1
|
Oliver O, Britt AD, Borst AJ, Goldmuntz E, Bakeer N, Lang SS, Fuller S, Vossough A, Beslow LA. Clinical Phenotypes of a Pediatric Cohort with GDF2-Related Hereditary Hemorrhagic Telangiectasia. J Clin Med 2025; 14:3359. [PMID: 40429357 DOI: 10.3390/jcm14103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Pathogenic variants in the growth differentiation factor 2 (GDF2) gene have been linked to a hereditary hemorrhagic telangiectasia (HHT)-like syndrome, yet their clinical significance remains under investigation. This study reports seven pediatric patients with GDF2 variants from a single center. Methods: We identified children with GDF2 pathogenic variants and variants of uncertain significance (VUS) from the Children's Hospital of Philadelphia Comprehensive HHT Program and cross-referenced the list with a full-text query by GDF2 gene name on >53,000,000 visits to ensure complete ascertainment. Medical records were reviewed retrospectively, and variables of interest were abstracted. Results: The median age at genetic testing was 12 years (range 1.75-16). Reasons for genetic testing included telangiectasias, pulmonary hypertension, familial testing, respiratory symptoms, seizures, developmental disabilities, and lung arteriovenous malformations (AVMs). Four patients had missense VUS, including two novel VUS (c.34C>G; p.Leu12Val, c.41C>T; p.Ser14Phe), while three had pathogenic deletions. All patients experienced epistaxis, starting at a median age of 6 years (range 2-12). Three had telangiectasias. One patient had both a GDF2 VUS and a de novo partial endoglin (ENG) gene deletion. While this patient's symptoms of HHT are likely related to her ENG variant, synergy cannot be excluded, and two first-degree family members with clinically significant epistaxis also have the same GDF2 VUS. Notably, two patients had visceral AVMs-one with a lung AVM and another with a vein of Galen malformation. Conclusions: Interpretation of GDF2 VUS and their relationship to clinical symptoms is challenging given the rarity of these genetic variants and the inadequate diagnostic utility of the current clinical criteria for HHT in the pediatric population. Further research with larger cohorts is necessary to improve the genotype-phenotype correlation in GDF2-related HHT. Carefully collected clinical information with longitudinal follow-up may also assist in refining classification of GDF2 VUS as benign or pathogenic in the future.
Collapse
Affiliation(s)
- Owen Oliver
- Division of Neurology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Allison D Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Alexandra J Borst
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Division of Cardiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Nihal Bakeer
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Stephanie Fuller
- Division of Cardiac Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Cardiothoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Arastoo Vossough
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lauren A Beslow
- Division of Neurology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Constant B, Kamzolas I, Yang X, Guo J, Rodriguez-Fdez S, Mali I, Rodriguez-Cuenca S, Petsalaki E, Vidal-Puig A, Li W. Distinct signalling dynamics of BMP4 and BMP9 in brown versus white adipocytes. Sci Rep 2025; 15:15971. [PMID: 40335635 PMCID: PMC12059129 DOI: 10.1038/s41598-025-99122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Adipocyte dysfunction contributes to lipotoxicity and cardiometabolic diseases. Bone morphogenetic protein 4 (BMP4) is expressed in white adipocytes and remodels white adipose tissue, while liver-derived BMP9, a key circulating BMP, influences adipocyte lipid metabolism. The gene sets regulated by BMP4 and BMP9 signalling in mature adipocytes remain unclear. Here, we directly compare BMP4 and BMP9 signalling in mature brown and white adipocytes. While both BMPs showed comparable potency across adipocyte types, RNA sequencing analysis revealed extensive gene regulation, with many more differentially expressed genes and suppression of critical metabolic pathways in white adipocytes. Although BMP4 and BMP9 induced inhibitors of BMP and GDF signalling in both adipocytes, they selectively upregulated several TGF-β family receptors and BMP4 expression only in white adipocytes. These findings underscore a central role of BMP signalling in adipocyte homeostasis and suggest both BMP4 and BMP9 as regulators of white adipocyte plasticity with potential therapeutic implications.
Collapse
Affiliation(s)
- Benjamin Constant
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK
| | - Ioannis Kamzolas
- MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Box 289, Cambridge, CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xudong Yang
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK
| | - Jingxu Guo
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK
| | - Sonia Rodriguez-Fdez
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK
- MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Box 289, Cambridge, CB2 0QQ, UK
| | - Iman Mali
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK
- MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Box 289, Cambridge, CB2 0QQ, UK
| | - Sergio Rodriguez-Cuenca
- MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Box 289, Cambridge, CB2 0QQ, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
- MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Box 289, Cambridge, CB2 0QQ, UK.
- CIBERDEN, Centro de Investigacion Principe Felipe, Valencia, Spain.
| | - Wei Li
- Department of Medicine, VPD Heart and Lung Research Institute, School of Clinical Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
3
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Ahmed EA, Fawzy MN, Alruwaili M, Alexiou A, Papadakis M, Batiha GES. Role of liver X receptor in multiple sclerosis: A long furtive life behind a barrier. Brain Res Bull 2025; 224:111333. [PMID: 40185420 DOI: 10.1016/j.brainresbull.2025.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Liver X receptors (LXRs) are nuclear receptors that function as transcription factors regulating cholesterol metabolism and are implicated in multiple sclerosis (MS) pathogenesis. This mini-review aims to elucidate the potential role of LXRs in MS neuropathology. MS is the most prevalent inflammatory and demyelinating disease of the central nervous system (CNS), impacting both the brain and spinal cord. Furthermore, alterations in brain cholesterol metabolism in MS can modify the functional activity and immune response of LXRs, which are implicated in MS neuropathology. Dysregulation of LXRs and cholesterol homeostasis is associated with the pathogenesis of MS. LXRs play a critical role in regulating the myelination of nerve sheaths, and defects in LXR function may contribute to the progression of MS. LXRs have immunomodulatory effects, including inhibition of the proliferation of lymphocytes, preventing contact of self-antigens to T cells, and regulating the apoptotic process of T cells. LXRs regulate the activity of microglia, which have pro-inflammatory and anti-inflammatory properties involved in immune regulation and clearance of debris as well as the remyelination process. LXRs regulate the functional activity of glial cells and prevent glial cell-mediated neurodegeneration. LXRs have an important role in the regulation of neuroinflammation during MS neuropathology. LXRs may prevent the progression of neuroinflammation in MS by inhibiting the NF-κB and NLRP3 inflammasome signaling pathways. In conclusion, LXRs play a crucial role in MS neuropathology by mitigating neuroinflammation. These findings proposed that LXR agonists, through modulation of cholesterol homeostasis and inflammatory response, could be effective in the management of MS.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
4
|
Wang G, Yi Q, Hu B, Peng M, Fu T, Huang E. The regulatory role of BMP9 on lipopolysaccharide-induced matrix metalloproteinases in human stem cells from the apical papilla. Arch Oral Biol 2025; 171:106154. [PMID: 39689436 DOI: 10.1016/j.archoralbio.2024.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE The aim of this study was to investigate changes in the expression of members of the matrix metalloproteinases (MMPs) family in response to lipopolysaccharide (LPS) stimulation and to investigate the regulatory effects of BMP9 on MMPs. DESIGN The extracted human stem cells from the apical papilla (hSCAPs) were identified by flow cytometry, Alizarin Red staining, Oil Red O staining, and alkaline phosphatase staining. The appropriate LPS concentration for inducing inflammation in hSCAPs was determined using real-time quantitative PCR (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assays. MMP expression in LPS-stimulated hSCAPs was evaluated by RT-qPCR. BMP9 was overexpressed in hSCAPs via recombinant adenovirus, and its effects on MMP regulation were assessed using RT-qPCR, Western blotting, and ELISA. All experiments were conducted in vitro. Data were analyzed by one-way ANOVA followed by Tukey's post-hoc comparison, with p < 0.05 considered significant. RESULTS The results showed that on the 3rd and 5th day after LPS stimulation, the expression of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12, and MMP-13 in hSCAPs was significantly upregulated. On the 7th day after LPS induction, the expression of MMP-3, MMP-8, MMP-9 and MMP-13 in hSCAPs was significantly increased. When BMP9 was overexpressed in hSCAPs, the elevated MMPs were inhibited to varying degrees. CONCLUSIONS In the LPS-induced inflammatory environment, certain MMPs are elevated in hSCAP, with MMP-13 being the most significant. Overexpression of BMP9 can significantly inhibit elevated MMPs, suggesting that BMP9 may provide new insights and targets for the treatment of periapical periodontitis.
