1
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Islam A, Chakraborty A, Sarker AH, Aryal UK, Pan L, Sharma G, Boldogh I, Hazra T. Site-specific acetylation of polynucleotide kinase 3'-phosphatase regulates its distinct role in DNA repair pathways. Nucleic Acids Res 2024; 52:2416-2433. [PMID: 38224455 PMCID: PMC10954452 DOI: 10.1093/nar/gkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
Mammalian polynucleotide kinase 3'-phosphatase (PNKP), a DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, is involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes. Here we report that PNKP is acetylated at K142 (AcK142) by p300 constitutively but at K226 (AcK226) by CBP, only after DSB induction. Co-immunoprecipitation analysis using AcK142 or AcK226 PNKP-specific antibodies showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP with DSBR proteins. Despite the modest effect of acetylation on PNKP's enzymatic activity in vitro, cells expressing non-acetylable PNKP (K142R or K226R) accumulated DNA damage in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This is consistent with the reported degradation of CBP, but not p300, in HD cells. Moreover, transcribed genomes of HD cells progressively accumulated DSBs. Chromatin-immunoprecipitation analysis demonstrated the association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings demonstrate that acetylation at two lysine residues, located in different domains of PNKP, regulates its distinct role in BER/SSBR versus DSBR.
Collapse
Affiliation(s)
- Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Altaf H Sarker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, IN 47907, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tapas Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Wang M, Qi Y, Zhou Y, Zhang Z, Guo C, Shu C, Pan F, Guo Z, Di HJ, Hu Z. Impeding DNA Polymerase β Activity by Oleic Acid to Inhibit Base Excision Repair and Induce Mitochondrial Dysfunction in Hepatic Cells. Cell Biochem Biophys 2023; 81:765-776. [PMID: 37695502 DOI: 10.1007/s12013-023-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
Free fatty acids (FFAs) hepatic accumulation and the resulting oxidative stress contribute to several chronic liver diseases including nonalcoholic steatohepatitis. However, the underlying pathological mechanisms remain unclear. In this study, we propose a novel mechanism whereby the toxicity of FFAs detrimentally affects DNA repair activity. Specifically, we have discovered that oleic acid (OA), a prominent dietary free fatty acid, inhibits the activity of DNA polymerase β (Pol β), a crucial enzyme involved in base excision repair (BER), by actively competing with 2'-deoxycytidine-5'-triphosphate. Consequently, OA hinders the efficiency of BER, leading to the accumulation of DNA damage in hepatocytes overloaded with FFAs. Additionally, the excessive presence of both OA and palmitic acid (PA) lead to mitochondrial dysfunction in hepatocytes. These findings suggest that the accumulation of FFAs hampers Pol β activity and contributes to mitochondrial dysfunction, shedding light on potential pathogenic mechanisms underlying FFAs-related diseases.
Collapse
Affiliation(s)
- Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Chenxi Guo
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hong-Jie Di
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
5
|
Giallongo S, Řeháková D, Biagini T, Lo Re O, Raina P, Lochmanová G, Zdráhal Z, Resnick I, Pata P, Pata I, Mistrík M, de Magalhães JP, Mazza T, Koutná I, Vinciguerra M. Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs. Stem Cells 2022; 40:35-48. [PMID: 35511867 PMCID: PMC9199840 DOI: 10.1093/stmcls/sxab004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023]
Abstract
DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Řeháková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Priyanka Raina
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Igor Resnick
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- Program for Hematology, Immunology, BMT and Cell therapy, St. Marina University Hospital, Varna, Bulgaria
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
| | - Pille Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- IVEX Lab, Akadeemia 15, Tallinn, Estonia
| | - Illar Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Mistrík
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Tommaso Mazza
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Irena Koutná
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| |
Collapse
|
6
|
