1
|
Gowkielewicz M, Lipka A, Piotrowska A, Szadurska-Noga M, Szalcunas-Olsztyn A, Eliszewski M, Radkowski P, Dzięgiel P, Waśniewski T, Majewska M. AMH and Kisspeptin Receptor Expression in Rare Hydropic Leiomyoma: A Case Study. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e947953. [PMID: 40305440 PMCID: PMC12051407 DOI: 10.12659/ajcr.947953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Leiomyomas are common benign uterine tumors (BUMTs) with diverse histopathological subtypes and variable clinical presentations. While most are asymptomatic, some cause significant morbidity, including abnormal uterine bleeding, infertility, and pain. Hydropic leiomyomas (HLMs) are rare variants histopathologically characterized by zonal edema and may pose diagnostic challenges, particularly when located in atypical sites such as the retroperitoneal space. This report presents a case of a retroperitoneal HLM with strong expression of anti-Müllerian hormone (AMH) and its receptor (AMHR2), and kisspeptin (KISS1) and its receptor (KISS1R), suggesting potential new therapeutic targets. CASE REPORT A 44-year-old woman presented with acute lower abdominal pain. Magnetic resonance imaging (MRI) revealed a well-circumscribed, pedunculated retroperitoneal mass originating posteriorly from the uterine body-cervix junction. MRI findings suggested a benign mesenchymal tumor but could not exclude malignancy. Surgical excision was performed, and histopathological examination confirmed HLM. Immunohistochemical analysis demonstrated strong nuclear and cytoplasmic expression of AMH, AMHR2, KISS1, and KISS1R in tumor cells, making this the first reported case of such expression in HLM. The patient had an uneventful postoperative course, and no recurrence was observed during a 2-year follow-up. CONCLUSIONS This case underscores the diagnostic complexity of retroperitoneal HLMs and the importance of MRI in differentiating BUMTs from malignancies. Strong AMH, AMHR2, KISS1, and KISS1R expression suggests a potential role of these regulatory proteins in HLM pathophysiology. Further research on targeted modulation of these pathways may provide novel therapeutic approaches for BUMTs, particularly in cases where conventional treatments are limited.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Marta Szadurska-Noga
- Department of Pathomorphology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Szalcunas-Olsztyn
- Department of Radiology and Diagnostic, Regional Specialist Hospital in Olsztyn, Olsztyn, Poland
| | - Maciej Eliszewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Paweł Radkowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Anaesthesiology and Intensive Care, Hospital zum Heiligen Geist in Fritzlar, Fritzlar, Germany
- Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, Olsztyn, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Huang H, Zhang Z, Xing M, Jin Z, Hu Y, Zhou M, Wei H, Liang Y, Lv Z. Angiostrongylus cantonensis induces energy imbalance and dyskinesia in mice by reducing the expression of melanin-concentrating hormone. Parasit Vectors 2024; 17:192. [PMID: 38654385 PMCID: PMC11036757 DOI: 10.1186/s13071-024-06267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zhongyuan Zhang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Mengdan Xing
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zihan Jin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Minyu Zhou
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Hang Wei
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Yiwen Liang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China.
- Department of Pathogen Biology and Biosafety, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510030, People's Republic of China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, People's Republic of China.