Collapse
Affiliation(s)
- Gang Wang
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Butu Hu
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengtian Peng
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tiwei Fu
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Enyi Huang
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
He Y, Zhang C, Wu S, Li K, Zhang S, Tian M, Chen C, Liu D, Yang G, Li L, Yang M. Central NUCB2/nesfatin-1 signaling ameliorates liver steatosis through suppression of endoplasmic reticulum stress in the hypothalamus. Metabolism 2025; 162:156046. [PMID: 39389418 DOI: 10.1016/j.metabol.2024.156046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIMS Nucleobindin-2 (NUCB2)/nesfatin-1, a signal with recognized anorexigenic and insulin-sensitizing properties in peripheral tissues, is expressed within the hypothalamus. However, the potential involvement of central nesfatin-1 signaling in the pathophysiology of hepatic steatosis remains unknown. This study aimed to determine whether and how central NUCB2/nesfatin-1 plays a role in liver steatosis. METHODS We generated Nucb2 knockout (Nucb2-/-) rats and administered continuous intracerebroventricular (ICV) nesfatin-1 infusion, while observing its effect on liver steatosis. The molecular mechanism of action of nesfatin-1 was elucidated via proteomics, phosphoproteomics and molecular biology methods. RESULTS Herein, we present compelling evidence indicating diminished NUCB2 expression in the hypothalamus of obese rodents. We demonstrated that chronic ICV infusion of nesfatin-1 mitigated both diet-induced obesity and liver steatosis in high-fat diet (HFD)-fed Nucb2-/- rats by regulating hypothalamic endoplasmic reticulum (ER) stress and Akt phosphorylation. Furthermore, we revealed that the increase in hypothalamic insulin resistance (IR) and ER stress induced by tunicamycin infusion or Ero1α overexpression exacerbated hepatic steatosis and offset the favorable influence of central nesfatin-1 on hepatic steatosis. The metabolic action of central nesfatin-1 is contingent upon vagal nerve transmission to the liver. Mechanistically, nesfatin-1 impedes ER stress and interacts with Ero1α to repress its Ser106 phosphorylation. This leads to the enhancement of Akt activity in the hypothalamus, culminating in the inhibition of hepatic lipogenesis. CONCLUSIONS These findings underscore the importance of hypothalamic NUCB2/nesfatin-1 as a key mediator in the top-down neural mechanism that combats diet-induced liver steatosis.
Collapse
Affiliation(s)
- Yirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shaobo Wu
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siliang Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
7
|
Ren D, Li Y, Zhang G, Li T, Liu Z. Lipid metabolic profiling and diagnostic model development for hyperlipidemic acute pancreatitis. Front Physiol 2024; 15:1457349. [PMID: 39512473 PMCID: PMC11540618 DOI: 10.3389/fphys.2024.1457349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Hyperlipidemic acute pancreatitis (HLAP) is a form of pancreatitis induced by hyperlipidemia, posing significant diagnostic challenges due to its complex lipid metabolism disturbances. Methods This study compared the serum lipid profiles of HLAP patients with those of a healthy cohort using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to identify distinct lipid metabolites. Logistic regression and LASSO regression were used to develop a diagnostic model based on the lipid molecules identified. Results A total of 393 distinct lipid metabolites were detected, impacting critical pathways such as fatty acid, sphingolipid, and glycerophospholipid metabolism. Five specific lipid molecules were selected to construct a diagnostic model, which achieved an area under the curve (AUC) of 1 in the receiver operating characteristic (ROC) analysis, indicating outstanding diagnostic accuracy. Discussion These findings highlight the importance of lipid metabolism disturbances in HLAP. The identified lipid molecules could serve as valuable biomarkers for HLAP diagnosis, offering potential for more accurate and early detection.
Collapse
Affiliation(s)
- Dongmei Ren
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Li
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guangnian Zhang
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tiantian Li
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenglong Liu
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Yang Y, Gu M, Wang W, Li S, Lu J, Sun Q, Hu M, Zhong L. Circulating Bone morphogenetic protein 9 (BMP9) as a new biomarker for noninvasive stratification of nonalcoholic fatty liver disease and metabolic syndrome. Clin Exp Med 2024; 24:55. [PMID: 38492130 PMCID: PMC10944389 DOI: 10.1007/s10238-024-01316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome (MetS). Bone morphogenetic protein 9 (BMP9) is an essential factor in glucose, lipid and energy metabolism. This study aims to investigate whether BMP9 can serve as a serological marker for the severity of NAFLD or MetS. Blood samples, clinical data and FibroTouch test were collected from consecutively recruited 263 individuals in Shanghai East hospital. All the participants were divided into three groups: the healthy controls, nonalcoholic fatty liver (NAFL) group and nonalcoholic steatohepatitis (NASH) at-risk group according to the results of FibroTouch test and liver function. Serum BMP9 levels were measured by enzyme-linked immunosorbent assay. Serum BMP9 levels were positively correlated with transaminase, triglyceride, fasting plasma glucose, glycated hemoglobin (HbA1c) and uric acid while it showed a downward trend as the increasing number of MetS components. Furthermore, it differentiated NASH at-risk (58.13 ± 2.82 ng/L) from the other groups: healthy control (70.32 ± 3.70 ng/L) and NAFL (64.34 ± 4.76 ng/L) (p < 0.0001). Controlled attenuation parameter of liver fat and liver stiffness measurement were negatively correlated with BMP9 levels, while high-density lipoprotein levels were positively correlated. The risk of developing NAFLD increased along with elevated serum BMP9 and BMI, and a significantly higher risk was observed in men compared to women. BMP9 should be considered a protective factor for the onset and development of NAFLD, as well as a promising biomarker for the severity of the NAFLD and MetS.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Meihong Gu
- Department of Gastroenterology, The Second Hospital of PingHu, Jiaxin, 314201, China
| | - Wei Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Shan Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Jinlai Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Qinjuan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No 150, Jimo Road, Pudong New Area, Shanghai, 200120, China.
| |
Collapse
|
9
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
10
|
Pessuti CL, Medley QG, Li N, Huang CL, Loureiro J, Banks A, Zhang Q, Costa DF, Ribeiro KS, Nascimento H, Muccioli C, Commodaro AG, Huang Q, Belfort R. Differential Proteins Expression Distinguished Between Patients With Infectious and Noninfectious Uveitis. Ocul Immunol Inflamm 2024; 32:40-47. [PMID: 36637883 DOI: 10.1080/09273948.2022.2150224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/15/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE We investigated the aqueous humor proteome and associated plasma proteome in patients with infectious or noninfectious uveitis. METHODS AH and plasma were obtained from 28 patients with infectious uveitis (IU), 29 patients with noninfectious uveitis (NIU) and 35 healthy controls undergoing cataract surgery. The proteins profile was analyzed by SomaScan technology. RESULTS We found 1844 and 2484 proteins up-regulated and 124 and 161 proteins down-regulated in the AH from IU and NIU groups, respectively. In the plasma, three proteins were up-regulated in NIU patients, and one and five proteins were down-regulated in the IU and NIU patients, respectively. The results of pathway enrichment analysis for both IU and NIU groups were related mostly to inflammatory and regulatory processes. CONCLUSION SomaScan was able to detect novel AH and plasma protein biomarkers in IU and NIU patients. Also, the unique proteins found in both AH and plasma suggest a protein signature that could distinguish between infectious and noninfectious uveitis.
