhibitors either directly towards mutant KRAS or against the crucial steps required for KRAS activation. This review summarizes the most recent progress in the exploration of KRAS-targeted anticancer strategies and hopefully provides useful insights for the field.
Collapse
Affiliation(s)
- Pingyu Liu
- Pharmacy Department, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Corresponding author. Tel.: +86 25 58509955.
| | - Yijun Wang
- Pharmacy Department, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xin Li
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
40
|
Pupo E, Avanzato D, Middonti E, Bussolino F, Lanzetti L. KRAS-Driven Metabolic Rewiring Reveals Novel Actionable Targets in Cancer. Front Oncol 2019; 9:848. [PMID: 31544066 PMCID: PMC6730590 DOI: 10.3389/fonc.2019.00848] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Tumors driven by mutant KRAS are among the most aggressive and refractory to treatment. Unfortunately, despite the efforts, targeting alterations of this GTPase, either directly or by acting on the downstream signaling cascades, has been, so far, largely unsuccessful. However, recently, novel therapeutic opportunities are emerging based on the effect that this oncogenic lesion exerts in rewiring the cancer cell metabolism. Cancer cells that become dependent on KRAS-driven metabolic adaptations are sensitive to the inhibition of these metabolic routes, revealing novel therapeutic windows of intervention. In general, mutant KRAS fosters tumor growth by shifting cancer cell metabolism toward anabolic pathways. Depending on the tumor, KRAS-driven metabolic rewiring occurs by up-regulating rate-limiting enzymes involved in amino acid, fatty acid, or nucleotide biosynthesis, and by stimulating scavenging pathways such as macropinocytosis and autophagy, which, in turn, provide building blocks to the anabolic routes, also maintaining the energy levels and the cell redox potential (1). This review will discuss the most recent findings on mutant KRAS metabolic reliance in tumor models of pancreatic and non-small-cell lung cancer, also highlighting the role that these metabolic adaptations play in resistance to target therapy. The effects of constitutive KRAS activation in glycolysis elevation, amino acids metabolism reprogramming, fatty acid turnover, and nucleotide biosynthesis will be discussed also in the context of different genetic landscapes.
Collapse
Affiliation(s)
- Emanuela Pupo
- Department of Oncology, University of Torino Medical School, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Emanuele Middonti
- Department of Oncology, University of Torino Medical School, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
41
|
Montal ED, Bhalla K, Dewi RE, Ruiz CF, Haley JA, Ropell AE, Gordon C, Haley JD, Girnun GD. Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer. Cancer Metab 2019; 7:8. [PMID: 31388420 PMCID: PMC6670241 DOI: 10.1186/s40170-019-0199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Metabolic reprogramming is a key feature of malignant cells. While glucose is one of the primary substrates for malignant cells, cancer cells also display a remarkable metabolic flexibility. Depending on nutrient availability and requirements, cancer cells will utilize alternative fuel sources to maintain the TCA cycle for bioenergetic and biosynthetic requirements. Lactate was typically viewed as a passive byproduct of cancer cells. However, studies now show that lactate is an important substrate for the TCA cycle in breast, lung, and pancreatic cancer. Methods Metabolic analysis of colorectal cancer (CRC) cells was performed using a combination of bioenergetic analysis and 13C stable isotope tracing. Results We show here that CRC cells use lactate to fuel the TCA cycle and promote growth especially under nutrient-deprived conditions. This was mediated in part by maintaining cellular bioenergetics. Therefore targeting the ability of cancer cells to utilize lactate via the TCA cycle would have a significant therapeutic benefit. Phosphoenolpyruvate carboxykinase (PEPCK) is an important cataplerotic enzyme that promotes TCA cycle activity in CRC cells. Treatment of CRC cells with low micromolar doses of a PEPCK inhibitor (PEPCKi) developed for diabetes decreased cell proliferation and utilization of lactate by the TCA cycle in vitro and in vivo. Mechanistically, we observed that the PEPCKi increased nutrient stress as determined by decreased cellular bioenergetics including decreased respiration, ATP levels, and increased AMPK activation. 13C stable isotope tracing showed that the PEPCKi decreased the incorporation of lactate into the TCA cycle. Conclusions These studies highlight lactate as an important substrate for CRC and the use of PEPCKi as a therapeutic approach to target lactate utilization in CRC cells.
Collapse
Affiliation(s)
- Emily D Montal
- 1Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Kavita Bhalla
- 3Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 USA
| | - Ruby E Dewi
- 4Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - Christian F Ruiz
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - John A Haley
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Ashley E Ropell
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Chris Gordon
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - John D Haley
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Geoffrey D Girnun
- 1Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,5Department of Pathology, Stony Brook University, 101 Nicolls Rd, BST Level 9, Room 191, Stony Brook, NY 11794 USA
| |
Collapse
|