| |
Collapse
|
4
|
Michopoulos V, Huibregtse ME, Chahine EB, Smith AK, Fonkoue IT, Maples-Keller J, Murphy A, Taylor L, Powers A, Stevens JS. Association between perimenopausal age and greater posttraumatic stress disorder and depression symptoms in trauma-exposed women. Menopause 2023; 30:1038-1044. [PMID: 37610715 PMCID: PMC10527101 DOI: 10.1097/gme.0000000000002235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVE This study aimed to determine the relationship between stages of the menopause transition (premenopausal, perimenopausal, and postmenopausal) on symptoms of posttraumatic stress disorder (PTSD) and depression in trauma-exposed women. METHODS A cross-sectional study conducted between 2005 and 2017 recruited and enrolled an urban community sample (n = 6,093) from nonpsychiatric medical clinic waiting rooms of Grady Memorial Hospital, a public safety net hospital in Atlanta, Georgia. Participants were female, 18 to 65 years old, and predominantly Black/African American. RESULTS Of the 6,093 participants, 93.8% were Black/African American, 2.5% were White, and 3.8% were of all other races (Hispanic/Latino, Asian, multiracial). Participants younger than 40 years were categorized as premenopausal (n = 3,166), between 40 and 55 years of age were categorized as perimenopausal (n = 2,127), and older than 55 years were categorized as postmenopausal (n = 790). Menopause status was associated with total PTSD symptom severity ( F2,5416 = 9.61, P < 0.001), symptom severity within all three PTSD symptom clusters (avoidance/numbing symptoms: F2,5416 = 7.10, P < 0.001; intrusive symptoms: F2,5416 = 7.04, P < 0.001; hyperarousal symptoms: F2,5409 = 8.31, P < 0.001), and depression symptom severity ( F2,5148 = 11.4, P < 0.001). Compared with both premenopausal and postmenopausal women, perimenopausal women reported significantly worse total PTSD symptoms, symptoms in the hyperarousal cluster, and depressive symptoms. CONCLUSIONS The current cross-sectional data show that symptoms of PTSD and depression in women are associated with reproductive age, such that perimenopausal women show higher symptom severity than premenopausal and postmenopausal women. Future longitudinal studies can reveal how changes in hormones over the course of the menopause transition impact the symptoms, neurobiology, and psychophysiology of PTSD.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Megan E. Huibregtse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - E. Britton Chahine
- Department of Gynecology and Obstetrics, Emory University School of Medicine Atlanta, GA, United States of America
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Gynecology and Obstetrics, Emory University School of Medicine Atlanta, GA, United States of America
| | - Ida T. Fonkoue
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Jessica Maples-Keller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Amy Murphy
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Linzie Taylor
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
5
|
Butkevich IP, Mikhailenko VA, Vershinina EA. Sexual Dimorphism in the Effect of Neonatal Inflammatory Pain on Stress Reactivity of Hormonal Response and Cognitive Functions in Adult Rats. J EVOL BIOCHEM PHYS+ 2022; 58:353-363. [PMID: 35599637 PMCID: PMC9109674 DOI: 10.1134/s0022093022020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
The effect of moderate neonatal stress induced by inflammatory
pain in rat pups of both sexes on the hormonal response and cognitive
processes in adult animals was studied in the Morris water maze.
No significant differences in spatial learning and memory were found
in experimental rats exposed to neonatal inflammatory pain vs. control
animals. However, experimental rats exhibited sex differences in
long-term spatial memory whose efficiency was higher in males vs.
females. After long-term memory testing, stress responsiveness of
the hypothalamic-pituitary-adrenocortical axis, as assessed by the
plasma corticosterone level in the formalin test, was higher in
experimental males vs. females. Only experimental females exhibited
differences between short-term and long-term memory, with the efficiency
being higher in the former. Thus, sexual dimorphism was found in
the effect of neonatal nociceptive stress on long-term spatial memory
in adult rats: experimental males vs. females demonstrated more
effective long-term memory combined with a higher stress reactivity
of the hormonal response.