Collapse
Affiliation(s)
- Carmen L Pessuti
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Quintus G Medley
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Ning Li
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Chia-Ling Huang
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Joseph Loureiro
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Angela Banks
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Qin Zhang
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Deise F Costa
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Kleber S Ribeiro
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Heloisa Nascimento
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina Muccioli
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Qian Huang
- Ophthalmology, Novartis Institutes for Biomedical, Cambridge, Massachusetts, USA
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Drexler S, Cai C, Hartmann AL, Moch D, Gaitantzi H, Ney T, Kraemer M, Chu Y, Zheng Y, Rahbari M, Treffs A, Reiser A, Lenoir B, Valous NA, Jäger D, Birgin E, Sawant TA, Li Q, Xu K, Dong L, Otto M, Itzel T, Teufel A, Gretz N, Hawinkels LJAC, Sánchez A, Herrera B, Schubert R, Moshage H, Reissfelder C, Ebert MPA, Rahbari N, Breitkopf-Heinlein K. Intestinal BMP-9 locally upregulates FGF19 and is down-regulated in obese patients with diabetes. Mol Cell Endocrinol 2023; 570:111934. [PMID: 37085108 DOI: 10.1016/j.mce.2023.111934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Bone morphogenetic protein (BMP)-9, a member of the TGFβ-family of cytokines, is believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21. However, whether BMP-9 also regulates the expression of the related FGF19 is not clear. Because both FGF21 and 19 were described to protect the liver from steatosis, we have further investigated the role of BMP-9 in this context. We first analyzed BMP-9 levels in the serum of streptozotocin (STZ)-induced diabetic rats (a model of type I diabetes) and confirmed that BMP-9 serum levels decrease during diabetes. Microarray analyses of RNA samples from hepatic and intestinal tissue from BMP-9 KO- and wild-type mice (C57/Bl6 background) pointed to basal expression of BMP-9 in both organs and revealed a down-regulation of hepatic Fgf21 and intestinal Fgf19 in the KO mice. Next, we analyzed BMP-9 levels in a cohort of obese patients with or without diabetes. Serum BMP-9 levels did not correlate with diabetes, but hepatic BMP-9 mRNA expression negatively correlated with steatosis in those patients that did not yet develop diabetes. Likewise, hepatic BMP-9 expression also negatively correlated with serum LPS levels. In situ hybridization analyses confirmed intestinal BMP-9 expression. Intestinal (but not hepatic) BMP-9 mRNA levels were decreased with diabetes and positively correlated with intestinal E-Cadherin expression. In vitro studies using organoids demonstrated that BMP-9 directly induces FGF19 in gut but not hepatocyte organoids, whereas no evidence of a direct induction of hepatic FGF21 by BMP-9 was found. Consistent with the in vitro data, a correlation between intestinal BMP-9 and FGF19 mRNA expression was seen in the patients' samples. In summary, our data confirm that BMP-9 is involved in diabetes development in humans and in the control of the FGF-axis. More importantly, our data imply that not only hepatic but also intestinal BMP-9 associates with diabetes and steatosis development and controls FGF19 expression. The data support the conclusion that increased levels of BMP-9 would most likely be beneficial under pre-steatotic conditions, making supplementation of BMP-9 an interesting new approach for future therapies aiming at prevention of the development of a metabolic syndrome and liver steatosis.
Collapse
Affiliation(s)
- Stephan Drexler
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Chen Cai
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anna-Lena Hartmann
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Denise Moch
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Theresa Ney
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Malin Kraemer
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yuan Chu
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yuwei Zheng
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, 69120, Heidelberg, Germany
| | - Annalena Treffs
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Alena Reiser
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nektarios A Valous
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Emrullah Birgin
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tejas A Sawant
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Qi Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Av., Wuhan, Hubei, China
| | - Lingyue Dong
- Department of Cell Biology, Capital Medical University, Beijing, Fengtai, 100054, China
| | - Mirko Otto
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Timo Itzel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Clinical Cooperation Unit "Healthy Metabolism", Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, 69120, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Clinical Cooperation Unit "Healthy Metabolism", Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, 69120, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, Heidelberg University, 68167, Mannheim, Germany
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute Hospital Clínico San Carlos (IdISSC), E-28040, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute Hospital Clínico San Carlos (IdISSC), E-28040, Madrid, Spain
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Augsburg, Germany
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9712 CP, Groningen, the Netherlands
| | - Christoph Reissfelder
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Clinical Cooperation Unit "Healthy Metabolism", Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, 69120, Heidelberg University, Mannheim, Germany
| | - Matthias P A Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Clinical Cooperation Unit "Healthy Metabolism", Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, 69120, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
12
|
SONG T, Xiangfen LI, Liu LIU, ZENG Y, SONG D, HUANG D. The effect of BMP9 on inflammation in the early stage of pulpitis. J Appl Oral Sci 2023; 31:e20220313. [PMID: 36700591 PMCID: PMC9882962 DOI: 10.1590/1678-7757-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) tends to be associated with various inflammatory responses of diseases, but its relationship with pulpitis remains unknown. OBJECTIVE This study aimed to evaluate the effects and mechanisms of BMP9 in pulpitis. METHODOLOGY A rat model of pulpitis was used to evaluate the expression of BMP9, which was also analysed in Porphyromonas gingivalis lipopolysaccharide (Pg-LPS)-stimulated human dental pulp cells (hDPCs). The effects and mechanism of BMP9 on the regulation of inflammatory factors and matrix metalloproteinase-2 (MMP2) were evaluated using real-time quantitative PCR, western blotting, and immunocytofluorescence. Moreover, the migration ability of THP-1 monocyte-macrophages, treated with inflammatory supernate inhibited by BMP9, was previously tested by a transwell migration assay. Finally, a direct rat pulp capping model was used to evaluate in vivo the influence of the overexpression of BMP9 in pulpitis. RESULTS The expression of BMP9 decreased after 24 h and increased after 3 and 7 d in rat pulpitis and inflammatory hDPCs. The overexpression of BMP9 inhibited the gene expression of inflammatory factors (IL-6, IL-8, and CCL2) and the secretion of IL-6 and MMP2 in Pg-LPS-stimulated hDPCs. The level of phosphorylated Smad1/5 was upregulated and the levels of phosphorylated ERK and JNK were downregulated. The inflammatory supernate of hDPCs inhibited by BMP9 reduced the migration of THP-1 cells. In rat pulp capping models, overexpressed BMP9 could partially restrain the development of dental pulp inflammation. CONCLUSION This is the first study to confirm that BMP9 is involved in the occurrence and development of pulpitis and can partially inhibit its severity in the early stage. These findings provided a theoretical reference for future studies on the mechanism of pulpitis and application of bioactive molecules in vital pulp therapy.
Collapse
Affiliation(s)
- Tianzhu SONG
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.,Northwest Minzu UniversityKey Laboratory of Stomatology of State Ethnic Affairs CommissionKey Laboratory of Oral Diseases of Gansu ProvinceLanzhouGansuChinaNorthwest Minzu University, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Key Laboratory of Oral Diseases of Gansu Province, Lanzhou, Gansu, China.
| | - LI Xiangfen
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.,Sichuan UniversityWest China Hospital of StomatologyJinjiang District Out Patient SectionChengduChinaSichuan University, West China Hospital of Stomatology, Jinjiang District Out Patient Section, Chengdu, China.
| | - LIU Liu
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.
| | - Yanglin ZENG
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.
| | - Dongzhe SONG
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.,Sichuan UniversityWest China Hospital of StomatologyDepartment of Conservative Dentistry and EndodonticsChengduChinaSichuan University, West China Hospital of Stomatology, Department of Conservative Dentistry and Endodontics, Chengdu, China.
| | - Dingming HUANG
- Sichuan UniversityWest China Hospital of StomatologyState Key Laboratory of Oral DiseasesChengduChinaSichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu, China.,Sichuan UniversityWest China Hospital of StomatologyDepartment of Conservative Dentistry and EndodonticsChengduChinaSichuan University, West China Hospital of Stomatology, Department of Conservative Dentistry and Endodontics, Chengdu, China.
| |
Collapse
|
13
|
Yang YY, Luo HH, Deng YX, Yao XT, Zhang J, Su YX, He BC. Pyruvate dehydrogenase kinase 4 promotes osteoblastic potential of BMP9 by boosting Wnt/β-catenin signaling in mesenchymal stem cells. Int J Biochem Cell Biol 2023; 154:106341. [PMID: 36442735 DOI: 10.1016/j.biocel.2022.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is an effective osteogenic factor and a promising candidate for bone tissue engineering. The osteoblastic potential of BMP9 needs to be further increased to overcome its shortcomings. However, the details of how BMP9 triggers osteogenic differentiation in mesenchymal stem cells (MSCs) are unclear. In this study, we used real-time PCR, western blot, histochemical staining, mouse ectopic bone formation model, immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation to investigate the role of pyruvate dehydrogenase kinase 4 (PDK4) in BMP9-induced osteogenic differentiation of C3H10T1/2 cells, as well as the underlying mechanism. We found that PDK4 was upregulated by BMP9 in C3H10T1/2 cells. BMP9-induced osteogenic markers and bone mass were increased by PDK4 overexpression, but decreased by PDK4 silencing. β-catenin protein level was increased by BMP9, which was enhanced by PDK overexpression and decreased by PDK4 silencing. BMP9-induced osteogenic markers were reduced by PDK4 silencing, which was almost reversed by β-catenin overexpression. PDK4 increased the BMP9-induced osteogenic markers, which was almost eliminated by β-catenin silencing. Sclerostin was mildly decreased by BMP9 or PDK4, and significantly decreased by combined BMP9 and PDK4. In contrast, sclerostin increased significantly when BMP9 was combined with PDK4 silencing. BMP9-induced p-SMAD1/5/9 was increased by PDK4 overexpression, but was reduced by PDK4 silencing. PDK4 interacts with p-SMAD1/5/9 and regulates the sclerostin promoter. These findings suggest that PDK4 can increase the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via the downregulation of sclerostin. PDK4 may be an effective target to strengthen BMP9-induced osteogenesis.
