1
|
Wu Y, Mohamed MA, Yi T, Das A, Rumsey CL, Trebbin M, Breuer CK, Andreadis ST. Self-healing and cell-free vascular grafts. Biomaterials 2025; 318:123121. [PMID: 39889339 DOI: 10.1016/j.biomaterials.2025.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
We developed an innovative self-healing tissue engineering vessel (SH-TEV) that heals fast after repeated needle punctures, while maintaining artery like mechanical strength and toughness even under wet conditions. The SH-TEV is designed as a bilayer tube engineered by electrospinning an autonomous self-healing polyurethane, PU-DAA, around a tube of a native biomaterial, small intestinal submucosa (SIS), that can be functionalized with biomolecules to recruit host cells and promote endothelialization. The self-healing PU-DAA was designed to incorporate multi-strength H-bonds and reversible hydrazone bonds and exhibited high strength (3.95 ± 0.16 MPa), toughness (23.01 ± 2.37 MJ/m3), and fast autonomous self-healing (86.44 ± 6.65 % after 12 h) under physiological conditions. The self-healing layer supported attachment, spreading and proliferation of fibroblasts, indicating biocompatibility. When SH-TEVs were implanted as interpositional grafts into the rat aorta for 4 weeks, they remained patent without any thrombosis (100 % animal survival and 100 % graft patency), were endothelialized and developed a smooth muscle cell containing vascular wall. In addition, they showed excellent self-healing ability following needle puncture (hemostatic time <40 s) immediately after implantation and four weeks later. Collectively, these results demonstrate the potential of SH-TEVs as vascular access conduits for hemodialysis applications.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Tai Yi
- Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Clayton L Rumsey
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14263, USA; Center of Cell, Gene and Tissue Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
2
|
Yang X, Hou Z, Wang K, Li J, Shang W, Wang L, Song K. Efficacy and mechanisms of concentrated growth factor on facial nerve rehabilitation in a rabbit model. Biomater Sci 2025; 13:1059-1074. [PMID: 39831451 DOI: 10.1039/d4bm01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected. In vivo, the Crush + CGFM group exhibited enhanced axon and myelin regeneration, increased Schwann cell proliferation, and improved facial nerve function compared to the Crush group. In vitro, CGF treatment significantly promoted the proliferation and migration of RSC96 cells and facilitated axon elongation in NG108-15 cells compared to controls. Mechanistically, CGF treatment led to a significant increase in PDGFRβ phosphorylation. Inhibition of this pathway with SU16f decreased Schwann cell activity and hindered overall nerve rehabilitation. These results underscore CGF's potential to accelerate nerve repair by promoting axon and myelin regeneration and enhancing Schwann cell biological activity, with the PDGFRβ pathway playing a crucial regulatory role. This study highlights CGF as a promising therapeutic strategy for improving facial nerve rehabilitation.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
| | - Zhengyao Hou
- Department of Obstetrics and Gynecology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Shandong, China
| | - Kexin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
- School of Stomatology, Qingdao University, Shandong, China
| | - Jieying Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
- School of Stomatology, Qingdao University, Shandong, China
| | - Wei Shang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
| | - Kai Song
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
| |
Collapse
|
3
|
Tseropoulos G, Mehrotra P, Podder AK, Wilson E, Zhang Y, Wang J, Koontz A, Gao NP, Gunawan R, Liu S, Feltri LM, Bronner ME, Andreadis ST. Immobilized NRG1 Accelerates Neural Crest like Cell Differentiation Toward Functional Schwann Cells Through Sustained Erk1/2 Activation and YAP/TAZ Nuclear Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402607. [PMID: 38952126 PMCID: PMC11633358 DOI: 10.1002/advs.202402607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 07/03/2024]
Abstract
Neural Crest cells (NC) are a multipotent cell population that give rise to a multitude of cell types including Schwann cells (SC) in the peripheral nervous system (PNS). Immature SC interact with neuronal axons via the neuregulin 1 (NRG1) ligand present on the neuronal surface and ultimately form the myelin sheath. Multiple attempts to derive functional SC from pluripotent stem cells have met challenges with respect to expression of mature markers and axonal sorting. Here, they hypothesized that sustained signaling from immobilized NRG1 (iNRG1) might enhance the differentiation of NC derived from glabrous neonatal epidermis towards a SC phenotype. Using this strategy, NC derived SC expressed mature markers to similar levels as compared to explanted rat sciatic SC. Signaling studies revealed that sustained NRG1 signaling led to yes-associated protein 1 (YAP) activation and nuclear translocation. Furthermore, NC derived SC on iNRG1 exhibited mature SC function as they aligned with rat dorsal root ganglia (DRG) neurons in an in vitro coculture model; and most notably, aligned on neuronal axons upon implantation in a chick embryo model in vivo. Taken together their work demonstrated the importance of signaling dynamics in SC differentiation, aiming towards development of drug testing platforms for de-myelinating disorders.
