1
|
Zhang L, Woltering I, Holzner M, Brandhofer M, Schaefer CC, Bushati G, Ebert S, Yang B, Muenchhoff M, Hellmuth JC, Scherer C, Wichmann C, Effinger D, Hübner M, El Bounkari O, Scheiermann P, Bernhagen J, Hoffmann A. CD74 is a functional MIF receptor on activated CD4 + T cells. Cell Mol Life Sci 2024; 81:296. [PMID: 38992165 PMCID: PMC11335222 DOI: 10.1007/s00018-024-05338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.
Collapse
Affiliation(s)
- Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Iris Woltering
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Mathias Holzner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Carl-Christian Schaefer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Genta Bushati
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine I, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - David Effinger
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
2
|
Huang X, Li H, Zhang Z, Wang Z, Du X, Zhang Y. Macrophage migration inhibitory factor: A noval biomarker upregulates in myasthenia gravis and correlates with disease severity and relapse. Cytokine 2024; 175:156485. [PMID: 38159470 DOI: 10.1016/j.cyto.2023.156485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To explore the relationship between macrophage migration inhibitory factor (MIF) and disease severity and relapse in patients with myasthenia gravis (MG). METHODS 145 MG patients including 79 new-onset patients, 30 remission patients and 36 relapse patients were enrolled in this study. The detailed characteristics of all enrolled MG patients were routinely recorded, including gender, age, type, MGFA classification, antibody, thymic status, clinical score, treatment, MGFA-PIS and B cell subsets (memory B cells, plasmablast cells and plasma cells) detected by flow cytometry. Serum MIF levels were measured by enzyme-linked immunosorbent assay (ELISA) kit. The correlation of MIF levels with clinical subtypes, disease severity and B cell subsets were investigated. Moreover, logistic regression analysis was applied to assess the factors affecting relapse of generalized MG (GMG). RESULTS Serum MIF levels were higher in new-onset MG patients than those in controls and were positively associated with QMG score, MGFA classification and memory B cells. Subgroup analysis revealed that MIF levels were increased in GMG patients than in ocular MG (OMG), as well as elevated in MGFA III/IV compared with MGFA I/II. With the remission of the disease, the expression of serum MIF decreased. The multivariate logistic regression models indicated that high MIF and thymoma was a risk factor for relapse of GMG, and rituximab could prevent disease relapse. CONCLUSIONS MIF can be used as a novel biomarker to reflect disease severity and predict disease relapse in MG patients.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
4
|
Wang T, Gao L, Yang Z, Wang F, Guo Y, Wang B, Hua R, Shang H, Xu J. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J Inflamm Res 2021; 14:1085-1110. [PMID: 33790622 PMCID: PMC8007621 DOI: 10.2147/jir.s294630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypertension (HTN) is a major risk factor for cardiovascular disease. In recent years, there were numerous studies on the function of stress in HTN. However, the gut dysbiosis linked to hypertension in animal models under stress is still incompletely understood. Purpose of this study is to use multiple determination method to determine the juvenile stage intestinal bacteria, cytokines and changes in hormone levels. Methods Four groups of juvenile male spontaneously hypertensive rats (SHRs) and age-matched male Wistar-Kyoto (WKY) rats were randomly selected as control and experimental groups. Rats in the two stress groups were exposed to restraint stress for 3 hours per day for 7 consecutive days. In one day three times in the method of non-invasive type tail-cuff monitoring blood pressure. The detailed mechanism was illuminated based on the intestinal change using immunohistochemical and immunofluorescence staining and the stress-related hormone and inflammation factors were analyzed via ELISA method. The integrity of the epithelial barrier was assessed using FITC/HRP and the expression levels of proteins associated with the tight junction was detected by Western blot. The alteration of stress-related intestinal flora from ileocecal junction and distal colon were also analyzed using its 16S rDNA sequencing. Results The results indicate that acute stress rapidly increases mean arterial pressure which is positive correlation to hormone concentration, especially in SHR-stress group. Meanwhile, stress promoted the enhancement of epithelial permeability accompanied with a reduced expression of the tight junction-related protein and the macrophages (Mφ) aggregation to the lamina propria. There were remarkable significant increase of stress-related hormones and pro-inflammatory factor interleukin (IL)-6 along with a decrease in the diversity of intestinal flora and an imbalance in the F/B ratio. Conclusion Our results reveal that stress accompanied with HTN could significantly disrupt the domino effect between intestinal flora and homeostasis.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zejun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Feifei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Boya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, People's Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