Collapse
Affiliation(s)
- I. P. Butkevich
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - V. A. Mikhailenko
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - E. A. Vershinina
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
6
|
Wang K, Xu F, Maylie J, Xu J. Anti-Müllerian Hormone Regulation of Synaptic Transmission in the Hippocampus Requires MAPK Signaling and Kv4.2 Potassium Channel Activity. Front Neurosci 2022; 15:772251. [PMID: 34975379 PMCID: PMC8716599 DOI: 10.3389/fnins.2021.772251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a paracrine factor generated peripherally by the gonads to regulate gonadal function in adult mammals. We recently reported that AMH and AMH-specific receptor Anti-Müllerian hormone receptor 2 (AMHR2) are expressed in the hippocampus, and exogenous AMH protein rapidly increased synaptic transmission and long-term synaptic plasticity at the CA3-CA1 synapses. Here we examined the cell-specific expression of AMHR2 and the cellular mechanism of rapid boosting effect of AMH on synaptic transmission in mouse hippocampus. Immunofluorescence staining showed that AMHR2 was specifically expressed in the soma and dendrites of hippocampal pyramidal neurons, but not glial cells. Electrophysiological recordings on acute hippocampal slices showed that AMH did not affect AMPAR-mediated or N-Methyl-D-aspartic acid receptor (NMDAR)-mediated excitatory postsynaptic currents at the CA3-CA1 synapses. The small-conductance Ca2+-activated K+ channel (SK2) and A-type K+ channel (Kv4.2) contribute to shaping excitatory postsynaptic potentials (EPSPs) at the CA3-CA1 synapses. Bath application of apamin to block SK2 did not alter AMH effect on increasing EPSPs, whereas blocking Kv4.2 channel with 4-aminopyridine, or chelating internal Ca2+ with BAPTA occluded the action of AMH on boosting EPSPs. Kv4.2 activity is regulated by p38 mitogen-activated kinase (MAPK). Blocking p38 MAPK with SB203580 occluded the effect of AMH on increasing EPSPs. These results show that Kv4.2 channel contributes to the rapid action of AMH on boosting synaptic transmission in a Ca2+- and p38 MAPK-dependent manner. Our findings provide functional evidence that AMH enhances synaptic transmission through Kv4.2 channel in the hippocampus, suggesting a possible role of Kv4.2 channel in AMH-regulated neuronal process underlying learning and memory.
Collapse
Affiliation(s)
- Kang Wang
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Fuhua Xu
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - James Maylie
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jing Xu
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
7
|
Bertho S, Neyroud AS, Brun T, Jaillard S, Bonnet F, Ravel C. Anti-Müllerian hormone: A function beyond the Müllerian structures. Morphologie 2021; 106:252-259. [PMID: 34924282 DOI: 10.1016/j.morpho.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The anti-Müllerian hormone (AMH) is a heterodimeric glycoprotein belonging to the TGFb superfamily implicated in human embryonic development. This hormone was first described as allowing regression of the epithelial embryonic Müllerian structures in males, which would otherwise differentiate into the uterus and fallopian tubes. It activates a signaling pathway mediated by two transmembrane receptors. Binding of AMH to its receptor induces morphological changes leading to the degeneration of Müllerian ducts. Recently, new data has shown the role played by this hormone on structures other than the genital tract. If testicular AMH expression decreases in humans over the course of a lifetime, synthesis may persist in other tissues in adulthood. The mechanisms underlying its production have been unveiled. The aim of this review is to describe the different pathways in which AMH has been identified and plays a pivotal role.
Collapse
Affiliation(s)
- S Bertho
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France.
| | - A S Neyroud
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - T Brun
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France
| | - S Jaillard
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - F Bonnet
- CHU Rennes, Service d'Endocrinologie, 35000 Rennes, France
| | - C Ravel
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| |
Collapse
|
8
|
Brunello FG, Rey RA. AMH and AMHR2 Involvement in Congenital Disorders of Sex Development. Sex Dev 2021; 16:138-146. [PMID: 34515230 DOI: 10.1159/000518273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Anti-müllerian hormone (AMH) is 1 of the 2 testicular hormones involved in male development of the genitalia during fetal life. When the testes differentiate, AMH is secreted by Sertoli cells and binds to its specific receptor type II (AMHR2) on the müllerian ducts, inducing their regression. In the female fetus, the lack of AMH allows the müllerian ducts to form the fallopian tubes, the uterus, and the upper part of the vagina. The human AMH gene maps to 19p13.3 and consists of 5 exons and 4 introns spanning 2,764 bp. The AMHR2 gene maps to 12q13.13, consists of 11 exons, and is 7,817 bp long. Defects in the AMH pathway are the underlying etiology of a subgroup of disorders of sex development (DSD) in 46,XY patients. The condition is known as the persistent müllerian duct syndrome (PMDS), characterized by the existence of a uterus and fallopian tubes in a boy with normally virilized external genitalia. Approximately 200 cases of patients with PMDS have been reported to date with clinical, biochemical, and molecular genetic characterization. An updated review is provided in this paper. With highly sensitive techniques, AMH and AMHR2 expression has also been detected in other tissues, and massive sequencing technologies have unveiled variants in AMH and AMHR2 genes in hitherto unsuspected conditions.