Collapse
Affiliation(s)
- Georgios Tseropoulos
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Pihu Mehrotra
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Ashis Kumer Podder
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Department of PharmacyBrac UniversityDhaka1212Bangladesh
| | - Emma Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Yali Zhang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Alison Koontz
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Nan Papili Gao
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
| | - Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Laura M. Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Marianne E. Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
| |
Collapse
|
4
|
Bejaoui M, Heah WY, Oliva Mizushima AK, Nakajima M, Yamagishi H, Yamamoto Y, Isoda H. Keratin Microspheres as Promising Tool for Targeting Follicular Growth. ACS APPLIED BIO MATERIALS 2024; 7:1513-1525. [PMID: 38354359 DOI: 10.1021/acsabm.3c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Skin is the body barrier that constrains the infiltration of particles and exogenous aggression, in which the hair follicle plays an important role. Recent studies have shown that small particles can penetrate the skin barrier and reach the hair follicle, making them a potential avenue for delivering hair growth-related substances. Interestingly, keratin-based microspheres are widely used as drug delivery carriers in various fields. In this current study, we pursue the effect of newly synthesized 3D spherical keratin particles on inducing hair growth in C57BL/6 male mice and in human hair follicle dermal papilla cells. The microspheres were created from partially sulfonated, water-soluble keratin. The keratin microspheres swelled in water to form spherical gels, which were used for further experiments. Following topical application for a period of 20 days, we observed a regrowth of hair in the previously depleted area on the dorsal part of the mice in the keratin microsphere group. This observation was accompanied by the regulation of hair-growth-related pathways as well as changes in markers associated with epidermal cells, keratin, and collagen. Interestingly, microsphere keratin treatment enhanced the cell proliferation and the expression of hair growth markers in dermal papilla cells. Based on our data, we propose that 3D spherical keratin has the potential to specifically target hair follicle growth and can be employed as a carrier for promoting hair growth-related agents.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba 305-8572, Japan
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Wey Yih Heah
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
- MyQtech Inc., Tsukuba 305-8573, Japan
| | - Aprill Kee Oliva Mizushima
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- MED R&D Co. Ltd., Tsukuba 305-8572, Japan
| | - Hiroshi Yamagishi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Yohei Yamamoto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
- MyQtech Inc., Tsukuba 305-8573, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba 305-8572, Japan
- Research & Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- MED R&D Co. Ltd., Tsukuba 305-8572, Japan
| |
Collapse
|
5
|
Balko J, Golas W, Kaspar L, Krskova L, Strnadova M, Kotis J, Zamecnik J. Novel and unusual USP6 fusion partners in aneurysmal bone cyst and their role in pathogenesis and histopathological evaluation of this disease. J Clin Pathol 2024:jcp-2023-209306. [PMID: 38429095 DOI: 10.1136/jcp-2023-209306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
AIMS The purpose of this study is to report novel and unusual USP6 fusion partners in aneurysmal bone cysts (ABCs). These findings may be useful in routine diagnostics as well as in studying the biology of USP6-related disorders. METHODS A cohort of seven patients diagnosed with ABC examined between 2014 and 2023 at Motol University Hospital in Prague was included into this retrospective non-randomised study. All cases were analysed using histopathological evaluation, immunohistochemistry and Anchored multiplex RNA methods. Demographic characteristics and clinical data were also analysed. RESULTS We identified two novel (ZFX and IP6K2), three unusual (MEF2A, EIF1 and COL1A2) and two common (CDH11) fusion partners with USP6 gene among all seven cases of ABC. CONCLUSIONS Cases in our study were diagnosed as ABCs due to characteristic clinical and morphological presentation. However, not all cases are as self-evident, and molecular testing is necessary. The identification of these gene alterations can be useful in distinction between true ABC and ABC-like changes among many benign and malignant bone tumours.