Collapse
Affiliation(s)
- Yuan-Yuan Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong-Hong Luo
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi-Xuan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin-Tong Yao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu-Xi Su
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, People's Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
14
|
Hao J, Wang Y, Huo L, Sun T, Zhen Y, Gao Z, Chen S, Ren L. Circulating Bone Morphogenetic Protein-9 is Decreased in Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Int J Gen Med 2022; 15:8539-8546. [PMID: 36514745 PMCID: PMC9741848 DOI: 10.2147/ijgm.s385513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Objective We aimed to examine the association between bone morphogenetic protein-9 (BMP-9) and type 2 diabetes mellitus (T2DM) in conjunction with non-alcoholic fatty liver disease (NAFLD) and insulin resistance (IR) and to identify evidence supporting the potential role of BMP-9 in the clinical prevention and treatment of T2DM in conjunction with NAFLD. Methods One hundred and twenty subjects were included in this study. We sorted all of the subjects into four groups of equal size (n=30 each). A trained expert assessed the height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP) of the subjects and computed the body mass index (BMI). All subjects had their fasting blood glucose (FBG), fasting insulin (FINS), serum BMP-9, and biochemical indices assessed. Results Significant variations were observed in BMI, SBP, DBP, ALT, TC, TG, HDL-C, LDL-C, ApoB, FBG, FINS, HOMA-IR, and serum BMP-9 among the four groups (P<0.05). The level of serum BMP-9 was positively correlated with HDL-C, while the level of serum BMP-9 was negatively correlated with BMI, SBP, DBP, ALT, TC, TG, LDL-C, FBG, FINS, and HOMA-IR. Multiple stepwise regression analyses revealed that FINS, LDL-C, HDL-C, and BMI were independent factors impacting serum BMP-9 levels (P<0.05). Logistic regression analyses revealed that BMP-9 was a protective factor for T2DM paired with NAFLD, while HOMA-IR was a risk factor. Conclusion Serum BMP-9 levels are significantly lower in the T2DM+NAFLD group when compared to other groups, and BMP-9 is an independent risk factor for T2DM paired with NAFLD.
Collapse
Affiliation(s)
- Jianan Hao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China,Graduate School of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yichao Wang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Lijing Huo
- Laboratory Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Tiantian Sun
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yunfeng Zhen
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zhe Gao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Shuchun Chen
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Luping Ren
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050000, People’s Republic of China,Correspondence: Luping Ren, Endocrinology Department, Hebei General Hospital, 348, Heping West Road, Shijiazhuang, Hebei, 050000, People’s Republic of China, Email
| |
Collapse
|
15
|
HIF1α Promotes BMP9-Mediated Osteoblastic Differentiation and Vascularization by Interacting with CBFA1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2475169. [PMID: 36217388 PMCID: PMC9547689 DOI: 10.1155/2022/2475169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) as the most potent osteogenic molecule which initiates the differentiation of stem cells into the osteoblast lineage and regulates angiogenesis, remains unclear how BMP9-regulated angiogenic signaling is coupled to the osteogenic pathway. Hypoxia-inducible factor 1α (HIF1α) is critical for vascularization and osteogenic differentiation and the CBFA1, known as runt-related transcription factor 2 (Runx2) which plays a regulatory role in osteogenesis. This study investigated the combined effect of HIF1α and Runx2 on BMP9-induced osteogenic and angiogenic differentiation of the immortalized mouse embryonic fibroblasts (iMEFs). The effect of HIF1α and Runx2 on the osteogenic and angiogenic differentiation of iMEFs was evaluated. The relationship between HIF1α- and Runx2-mediated angiogenesis during BMP9-regulated osteogenic differentiation of iMEFs was evaluated by ChIP assays. We demonstrated that exogenous expression of HIF1α and Runx2 is coupled to potentiate BMP9-induced osteogenic and angiogenic differentiation both in vitro and animal model. Chromatin immunoprecipitation assays (ChIP) showed that Runx2 is a downstream target of HIF1α that regulates BMP9-mediated osteogenesis and angiogenic differentiation. Our findings reveal that HIF1α immediately regulates Runx2 and may originate an essential regulatory thread to harmonize osteogenic and angiogenic differentiation in iMEFs, and this coupling between HIF1α and Runx2 is essential for bone healing.
Collapse
|
16
|
Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55:1515-1529. [PMID: 36103850 DOI: 10.1016/j.immuni.2022.08.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, County Limerick, Ireland.
| |
Collapse
|
17
|
Resveratrol Synergistically Promotes BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8124085. [PMID: 35923297 PMCID: PMC9343184 DOI: 10.1155/2022/8124085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background. Mesenchymal stem cells (MSCs) differentiate into osteocytes, adipocytes, and chondrocytes. Resveratrol and bone morphogenetic protein 9 (BMP9) are known osteogenic induction factors of MSCs, but the effect of both resveratrol and BMP9 on osteogenesis is unknown. Herein, we explored whether resveratrol cooperates with BMP9 to improve osteogenic induction. Methods. The osteogenic induction of resveratrol and BMP9 on C3H10T1/2 cells was evaluated by detecting the staining and activity of the early osteogenic marker alkaline phosphatase (ALP). In addition, the late osteogenic effect was measured by the mRNA and protein levels of osteogenic markers, such as osteopontin (OPN) and osteocalcin (OCN). To assess the bone formation function of resveratrol plus BMP9 in vivo, we transplanted BMP9-infected C3H10T1/2 cells into nude mice followed by intragastric injection of resveratrol. Western blot (WB) analysis was utilized to elucidate the mechanism of resveratrol plus BMP9. Results. Resveratrol not only enhanced osteogenic induction alone but also improved BMP9-induced ALP at 3, 5, and 7 d postinduction. Both the early osteogenic markers (ALP, Runx2, and SP7) and the late osteogenic markers (OPN and OCN) were significantly increased when resveratrol was combined with BMP9. The fetal limb explant culture further verified these results. The in vivo bone formation experiment, which involved transplanting BMP9-overexpressing C3H10T1/2 cells into nude mice, also confirmed that resveratrol synergistically enhanced the BMP9-induced bone formation function. Resveratrol phosphorylated adenosine monophosphate- (AMP-) activated protein kinase (AMPK) and stimulated autophagy, but these effects were abolished by inhibiting AMPK and Beclin1 using an inhibitor or siRNA. Conclusions. Resveratrol combined with BMP9 significantly improves the osteogenic induction of C3H10T1/2 cells by activating AMPK and autophagy.
Collapse
|
18
|
Marañón P, Fernández-García CE, Isaza SC, Rey E, Gallego-Durán R, Montero-Vallejo R, de Cía JR, Ampuero J, Romero-Gómez M, García-Monzón C, González-Rodríguez Á. Bone morphogenetic protein 2 is a new molecular target linked to non-alcoholic fatty liver disease with potential value as non-invasive screening tool. Biomark Res 2022; 10:35. [PMID: 35614516 PMCID: PMC9131682 DOI: 10.1186/s40364-022-00383-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide, being non-alcoholic steatohepatitis (NASH) its most clinically relevant form. Given the risks associated with taking a liver biopsy, the design of accurate non-invasive methods to identify NASH patients is of upmost importance. BMP2 plays a key role in metabolic homeostasis; however, little is known about its involvement in NAFLD onset and progression. This study aimed to elucidate the impact of BMP2 in NAFLD pathophysiology. METHODS Hepatic and circulating levels of BMP2 were quantified in serum and liver specimens from 115 biopsy-proven NAFLD patients and 75 subjects with histologically normal liver (NL). In addition, BMP2 content and release was determined in cultured human hepatocytes upon palmitic acid (PA) overload. RESULTS We found that BMP2 expression was abnormally increased in livers from NAFLD patients than in subjects with NL and this was reflected in higher serum BMP2 levels. Notably, we observed that PA upregulated BMP2 expression and secretion by human hepatocytes. An algorithm based on serum BMP2 levels and clinically relevant variables to NAFLD showed an AUROC of 0.886 (95%CI, 0.83-0.94) to discriminate NASH. We used this algorithm to develop SAN (Screening Algorithm for NASH): a SAN < 0.2 implied a low risk and a SAN ≥ 0.6 indicated high risk of NASH diagnosis. CONCLUSION This proof-of-concept study shows BMP2 as a new molecular target linked to NAFLD and introduces SAN as a simple and efficient algorithm to screen individuals at risk for NASH.