Collapse
Affiliation(s)
- Franco G Brunello
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Pejovic T, Joshi S, Campbell S, Thisted S, Xu F, Xu J. Association between vitamin D and ovarian cancer development in BRCA1 mutation carriers. Oncotarget 2020; 11:4104-4114. [PMID: 33227068 PMCID: PMC7665231 DOI: 10.18632/oncotarget.27803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Women with inherited mutations in BRCA1 gene have a high (40-70%) genetic risk of developing ovarian cancer. Epidemiological studies suggest an inverse correlation between serum vitamin D (VD) levels and the risk of ovarian cancer, but there is a lack of data from BRCA1 mutation (BRCA1 mut) carriers. Therefore, we investigated VD levels and actions in cancer free women with BRCA1 mutations. MATERIALS AND METHODS Blood, ovary and fallopian tube samples were collected from healthy pre-menopausal women with BRCA1 mut and without BRCA1 mutations (BRCA wt). Serum calcifediol (major circulating form of VD) concentrations were measured by electrochemiluminescence immunoassay. Immunohistochemistry was performed on paraffin-embedded ovarian and fallopian tube sections to determine vitamin D receptor (VDR) expression. Ovarian surface epithelial cells (OSEs) from BRCA1 mut carriers were cultured with or without calcitriol supplementation for 72 hrs. VDR protein levels, cell proliferation and cell viability were analyzed. RESULTS BRCA1 mut women had lower serum calcifediol levels compared to BRCA wt women (p = 0.003). VDR protein expression was evident in ovarian and the fallopian tube epithelium of BRCA wt patients, but was reduced in BRCA1 mut women. Calcitriol (biologically active VD) supplementation elevated VDR expression in cultured BRCA1 mut OSEs (p = 0.005) and decreased cell proliferation rates in a dose-dependent manner without inducing apoptosis. CONCLUSIONS VD biosynthesis and signaling via VDR in the ovarian and fallopian tube epithelium are impaired in BRCA1 mut women. VD treatment may limit BRCA1 mut epithelial cell proliferation without affecting cell viability, providing a rationale for exploring the potential for VD in ovarian cancer prevention in BRCA1 mut carriers.
Collapse
Affiliation(s)
- Tanja Pejovic
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Sonali Joshi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Shawn Campbell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Sarah Thisted
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Present address: College of Health and Human Services, Northern Arizona University, Flagstaff, Arizona, USA
| | - Fuhua Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jing Xu
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
10
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
11
|
New insights into anti-Müllerian hormone role in the hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 2020; 78:1-16. [PMID: 32564094 PMCID: PMC7867527 DOI: 10.1007/s00018-020-03576-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Research into the physiological actions of anti-Müllerian hormone (AMH) has rapidly expanded from its classical role in male sexual differentiation to the regulation of ovarian function, routine clinical use in reproductive health and potential use as a biomarker in the diagnosis of polycystic ovary syndrome (PCOS). During the past 10 years, the notion that AMH could act exclusively at gonadal levels has undergone another paradigm shift as several exciting studies reported unforeseen AMH actions throughout the Hypothalamic–Pituitary–Gonadal (HPG) axis. In this review, we will focus on these findings reporting novel AMH actions across the HPG axis and we will discuss their potential impact and significance to better understand human reproductive disorders characterized by either developmental alterations of neuroendocrine circuits regulating fertility and/or alterations of their function in adult life. Finally, we will summarize recent preclinical studies suggesting that elevated levels of AMH may potentially be a contributing factor to the central pathophysiology of PCOS and other reproductive diseases.
Collapse
|