Collapse
Affiliation(s)
- Jan Balko
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - William Golas
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ludvik Kaspar
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Strnadova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Johana Kotis
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
6
|
Liu Y, Lei P, Samuel RZ, Kashyap AM, Groth T, Bshara W, Neelamegham S, Andreadis ST. Cadherin-11 increases tumor cell proliferation and metastatic potential via Wnt pathway activation. Mol Oncol 2023; 17:2056-2073. [PMID: 37558205 PMCID: PMC10552893 DOI: 10.1002/1878-0261.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
During epithelial-mesenchymal transition (EMT) in cancer progression, tumor cells switch cadherin profile from E-cadherin to cadherin-11 (CDH11), which is accompanied by increased invasiveness and metastatic activity. However, the mechanism through which CDH11 may affect tumor growth and metastasis remains elusive. Here, we report that CDH11 was highly expressed in multiple human tumors and was localized on the membrane, in the cytoplasm and, surprisingly, also in the nucleus. Interestingly, β-catenin remained bound to carboxy-terminal fragments (CTFs) of CDH11, the products of CDH11 cleavage, and co-localized with CTFs in the nucleus in the majority of breast cancer samples. Binding of β-catenin to CTFs preserved β-catenin activity, whereas inhibiting CDH11 cleavage led to β-catenin phosphorylation and diminished Wnt signaling, similar to CDH11 knockout. Our data elucidate a previously unknown role of CDH11, which serves to stabilize β-catenin in the cytoplasm and facilitates its translocation to the nucleus, resulting in activation of Wnt signaling, with subsequent increased proliferation, migration and invasion potential.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Ronel Z. Samuel
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Anagha M. Kashyap
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Wiam Bshara
- Roswell Park Comprehensive Cancer Center Pathology Resource NetworkBuffaloNYUSA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| |
Collapse
|
7
|
Karagöz Z, Passanha FR, Robeerst L, van Griensven M, LaPointe VLS, Carlier A. Computational evidence for multi-layer crosstalk between the cadherin-11 and PDGFR pathways. Sci Rep 2023; 13:15804. [PMID: 37737289 PMCID: PMC10517159 DOI: 10.1038/s41598-023-42624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Various cell surface receptors play an important role in the differentiation and self-renewal of human mesenchymal stem cells (hMSCs). One example of such receptors are the cadherins, which maintain cell-cell adhesion and mechanically couple cells together. Recently, cadherin-11, which is a member of the type II classical cadherin family, has been shown to be involved in the fate commitment of hMSCs. Interestingly, cadherin-11 has no known intrinsic signaling activity and is thought to affect cell behavior via interactions with other cell surface receptors. Members of the platelet-derived growth factor receptor (PDGFR) family are hypothesized to be one of the interaction partners of cadherin-11. Experiments confirmed that PDGFR-α binding to extracellular cadherin-11 regions increases the PDGFR-α activity, whereas the interaction between PDGFR-β and cadherin-11 suppresses the activity of the growth factor receptor. Cadherin-11 knockdown experiments also decreased cell proliferation. These interactions between cadherin-11 and PDGFRs indicate a crosstalk between these receptors and their downstream signaling activities but the nature of this crosstalk is not entirely known. In this study, we used a computational model to represent the experimentally proven interactions between cadherin-11 and the two PDGFRs and we inspected whether the crosstalk also exists downstream of the signaling initiated by the two receptor families. The computational framework allowed us to monitor the relative activity levels of each protein in the network. We performed model simulations to mimic the conditions of previous cadherin-11 knockdown experiments and to predict the effect of crosstalk on cell proliferation. Overall, our predictions suggest the existence of another layer of crosstalk, namely between β-catenin (downstream to cadherin-11) and an ERK inhibitor protein (e.g. DUSP1), different than the crosstalk at the receptor level between cadherin-11 and PDGFR-α and -β. By investigating the multi-level crosstalk between cadherin and PDGFRs computationally, this study contributes to an improved understanding of the effect of cell surface receptors on hMSCs proliferation.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiona R Passanha
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Lars Robeerst
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Li J, Shi H, Liu X, Jiang H. Effect of Cadherin-11 on the Proliferation, Migration, and ECM Synthesis of Chondrocyte. J Tissue Eng Regen Med 2023; 2023:9985334. [PMID: 40226415 PMCID: PMC11918866 DOI: 10.1155/2023/9985334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2025]
Abstract
Nonsyndromic microtia is a kind of congenital ear malformation with unclear pathogenic genes. Cadherin-11 (CDH11, OB-cadherin) is a member of the cadherin family, which has been demonstrated to play important roles in controlling morphogenesis and cell biological characteristics during multiple developmental processes. In the present study, we found low expression of CDH11 in microtia cartilage compared with the normal one for the first time. For a more comprehensive and in-depth understanding of CDH11 in microtia development, we performed both gain- and loss-of-function experiments to detect the effect of CDH11 on chondrocytes. CDH11 promoted chondrocyte proliferation by increasing S-phase cell numbers and increasing cell migration, which is important for tissue morphogenesis. Additionally, knockdown of CDH11 in chondrocytes reduced the quality of engineered cartilage by decreasing the key transcription factors of chondrogenesis, SOX9 expression, and cartilage ECM production, including collagen type II (COL2A) and elastin (ELN), compared to the control group. Furthermore, RNA-Seq on CDH11 knockdown chondrocytes showed that it was highly related to HOX family genes, which have been reported to be important regulatory genes patterning craniofacial tissue formation. This study identified CDH11 as a candidate pathogenic gene of microtia and supported the potential key role of CDH11 in craniofacial malformations.