Benjamin R, Banerjee A, Wu X, Geurink C, Buczek L, Eames D, Trimidal SG, Pluth JM, Schiller MR. XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. Int J Mol Sci 2022; 23:ijms23020593. [PMID: 35054780 PMCID: PMC8776116 DOI: 10.3390/ijms23020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Double-strand breaks (DSB) are one of the most lethal forms of DNA damage that, if left unrepaired, can lead to genomic instability, cellular transformation, and cell death. In this work, we examined how repair of transcription activator-like effector nuclease (TALEN)-induced DNA damage was altered when knocking out, or inhibiting a function of, two DNA repair proteins, XRCC4 and MRE11, respectively. We developed a fluorescent reporter assay that uses TALENs to introduce DSB and detected repair by the presence of GFP fluorescence. We observed repair of TALEN-induced breaks in the XRCC4 knockout cells treated with mirin (a pharmacological inhibitor of MRE11 exonuclease activity), albeit with ~40% reduced efficiency compared to normal cells. Editing in the absence of XRCC4 or MRE11 exonuclease was robust, with little difference between the indel profiles amongst any of the groups. Reviewing the transcriptional profiles of the mirin-treated XRCC4 knockout cells showed 307 uniquely differentially expressed genes, a number far greater than for either of the other cell lines (the HeLa XRCC4 knockout sample had 83 genes, and the mirin-treated HeLa cells had 30 genes uniquely differentially expressed). Pathways unique to the XRCC4 knockout+mirin group included differential expression of p53 downstream pathways, and metabolic pathways indicating cell adaptation for energy regulation and stress response. In conclusion, our study showed that TALEN-induced DSBs are repaired, even when a key DSB repair protein or protein function is not operational, without a change in indel profiles. However, transcriptional profiles indicate the induction of unique cellular responses dependent upon the DNA repair protein(s) hampered.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
| | - Corey Geurink
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sara G. Trimidal
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Janice M. Pluth
- Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| |
Collapse
|
7
|
Zhang M, Xia H, Yu M, Ju L, Xiao Y, Zhu L. Role of PARP1 on DNA damage induced by mineral silicate chrysotile in bronchial epithelial and pleural mesothelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40871-40878. [PMID: 33770358 DOI: 10.1007/s11356-021-13464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
To investigate whether poly (ADP ribose) polymerase-1 (PARP1) is involved in chrysotile-induced DNA damage in pleural mesothelial cells (MeT-5A) and bronchial epithelial cells (BEAS-2B), two PARP1-deficient cell lines were established. Efficiencies of RNA interference on PARP1 were detected by western blot and qPCR. Here, normal cells and PARP1-deficient cells were exposed to chrysotile, and DNA damage and DNA repair were detected by alkaline comet assay. All cells were treated with chrysotile at the indicated concentrations (5, 10, 20, and 40 μg/cm2) for 24 h and then the DNA repair capacity was observed for 12 and 24 h, respectively. The results showed that chrysotile caused DNA damage at an obvious dose-dependent manner in MeT-5A and BEAS-2B cells. In addition, MeT-5A cells had more persistent DNA damage than BEAS-2B. Compared to normal cells, the PARP1-deficient cells were more sensitive to DNA damage caused by chrysotile. In DNA repair experiments, all cell lines recovered from the damage over time. The results of relative repair percentage (RRP) of MeT-5A and BEAS-2B were higher than those of MeT-5A shPARP1 and BEAS-2B shPARP1 cells at all experimental concentrations (except 5 μg/cm2) at 12-h repair. However, RRP of BEAS-2B and BEAS-2B shPARP1 tended to be closer, and RRP of MeT-5A shPARP1 was still lower than that of MeT-5A at 24-h repair. All results suggest that PARP1 plays an important role in early repair of DNA damage in BEAS-2B and MeT-5A cells exposed to chrysotile.
Collapse
Affiliation(s)
- Min Zhang
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China
| | - Hailin Xia
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China
| | - Min Yu
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China
| | - Li Ju
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China
| | - Yun Xiao
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China
| | - Lijin Zhu
- Hangzhou Medical College, Tianmushan Road 182, Zhejiang, 310007, Hangzhou, China.