Collapse
Affiliation(s)
- Patricia Marañón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Carlos Ernesto Fernández-García
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Stephania C Isaza
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Esther Rey
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Rodríguez de Cía
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmelo García-Monzón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Águeda González-Rodríguez
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, C/Maestro Vives 2, 28009, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain. .,Present address: Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
| |
Collapse
|
19
|
Qiu S, Liang Z, Wu Q, Wang M, Yang M, Chen C, Zheng H, Zhu Z, Li L, Yang G. Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways. FASEB J 2022; 36:e22280. [PMID: 35394671 DOI: 10.1096/fj.202101456r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory, and the underlying mechanism remains unclear. Here, we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a non-alcoholic fatty liver disease (NAFLD) model in a high-fat diet (HFD)-fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of NAFLD. We observed that Nrf2 expression levels were upregulated in patients with NAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1c activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Decreased autophagy caused reduced lipolysis in the liver. Importantly, chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to the LAMP1 promoter and regulated its transcriptional activity. Accordingly, we report that Nrf2-LAMP1 interaction plays an indispensable role in Nrf2-regulated hepatosteatosis. Our data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1c activity and attenuating autophagy. Our findings provide a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver. We believe that multi-target intervention of Nrf2 is a novel strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Sheng Qiu
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zerong Liang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qinan Wu
- Endocrinology Department, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing, China
| | - Miao Wang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
García-Sanmartín J, Narro-Íñiguez J, Rodríguez-Barbero A, Martínez A. Endoglin and Activin Receptor-like Kinase 1 (Alk1) Modify Adrenomedullin Expression in an Organ-Specific Manner in Mice. BIOLOGY 2022; 11:biology11030358. [PMID: 35336733 PMCID: PMC8945164 DOI: 10.3390/biology11030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Hereditary hemorrhagic telangiectasia (HHT) is called a rare disease because it affects relatively few people. It is characterized by malformations in some blood vessels and usually results in profuse nose bleedings. In a recent article, we found that these patients have higher levels of adrenomedullin (AM), a molecule with cardiovascular activities, than healthy people. Thus we wanted to know whether the mutations that cause the HHT disease are directly responsible for these higher levels of AM. To investigate this issue, we used mutant mice, which express lower levels of the genes involved in the disease (called Eng and Acvrl1), and measured how much AM was found in different tissues. Although we expected a higher amount of AM in all organs, that was not the case. Some organs showed no variation, some had lower levels of AM than normal mice (fat, skin, and adrenals), and others had a higher expression (cerebellum and colon). Interestingly, our results suggest that these genes and the related molecule BMP-9 may have novel functions, which have not been yet investigated, which may shed more light on the physiopathology of HHT. Abstract Hereditary hemorrhagic telangiectasia (HHT) is a rare disease characterized by vascular malformations and profuse bleeding. The disease is caused by mutations in the components of the BMP-9 receptor: endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes. Recently, we reported that HHT patients expressed higher serum levels of adrenomedullin (AM) than healthy volunteers; thus, we studied the expression of AM (by enzyme immunoassay, qRT-PCR, immunohistochemistry, and Western blotting) in mice deficient in either one of the receptor components to investigate whether these defects may be the cause of that elevated AM in patients. We found that AM expression is not affected by these mutations in a consistent pattern. On the contrary, in some organs (blood, lungs, stomach, pancreas, heart, kidneys, ovaries, brain cortex, hippocampus, foot skin, and microvessels), there were no significant changes, whereas in others we found either a reduced expression (fat, skin, and adrenals) or an enhanced production of AM (cerebellum and colon). These results contradict our initial hypothesis that the increased AM expression found in HHT patients may be due directly to the mutations, but open intriguing questions about the potential phenotypic manifestations of Eng and Acvrl1 mutants that have not yet been studied and that may offer, in the future, a new focus for research on HHT.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Judit Narro-Íñiguez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Alicia Rodríguez-Barbero
- Vascular Endothelium Pathophysiology (ENDOVAS) Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
- Correspondence: ; Tel.: +34-941278775
| |
Collapse
|
21
|
Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY) 2021; 13:24829-24849. [PMID: 34837694 PMCID: PMC8660623 DOI: 10.18632/aging.203718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Background: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. Objectives: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. Results: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. Conclusions: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. Materials and Methods: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.
Collapse
|
22
|
Farhan A, Yuan F, Partan E, Weiss CR. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5. Am J Med Genet A 2021; 188:199-209. [PMID: 34611981 DOI: 10.1002/ajmg.a.62522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant fibrovascular dysplasia caused by mutations in ENG, ACVRL1, and SMAD4. Increasingly, there has been an appreciation for vascular conditions with phenotypic overlap to HHT but which have distinct clinical manifestations and arise from novel or uncharacterized gene variants. This study reported on a cohort of four unrelated probands who were diagnosed with a rare form of GDF2-related HHT5, for which only five prior cases have been described. Two patients harbored heterozygous missense variants not previously annotated as pathogenic (p.Val403Ile; p.Glu355Gln). Clinically, these patients had features resembling HHT1, including cerebrovascular involvement of their disease (first report documenting cerebral involvement of HHT5), but with earlier onset of epistaxis and a unique anatomic distribution of dermal capillary lesions that involved the upper forelimbs, trunk, and head. The other two patients harbored interstitial deletions larger than five megabases between 10q11.22 and 10q11.23 that included GDF2. To our knowledge, this is the first report detailing large genomic deletions leading to HHT5. These patients also demonstrated mucocutaneous capillary dysplasias, including intranasal vascular lesions complicated by childhood-onset epistasis, with a number of extravascular findings related to their 10q11.21q11.23 deletion. In conclusion, patients with GDF2-related HHT may present with a number of unique characteristics that differ from classically reported features of HHT.
Collapse
Affiliation(s)
- Ahmed Farhan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Yuan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Partan
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Jiang QQ, Liu BB, Xu KS. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem 2021; 476:3591-3600. [PMID: 34019202 DOI: 10.1007/s11010-021-04182-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) is a recently discovered cytokine mainly secreted by the liver and is a member of the transforming growth factor β (TGF-β) superfamily. In recent years, an increasing number of studies have shown that BMP9 is associated with liver diseases, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC), and BMP9 signaling may play dual roles in liver diseases. In this review, we mainly summarized and discussed the roles and potential mechanisms of BMP9 signaling in NAFLD, liver fibrosis and HCC. Specifically, this article will provide a better understanding of BMP9 signaling and new clues for the treatment of liver diseases.
Collapse
Affiliation(s)
- Qian-Qian Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bei-Bei Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Functionally diverse heteromeric traps for ligands of the transforming growth factor-β superfamily. Sci Rep 2021; 11:18341. [PMID: 34526551 PMCID: PMC8443706 DOI: 10.1038/s41598-021-97203-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023] Open
Abstract
Ligands of the transforming growth factor-β (TGF-β) superfamily are important targets for therapeutic intervention but present challenges because they signal combinatorially and exhibit overlapping activities in vivo. To obtain agents capable of sequestering multiple TGF-β superfamily ligands with novel selectivity, we generated soluble, heterodimeric ligand traps by pairing the extracellular domain (ECD) of the native activin receptor type IIB (ActRIIB) alternately with the ECDs of native type I receptors activin receptor-like kinase 4 (ALK4), ALK7, or ALK3. Systematic analysis of these heterodimeric constructs by surface plasmon resonance, and comparison with their homodimeric counterparts, revealed that each type I receptor partner confers a distinct ligand-binding profile to the heterodimeric construct. Additional characterization in cell-based reporter gene assays confirmed that the heterodimeric constructs possessed different profiles of signaling inhibition in vitro, which translated into altered patterns of pharmacological activity when constructs were administered systemically to wild-type mice. Our results detail a versatile platform for the modular recombination of naturally occurring receptor domains, giving rise to inhibitory ligand traps that could aid in defining the physiological roles of TGF-β ligand sets or be directed therapeutically to human diseases arising from dysregulated TGF-β superfamily signaling.
Collapse
|
25
|
Song T, Huang D, Song D. The potential regulatory role of BMP9 in inflammatory responses. Genes Dis 2021; 9:1566-1578. [PMID: 36157503 PMCID: PMC9485205 DOI: 10.1016/j.gendis.2021.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a protective response of the body to pathogens and injury. Hence, it is particularly important to explore the pathogenesis and key regulatory factors of inflammation. BMP9 is a unique member of the BMP family, which is widely known for its strong osteogenic potential and insensitivity to the inhibition of BMP3. Recently, several studies have reported an underlying pivotal link between BMP9 and inflammation. What is clear, though not well understood, is that BMP9 plays a role in inflammation in a carefully choreographed manner in different contexts. In this review, we have summarized current studies focusing on BMP9 and inflammation in various tissues and the latest advances in BMP9 expression, signal transduction, and crystal structure to better understand the relationship between BMP9 and inflammation. In addition, we also briefly summarized the inflammatory characteristics of some TGF-β superfamily members to provide better insights and ideas for the study of BMP9 and inflammation.