5
|
Abstract
Initially identified as a T lymphocyte-elicited inhibitor of macrophage motility, macrophage migration inhibitory factor (MIF) has since been found to be expressed by nearly every immune cell type examined and overexpressed in most solid and hematogenous malignant cancers. It is localized to both extracellular and intracellular compartments and physically interacts with more than a dozen different cell surface and intracellular proteins. Although classically associated with and characterized as a mediator of pro-inflammatory innate immune responses, more recent studies demonstrate that, in malignant disease settings, MIF contributes to anti-inflammatory, immune evasive, and immune tolerant phenotypes in both innate and adaptive immune cell types. This review will summarize the studies describing MIF in tumor-specific innate and adaptive immune responses and attempt to reconcile these various pleiotropic functions in normal physiology.
Collapse
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
6
|
Stošić-Grujičić S, Saksida T, Miljković Đ, Stojanović I. MIF and insulin: Lifetime companions from common genesis to common pathogenesis. Cytokine 2019; 125:154792. [PMID: 31400637 DOI: 10.1016/j.cyto.2019.154792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory nature of macrophage migration inhibitory factor (MIF) has been generally related to the propagation of inflammatory and autoimmune diseases. But this molecule possesses many other peculiar functions, unrelated to the immune system, among which is its supportive role in the post-translational modifications of insulin. In this way MIF enables proper insulin conformation within the pancreatic beta cell and its full activity. The inherent or acquired changes in MIF expression might therefore lead to different insulin processing and initiation of autoimmunity. The relation between MIF and insulin does not stop at this point; these two molecules continue to interact during pathological states characterized by inflammation and insulin resistance. In this context, MIF indirectly and negatively influences insulin action by boosting inflammatory environment and disabling target cells to respond to insulin. On the other side, insulin might interfere with MIF action as well, acting as an anti-inflammatory mediator. Therefore, the proper interaction between MIF and insulin is crucial for maintaining homeostasis, while anti-inflammatory therapies based on the systemic MIF blockage may disturb this balance. This review covers MIF-insulin relationship in the physiological and pathological conditions and discusses the approaches for MIF inhibition and their net effect specifically considering possible impact on insulin misfolding and the possible misinterpretation of previous results due to the discovery of MIF functional homolog D-dopachrome tautomerase.
Collapse
Affiliation(s)
- Stanislava Stošić-Grujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
7
|
Macrophage migration inhibitory factor regulates TLR4 expression and modulates TCR/CD3-mediated activation in CD4+ T lymphocytes. Sci Rep 2019; 9:9380. [PMID: 31253838 PMCID: PMC6599059 DOI: 10.1038/s41598-019-45260-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is involved in CD4+ T lymphocyte-mediated pathologies. Here, we demonstrate that CD4+ T lymphocytes express functional TLR4 that contributes to their activation, proliferation and cytokine secretion. In addition, we demonstrate that TLR4-induced responses are mediated by macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. We also demonstrate that MIF regulates suboptimal TCR/CD3-mediated activation of T lymphocytes. On one hand, MIF prevents excessive TCR/CD3-mediated activation of CD4+ T lymphocytes under suboptimal stimulation conditions and, on the other hand, MIF enables activated CD4+ T lymphocytes to sense their microenvironment and adapt their effector response through TLR4. Therefore, MIF appears to be a major regulator of the activation of CD4+ T lymphocytes and the intensity of their effector response. TLR4-mediated activation is thus an important process for T cell-mediated immunity.
Collapse
|