| |
Collapse
|
8
|
Wang H, Lautrup S, Caponio D, Zhang J, Fang EF. DNA Damage-Induced Neurodegeneration in Accelerated Ageing and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136748. [PMID: 34201700 PMCID: PMC8268089 DOI: 10.3390/ijms22136748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
DNA repair ensures genomic stability to achieve healthy ageing, including cognitive maintenance. Mutations on genes encoding key DNA repair proteins can lead to diseases with accelerated ageing phenotypes. Some of these diseases are xeroderma pigmentosum group A (XPA, caused by mutation of XPA), Cockayne syndrome group A and group B (CSA, CSB, and are caused by mutations of CSA and CSB, respectively), ataxia-telangiectasia (A-T, caused by mutation of ATM), and Werner syndrome (WS, with most cases caused by mutations in WRN). Except for WS, a common trait of the aforementioned progerias is neurodegeneration. Evidence from studies using animal models and patient tissues suggests that the associated DNA repair deficiencies lead to depletion of cellular nicotinamide adenine dinucleotide (NAD+), resulting in impaired mitophagy, accumulation of damaged mitochondria, metabolic derailment, energy deprivation, and finally leading to neuronal dysfunction and loss. Intriguingly, these features are also observed in Alzheimer’s disease (AD), the most common type of dementia affecting more than 50 million individuals worldwide. Further studies on the mechanisms of the DNA repair deficient premature ageing diseases will help to unveil the mystery of ageing and may provide novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Heling Wang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Domenica Caponio
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Jianying Zhang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- The Norwegian Centre on Healthy Ageing (NO-Age), 0010 Oslo, Norway
- Correspondence:
| |
Collapse
|
9
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
10
|
Hua K, Wang L, Sun J, Zhou N, Zhang Y, Ji F, Jing L, Yang Y, Xia W, Hu Z, Pan F, Chen X, Yao B, Guo Z. Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging (Albany NY) 2020; 12:25207-25228. [PMID: 33223510 PMCID: PMC7803579 DOI: 10.18632/aging.104123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The mechanism underlying the association between age and depletion of the human ovarian follicle reserves remains uncertain. Many identified that impaired DNA polymerase β (Pol β)-mediated DNA base-excision repair (BER) drives to mouse oocyte aging. With aging, DNA lesions accumulate in primordial follicles. However, the expression of most DNA BER genes, including APE1, OGG1, XRCC1, Ligase I, Ligase α, PCNA and FEN1, remains unchanged during aging in mouse oocytes. Also, the reproductive capacity of Pol β+/- heterozygote mice was impaired, and the primordial follicle counts were lower than that of wild type (wt) mice. The DNA lesions of heterozygous mice increased. Moreover, the Pol β knockdown leads to increased DNA damage in oocytes and decreased survival rate of oocytes. Oocytes over-expressing Pol β showed that the vitality of senescent cells enhances significantly. Furthermore, serum concentrations of anti-Müllerian hormone (AMH) indicated that the ovarian reserves of young mice with Pol β germline mutations were lower than those in wt. These data show that Pol β-related DNA BER efficiency is a major factor governing oocyte aging in mice.
Collapse
Affiliation(s)
- Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Liping Wang
- Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Junhua Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Nanhai Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wen Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xi Chen
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Du Y, Hase Y, Satoh K, Shikazono N. Characterization of gamma irradiation-induced mutations in Arabidopsis mutants deficient in non-homologous end joining. JOURNAL OF RADIATION RESEARCH 2020; 61:639-647. [PMID: 32766789 PMCID: PMC7482170 DOI: 10.1093/jrr/rraa059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
To investigate the involvement of the non-homologous end joining (NHEJ) pathway in plant mutagenesis by ionizing radiation, we conducted a genome-wide characterization of the mutations induced by gamma rays in NHEJ-deficient Arabidopsis mutants (AtKu70-/- and AtLig4-/-). Although both mutants were more sensitive to gamma rays than the wild-type control, the AtKu70-/- mutant was slightly more sensitive than the AtLig4-/- mutant. Single-base substitutions (SBSs) were the predominant mutations in the wild-type control, whereas deletions (≥2 bp) and complex-type mutations [i.e. more than two SBSs or short insertion and deletions (InDels) separated by fewer than 10 bp] were frequently induced in the mutants. Single-base deletions were the most frequent deletions in the wild-type control, whereas the most common deletions in the mutants were 11-30 bp. The apparent microhomology at the rejoined sites of deletions peaked at 2 bp in the wild-type control, but was 3-4 bp in the mutants. This suggests the involvement of alternative end joining and single-strand annealing pathways involving increased microhomology for rejoining DNA ends. Complex-type mutations comprising short InDels were frequently detected in the mutants, but not in the wild-type control. Accordingly, NHEJ is more precise than the backup pathways, and is the main pathway for rejoining the broken DNA ends induced by ionizing radiation in plants.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yoshihiro Hase
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Corresponding author. Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan. Tel: +81-27-346-9032; Fax: +81-27-346-9688;
| | - Katsuya Satoh
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Naoya Shikazono
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|