Collapse
Affiliation(s)
- Tianzhu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| |
Collapse
|
26
|
Jiang Q, Li Q, Liu B, Li G, Riedemann G, Gaitantzi H, Breitkopf-Heinlein K, Zeng A, Ding H, Xu K. BMP9 promotes methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis in non-obese mice by enhancing NF-κB dependent macrophage polarization. Int Immunopharmacol 2021; 96:107591. [PMID: 33812253 DOI: 10.1016/j.intimp.2021.107591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Our previous study confirmed that bone morphogenetic protein 9 (BMP9) participated in the development of nonalcoholic steatohepatitis (NASH) by affecting macrophage polarization. The focus of this study was to further confirm the role of macrophages in BMP9-mediated NASH and to analyze the underlying mechanism. In vivo, mice that were administered adeno-associated viral (AAV) vectors containing a null transgene (AAV-null) or the BMP9 transgene (AAV-BMP9) were divided into methionine- and choline-deficient (MCD) and control diet (CD) groups, and they were administered either control liposomes or clodronate liposomes via tail vein injection, the latter to deplete macrophages. The mice were sacrificed after 4 weeks of MCD diet feeding. In vitro, RAW264.7 cells were pretreated with or without BAY11-7085 (an NF-κB inhibitor) and stimulated with recombinant human BMP9 (rh-BMP9). To explore the underlying mechanism of action of BMP9, primary human monocyte-derived macrophages were additionally investigated and immunohistochemistry, biochemical assays, qRT-PCR, and Western blotting were used. The characteristics of NASH-related inflammation were assessed by hepatic histological analysis. Serum AST and ALT and hepatic triglyceride were examined by biochemical assays. We found that the expression of M1 macrophage genes (including CD86, IL1β, IL6, MCP-1 and TNFα) and the number of M1 macrophages (iNOS+ macrophages) in the liver were significantly elevated after BMP9 overexpression and BMP9 directly upregulated TLR4 expression in MCD-induced NASH. These effects were eliminated by macrophage depletion. In vitro, we discovered that BMP9 enhanced the nuclear translocation of NF-κB to induce macrophage M1 polarization in RAW264.7 cells and it promoted LPS-mediated activation of the NF-κB pathway in primary human macrophages. Taken together, this study demonstrates that BMP9 promotes NASH development by directly acting on macrophages.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China
| | - Beibei Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guixin Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gabriel Riedemann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Haristi Gaitantzi
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Ajuan Zeng
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
28
|
Yang M, Qiu S, He Y, Li L, Wu T, Ding N, Li F, Zhao AZ, Yang G. Genetic ablation of C-reactive protein gene confers resistance to obesity and insulin resistance in rats. Diabetologia 2021; 64:1169-1183. [PMID: 33544171 DOI: 10.1007/s00125-021-05384-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Besides serving as a traditional inflammatory marker, C-reactive protein (CRP) is closely associated with the development of obesity, diabetes and cardiovascular diseases as a metabolic and inflammatory marker. We hypothesise that CRP protein directly participates in the regulation of energy and glucose metabolism rather than just being a surrogate marker, and that genetic deficiency of CRP will lead to resistance to obesity and insulin resistance. METHODS Crp gene deletion was achieved by transcription activator-like effector nuclease (TALEN) technology in rats. The Crp knockout animals were placed on either a standard chow diet or a high-fat diet. Phenotypic changes in body weight, glucose metabolism, insulin sensitivity, energy expenditure and inflammation condition were examined. The central impact of CRP deficiency on leptin and insulin hypothalamic signalling, as well as glucose homeostasis, were examined via intracerebral ventricular delivery of leptin and CRP plus glucose clamp studies in the wild-type and Crp knockout rats. RESULTS CRP deficiency led to a significant reduction in weight gain and food intake, elevated energy expenditure and improved insulin sensitivity after exposure to high-fat diet. Glucose clamp studies revealed enhanced hepatic insulin signalling and actions. Deficiency of CRP enhanced and prolonged the weight-reducing effect of central injected leptin and promoted the central and peripheral roles of leptin. By contrast, reinstatement of CRP into the hypothalamus of the knockout rats attenuated the effects of central leptin signalling on insulin sensitivity and peripheral glucose metabolism. CONCLUSIONS/INTERPRETATION This study represents the first line of genetic evidence that CRP is not merely a surrogate blood marker for inflammation and metabolic syndromes but directly regulates energy balance, body weight, insulin sensitivity and glucose homeostasis through direct regulation of leptin's central effect and hypothalamic signalling.
Collapse
Affiliation(s)
- Mengliu Yang
- Department of Endocrinology, the 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing and Department of Endocrinology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Sheng Qiu
- Department of Endocrinology, the 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yirui He
- Department of Endocrinology, the 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Tong Wu
- Department of Endocrinology, the 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ning Ding
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Gangyi Yang
- Department of Endocrinology, the 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
29
|
Geng S, Qin L, He Y, Li X, Yang M, Li L, Liu D, Li Y, Niu D, Yang G. Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo. Biomaterials 2021; 271:120763. [PMID: 33780737 DOI: 10.1016/j.biomaterials.2021.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Nanomaterials have attracted increased attention because of their excellent drug-carrying capacity. However, these nanomaterials are rarely used in the treatment of metabolic diseases. Liraglutide, a glucagon-like peptide-1 receptor agonist, has been widely used in the treatment of type 2 diabetes mellitus (T2DM). Furthermore, fibroblast growth factor 21 (FGF-21) has been found to improve glucose metabolism and insulin resistance (IR). To investigate whether these two molecules have synergistic effects in vivo, we developed a novel drug delivery system using amino-functionalized and embedded dual-mesoporous silica nanoparticles (N-EDMSNs) to simultaneously carry liraglutide and FGF-21, and observed their biological effects. The resultant N-EDMSNs possessed unique hierarchical porous structures consisting of open large pores (>10 nm) and small mesopores (~2.5 nm) in the silica framework, highly positively charged surfaces and good disperisity in aqueous solution. We found that N-EDMSNs had a high loading capacity for exogenous genes and low toxicity to Hepa1-6 cells. Moreover, N-EDMSNs can simultaneously carry FGF-21 plasmids and liraglutide and successfully transfect them into Hepa1-6 cells. The transfection efficiency of N-EDMSNs was higher than that of Lipofectamine 2000 in vitro. In mice experiments, N-EDMSNs/pFGF21 treatment resulted in higher FGF-21 expression in the liver than pFGF21 treatment with hydrodynamic delivery. Compared with both pFGF21 and liraglutide, N-EDMSNs/pFGF21/Lira treatment significantly reduced the food intake, body weight, and blood glucose; increased the energy expenditure and improved hepatic IR in high-fat diet (HFD)-fed mice. Our results demonstrated that the biological effects of N-EDMSNs/pFGF21/Lira complexes were better than those of pFGF21 combined with liraglutide in vivo.
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yirui He
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xinrun Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
30
|
Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J Clin Med 2021; 10:jcm10050996. [PMID: 33801212 PMCID: PMC7957889 DOI: 10.3390/jcm10050996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis and diabetes mellitus represent global health problems due to their high, and increasing with aging, prevalence in the general population. Osteoporosis can be successfully treated with both antiresorptive and anabolic drugs. While these drugs are clearly effective in reducing the risk of fracture in patients with postmenopausal and male osteoporosis, it is still unclear whether they may have the same efficacy in patients with diabetic osteopathy. Furthermore, as bone-derived cytokines (osteokines) are able to influence glucose metabolism, it is conceivable that antiosteoporotic drugs may have an effect on glycemic control through their modulation of bone turnover that affects the osteokines’ release. These aspects are addressed in this narrative review by means of an unrestricted computerized literature search in the PubMed database. Our findings indicate a balance between good and bad news. Active bone therapies and their modulation of bone turnover do not appear to play a clinically significant role in glucose metabolism in humans. Moreover, there are insufficient data to clarify whether there are any differences in the efficacy of antiosteoporotic drugs on fracture incidence between diabetic and nondiabetic patients with osteoporosis. Although more studies are required for stronger recommendations to be issued, bisphosphonates appear to be the first-line drug for treatment of osteoporosis in diabetic patients, while denosumab seems preferable for older patients, particularly for those with impaired renal function, and osteoanabolic agents should be reserved for patients with more severe forms of osteoporosis.