Collapse
Affiliation(s)
- Jia Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba-da-chu Road, Shijingshan District, Beijing 100144, China
| | - Hang Shi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba-da-chu Road, Shijingshan District, Beijing 100144, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba-da-chu Road, Shijingshan District, Beijing 100144, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 33 Ba-da-chu Road, Shijingshan District, Beijing 100144, China
| |
Collapse
|
9
|
Sorimachi Y, Kobayashi H, Shiozawa Y, Koide S, Nakato R, Shimizu Y, Okamura T, Shirahige K, Iwama A, Goda N, Takubo K, Takubo K. Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports 2023; 18:1211-1226. [PMID: 37059101 DOI: 10.1016/j.stemcr.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.
Collapse
Affiliation(s)
- Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuichiro Nakato
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo 100-0004, Japan.
| |
Collapse
|
10
|
Passanha FR, Geuens T, LaPointe VLS. Cadherin-11 influences differentiation in human mesenchymal stem cells by regulating the extracellular matrix via the TGFβ1 pathway. Stem Cells 2022; 40:669-677. [PMID: 35416252 PMCID: PMC9332898 DOI: 10.1093/stmcls/sxac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/23/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Fiona R Passanha
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Corresponding author: Vanessa L.S. LaPointe, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. Tel.: +31 646304225;
| |
Collapse
|
11
|
|
12
|
Li J, Cao R, Wang Q, Shi H, Wu Y, Sun K, Liu X, Jiang H. Cadherin-11 promotes the mechanical strength of engineered elastic cartilage by enhancing extracellular matrix synthesis and microstructure. J Tissue Eng Regen Med 2021; 16:188-199. [PMID: 34837334 DOI: 10.1002/term.3271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Limitations of current treatments for auricular cartilage defects have prompted the field of auricular cartilage tissue engineering. To date, inducing the formation of cartilaginous constructs with biochemical and biomechanical properties of native tissue is the final aim. Through hematoxylin-eosin and immunohistochemistry staining, Cadherin-11(CDH11) was confirmed highly expressed in the auricular cartilage tissue and chondrocytes. In vitro, by knockdown and overexpression of CDH11 in chondrocytes, CDH11 was demonstrated to promote the expression of collagen type II (COL2A), elastin (ELN), aggrecan (ACAN), and cartilage oligomeric matrix protein (COMP). In addition, the CDH11 overexpressed chondrocytes promoted neo-cartilage formation and its biomechanical property by increasing the key transcription factor of chondrogenesis SOX9 expression and cartilage extracellular matrix (ECM) production. The young's modulus and yield stress of the neo-cartilage in CDH11 overexpression group were about 1.7 times (p = 0.0152) and 2 times (p = 0.0428) higher than those in control group, respectively. Then, the immunohistochemistry staining, qRT-PCR and western blot examination results showed that the expression of COL2A and ELN were significantly increased. Notably, the electron microscopy results showed that the collagen and elastic fibers of the neo-cartilage in CDH11-OV group arranged in bunches and were more uniform and compact compared to the control group. Furthermore, CDH11 promoted elastic fiber assembly by increasing lysyl oxidase (LOX), fibrillin-1 (FBN1) expression. Taken together, our results demonstrated that CDH11 improves the mechanical strength of tissue-engineered elastic cartilage by promoting ECM synthesis and elastic fiber assembly.
Collapse
Affiliation(s)
- Jia Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Sun
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|