Collapse
Affiliation(s)
| | - Elena Tsourdi
- Department of Medicine (III) &Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-12933; Fax: +49-351-458-5801
| | - Gaia Tabacco
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Anda Mihaela Naciu
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Fabio Vescini
- Department of Endocrinology and Diabetes, Santa Maria della Misericordia Hospital, 33100 Udine, Italy;
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| |
Collapse
|
31
|
Sun QJ, Cai LY, Jian J, Cui YL, Huang CK, Liu SQ, Lu JL, Wang W, Zeng X, Zhong L. The Role of Bone Morphogenetic Protein 9 in Nonalcoholic Fatty Liver Disease in Mice. Front Pharmacol 2021; 11:605967. [PMID: 33603666 PMCID: PMC7884862 DOI: 10.3389/fphar.2020.605967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background and Aims: It’s reported that bone morphogenetic protein 9 (BMP9) played an important role in lipid and glucose metabolism, but the role of BMP9 in nonalcoholic fatty liver disease (NAFLD) is unclear. Here, we evaluated the therapeutic efficacy of recombined BMP9 in NAFLD mice and investigated the potential mechanism. Methods: The effects of recombinant BMP9 on NAFLD were assessed in HFD-induced NAFLD mice. C57BL/6 mice were administrated with high-fat diet (HFD) for 12 weeks. In the last 4 weeks, mice were treated with PBS or recombined BMP9 once daily. Insulin sensitivity was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT) at the end of the 12th week. Then NAFLD related indicators were assessed by a variety of biological methods, including histology, western blotting, real-time PCR, RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analyses. Results: BMP9 reduced obesity, improved glucose metabolism, alleviated hepatic steatosis and decreased liver macrophages infiltration in HFD mice. RNA-seq showed that Cers6, Cidea, Fabp4 involved in lipid and glucose metabolism and Fos, Ccl2, Tlr1 involved in inflammatory response downregulated significantly after BMP9 treatment in HFD mouse liver. ATAC-seq showed that chromatin accessibility on promoters of Cers6, Fabp4, Ccl2 and Fos decreased after BMP9 treatment in HFD mouse liver. KEGG pathway analysis of dysregulated genes in RNA-seq and integration of RNA-seq and ATAC-seq showed that TNF signaling pathway and Toll-like receptor signaling pathway decreased in BMP9 treated HFD mouse liver. Conclusion: Our data revealed that BMP9 might alleviate NAFLD via improving glucose and lipid metabolism, decreasing inflammatory response and reshaping chromatin accessibility in HFD mouse liver. BMP9 downregulate genes related to lipid metabolism, glucose metabolism and inflammation expression, at least partially via decreasing promoter chromatin accessibility of Cers6, Fabp4, Fos and Tlr1. BMP9 may also reduce the expression of liver Ccl2, thereby changing the number or composition of liver macrophages, and ultimately reducing liver inflammation. The effect of BMP9 on NAFLD might be all-round, and not limit to lipid and glucose metabolism. Therefore, the underlying mechanism needs to be studied in detail further.
Collapse
Affiliation(s)
- Qin-Juan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Jian
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ya-Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Kai Huang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Lai Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Yang S, Dai H, Hu W, Geng S, Li L, Li X, Liu H, Liu D, Li K, Yang G, Yang M. Association between circulating follistatin-like-1 and metabolic syndrome in middle-aged and old population: A cross-sectional study. Diabetes Metab Res Rev 2021; 37:e3373. [PMID: 32592413 DOI: 10.1002/dmrr.3373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
AIM Follistatin-like-1 (FSTL-1) is considered to be a novel cytokine, and it is associated with metabolic diseases. However, it is necessary to investigate further the association of FSTL-1 with metabolic syndrome (MetS) and insulin resistance (IR). We performed a cross-sectional study to investigate the associated of circulating FSTL-1 with the MetS. MATERIALS AND METHODS A cross-sectional study was performed in 487 Chinese people, including 231 control subjects and 256 patients with MetS. Bioinformatics analysis was used to determine the protein and pathways associated with FSTL-1. The protein and protein interaction (PPI) network was constructed and analysed. Serum FSTL-1 concentrations were determined by an ELISA assay. The association of FSTL-1 with MetS components and IR was assessed. RESULTS Serum FSTL-1 levels were markedly higher in patients with newly diagnosed MetS than in controls (7.5 [5.6-9.2] vs 5.8 [5.0-7.7] μg/L, P < .01). According to bioinformatics analysis, the top high-degree genes were identified as the core genes, including SPARCL1, CYR61, LTBP1, IL-6, BMP2, BMP4, FBN1, FN1 CHRDL1 and FSTL-3. These genes are mainly enriched in pathways including TGF-ß, AGE-RAGE signalling pathway in diabetic complications, and Hippo signalling pathways; in basal cell carcinoma, cytokine-cytokine receptor interaction and in amoebic and Yersinia infections. Furthermore, serum FSTL-1 levels were positively associated with fasting plasma glucose (FPG), waist circumference (WC), blood pressure, triglyceride levels and visceral adiposity index (VAI). We found that serum FSTL-1 levels were markedly associated with MetS and IR by binary logistic regression analysis. CONCLUSIONS We conclude that FSTL-1 may be a novel cytokine related to MetS and IR.
Collapse
Affiliation(s)
- Shan Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Han Dai
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenjing Hu
- Department of Endocrinology, Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Shan Geng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinrun Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Baboota RK, Blüher M, Smith U. Emerging Role of Bone Morphogenetic Protein 4 in Metabolic Disorders. Diabetes 2021; 70:303-312. [PMID: 33472940 DOI: 10.2337/db20-0884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of signaling molecules that belong to the TGF-β superfamily. Initially discovered for their ability to induce bone formation, BMPs are known to play a diverse and critical array of biological roles. We here focus on recent evidence showing that BMP4 is an important regulator of white/beige adipogenic differentiation with important consequences for thermogenesis, energy homeostasis, and development of obesity in vivo. BMP4 is highly expressed in, and released by, human adipose tissue, and serum levels are increased in obesity. Recent studies have now shown BMP4 to play an important role not only for white/beige/brown adipocyte differentiation and thermogenesis but also in regulating systemic glucose homeostasis and insulin sensitivity. It also has important suppressive effects on hepatic glucose production and lipid metabolism. Cellular BMP4 signaling/action is regulated by both ambient cell/systemic levels and several endogenous and systemic BMP antagonists. Reduced BMP4 signaling/action can contribute to the development of obesity, insulin resistance, and associated metabolic disorders. In this article, we summarize the pleiotropic functions of BMP4 in the pathophysiology of these diseases and also consider the therapeutic implications of targeting BMP4 in the prevention/treatment of obesity and its associated complications.
Collapse
Affiliation(s)
- Ritesh K Baboota
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Chen Y, Ma B, Wang X, Zha X, Sheng C, Yang P, Qu S. Potential Functions of the BMP Family in Bone, Obesity, and Glucose Metabolism. J Diabetes Res 2021; 2021:6707464. [PMID: 34258293 PMCID: PMC8249130 DOI: 10.1155/2021/6707464] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Characteristic bone metabolism was observed in obesity and diabetes with controversial conclusions. Type 2 diabetes (T2DM) and obesity may manifest increased bone mineral density. Also, obesity is more easily to occur in T2DM. Therefore, we infer that some factors may be linked to bone and obesity as well as glucose metabolism, which regulate all of them. Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor- (TGF-) beta superfamily, regulate a diverse array of cellular functions during development and in the adult. More and more studies revealed that there exists a relationship between bone metabolism and obesity as well as glucose metabolism. BMP2, BMP4, BMP6, BMP7, and BMP9 have been shown to affect the pathophysiological process of obesity and glucose metabolism beyond bone metabolism. They may exert functions in adipogenesis and differentiation as well as insulin resistance. In the review, we summarize the literature on these BMPs and their association with metabolic diseases including obesity and diabetes.
Collapse
Affiliation(s)
- Yao Chen
- Chengdu Second People's Hospital, Chengdu 610017, China
| | - Bingwei Ma
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xingchun Wang
- Thyroid Research Center of Shanghai, Shanghai 200072, China
| | - Xiaojuan Zha
- Thyroid Research Center of Shanghai, Shanghai 200072, China
| | - Chunjun Sheng
- Thyroid Research Center of Shanghai, Shanghai 200072, China
| | - Peng Yang
- Thyroid Research Center of Shanghai, Shanghai 200072, China
| | - Shen Qu
- Thyroid Research Center of Shanghai, Shanghai 200072, China
| |
Collapse
|
35
|
Yang Z, Li P, Shang Q, Wang Y, He J, Ge S, Jia R, Fan X. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. SCIENCE ADVANCES 2020; 6:6/48/eabc5022. [PMID: 33246954 PMCID: PMC7695473 DOI: 10.1126/sciadv.abc5022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/14/2020] [Indexed: 05/09/2023]
Abstract
Obesity drives the development of nonalcoholic fatty liver disease (NAFLD) characterized by hepatic steatosis. Several bone morphogenetic proteins (BMPs) except BMP9 were reported related to metabolic syndrome. This study demonstrates that liver cytokine BMP9 is decreased in the liver and serum of NAFLD model mice and patients. BMP9 knockdown induces lipid accumulation in Hepa 1-6 cells. BMP9-knockout mice exhibit hepatosteatosis due to down-regulated peroxisome proliferator-activated receptor α (PPARα) expression and reduced fatty acid oxidation. In vitro, recombinant BMP9 treatment attenuates triglyceride accumulation by enhancing PPARα promoter activity via the activation of p-smad. PPARα-specific antagonist GW6471 abolishes the effect of BMP9 knockdown. Furthermore, adeno-associated virus-mediated BMP9 overexpression in mouse liver markedly relieves liver steatosis and obesity-related metabolic syndrome. These findings indicate that BMP9 plays a critical role in regulating hepatic lipid metabolism in a PPARα-dependent manner and may provide a previously unknown insight into NAFLD therapeutic approaches.
Collapse
Affiliation(s)
- Z Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - P Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - Q Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - Y Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - J He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - S Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - R Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| | - X Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 833 Zhizaoju Road, Shanghai 200011, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
36
|
Yang J, Ueharu H, Mishina Y. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone 2020; 138:115467. [PMID: 32512164 PMCID: PMC7423769 DOI: 10.1016/j.bone.2020.115467] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Energy metabolism is the process of generating energy (i.e. ATP) from nutrients. This process is indispensable for cell homeostasis maintenance and responses to varying conditions. Cells require energy for growth and maintenance and have evolved to have multiple pathways to produce energy. Both genetic and functional studies have demonstrated that energy metabolism, such as glucose, fatty acid, and amino acid metabolism, plays important roles in the formation and function of bone cells including osteoblasts, osteocytes, and osteoclasts. Dysregulation of energy metabolism in bone cells consequently disturbs the balance between bone formation and bone resorption. Metabolic diseases have also been reported to affect bone homeostasis. Bone morphogenic protein (BMP) signaling plays critical roles in regulating the formation and function of bone cells, thus affecting bone development and homeostasis. Mutations of BMP signaling-related genes in mice have been reported to show abnormalities in energy metabolism in many tissues, including bone. In addition, BMP signaling correlates with critical signaling pathways such as mTOR, HIF, Wnt, and self-degradative process autophagy to coordinate energy metabolism and bone homeostasis. These findings will provide a newly emerging target of BMP signaling and potential therapeutic strategies and the improved management of bone diseases. This review summarizes the recent advances in our understanding of (1) energy metabolism in regulating the formation and function of bone cells, (2) function of BMP signaling in whole body energy metabolism, and (3) mechanistic interaction of BMP signaling with other signaling pathways and biological processes critical for energy metabolism and bone homeostasis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Potential roles of bone morphogenetic protein-9 in glucose and lipid homeostasis. J Physiol Biochem 2020; 76:503-512. [PMID: 32808114 DOI: 10.1007/s13105-020-00763-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/09/2020] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic protein-9 (BMP-9) is a novel cytokine which is cloned from the fetal mouse liver cDNA library and belongs to the member of the transforming growth factor-β (TGF-β) superfamily. BMP-9 is mainly secreted by the liver and exerts a variety of physiological functions. In this review, we present the latest knowledge on the biochemistry of BMP-9 and its role in glucose metabolism and lipid homeostasis. We introduced the expression site, structure, synthesis, and secretion of BMP-9, as well as BMP-9 signaling pathway. We also discuss the effects of BMP-9 on glucose metabolism and lipid metabolism in different organs. BMP-9 can regulate glucose and lipid homeostasis in the body by inhibiting liver gluconeogenesis, transforming white adipose tissue to brown adipose tissue, promoting muscle glycogen synthesis, increasing the uptake and utilization of glucose by muscle tissue, increasing liver and adipose tissue insulin sensitivity, promoting insulin synthesis and secretion, inhibiting liver lipid deposition, and playing a leptin-like role. Finally, through the results of animal intervention studies and human clinical studies in the review, we deeply understand the association of BMP-9 with obesity, insulin resistance (IR), type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD), which provides new ideas for the prevention and treatment of diseases.
Collapse
|
38
|
Zhou YM, Yang YY, Jing YX, Yuan TJ, Sun LH, Tao B, Liu JM, Zhao HY. BMP9 Reduces Bone Loss in Ovariectomized Mice by Dual Regulation of Bone Remodeling. J Bone Miner Res 2020; 35:978-993. [PMID: 31914211 DOI: 10.1002/jbmr.3957] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling is dynamic and is tightly regulated through bone resorption dominated by osteoclasts and bone formation dominated by osteoblasts. Imbalances in this process can cause various pathological conditions, such as osteoporosis. Bone morphogenetic protein 9 (BMP9), a biomolecule produced and secreted by the liver, has many pharmacological effects, including anti-liver fibrosis, antitumor, anti-heart failure, and antidiabetic activities. However, the effects of BMP9 on the regulation of osteoblast and osteoclast functions and the underlying molecular mechanism(s) have not yet been investigated. In this study, BMP9 increased the expression of osteoblastogenic gene markers, such as ALP, Cola1, OCN, RUNX2, and OSX, and ALP activity in MC3T3-E1 cells by upregulating LGR6 and activating the Wnt/β-catenin pathway. BMP9 also suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) by inhibiting the Akt-NF-κB-NFATc1 pathway. More importantly, in an ovariectomy (OVX) mouse model, BMP9 attenuated bone loss and improved bone biomechanical properties in vivo by increasing bone-forming activity and suppressing bone resorption activity. Accordingly, our current work highlights the dual regulatory effects that BMP9 exerts on bone remodeling by promoting bone anabolic activity and inhibiting osteoclast differentiation in OVX mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan-Man Zhou
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Yi-Xuan Jing
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Tian-Jiao Yuan
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
39
|
Li Y, Liu Z, Tang Y, Feng W, Zhao C, Liao J, Zhang C, Chen H, Ren Y, Dong S, Liu Y, Hu N, Huang W. Schnurri-3 regulates BMP9-induced osteogenic differentiation and angiogenesis of human amniotic mesenchymal stem cells through Runx2 and VEGF. Cell Death Dis 2020; 11:72. [PMID: 31996667 PMCID: PMC6989499 DOI: 10.1038/s41419-020-2279-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Human amniotic mesenchymal stem cells (hAMSCs) are multiple potent progenitor cells (MPCs) that can differentiate into different lineages (osteogenic, chondrogenic, and adipogenic cells) and have a favorable capacity for angiogenesis. Schnurri-3 (Shn3) is a large zinc finger protein related to Drosophila Shn, which is a critical mediator of postnatal bone formation. Bone morphogenetic protein 9 (BMP9), one of the most potent osteogenic BMPs, can strongly upregulate various osteogenesis- and angiogenesis-related factors in MSCs. It remains unclear how Shn3 is involved in BMP9-induced osteogenic differentiation coupled with angiogenesis in hAMSCs. In this investigation, we conducted a comprehensive study to identify the effect of Shn3 on BMP9-induced osteogenic differentiation and angiogenesis in hAMSCs and analyze the responsible signaling pathway. The results from in vitro and in vivo experimentation show that Shn3 notably inhibits BMP9-induced early and late osteogenic differentiation of hAMSCs, expression of osteogenesis-related factors, and subcutaneous ectopic bone formation from hAMSCs in nude mice. Shn3 also inhibited BMP9-induced angiogenic differentiation, expression of angiogenesis-related factors, and subcutaneous vascular invasion in mice. Mechanistically, we found that Shn3 prominently inhibited the expression of BMP9 and activation of the BMP/Smad and BMP/MAPK signaling pathways. In addition, we further found activity on runt-related transcription factor 2 (Runx2), vascular endothelial growth factor (VEGF), and the target genes shared by BMP and Shn3 signaling pathways. Silencing Shn3 could dramatically enhance the expression of Runx2, which directly regulates the downstream target VEGF to couple osteogenic differentiation with angiogenesis. To summarize, our findings suggested that Shn3 significantly inhibited the BMP9-induced osteogenic differentiation and angiogenesis in hAMSCs. The effect of Shn3 was primarily seen through inhibition of the BMP/Smad signaling pathway and depressed expression of Runx2, which directly regulates VEGF, which couples BMP9-induced osteogenic differentiation with angiogenesis.
Collapse
Affiliation(s)
- Yuwan Li
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ziming Liu
- Institute of Sports Medicine of China, Peking University Third Hospital, Beijing, 100191, China
| | - Yaping Tang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Wei Feng
- Laboratory of Skeletal Development and Regeneration, School of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyi Liao
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengmin Zhang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Chen
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youliang Ren
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Shiwu Dong
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yi Liu
- Department of Orthopaedics, the First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ning Hu
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|