1
|
Yadav H, Bakshi A, Anamika, Singh V, Paul P, Murugan NA, Maurya SK. Co-localization and co-expression of Olfml3 with Iba1 in brain of mice. J Neuroimmunol 2024; 394:578411. [PMID: 39079458 DOI: 10.1016/j.jneuroim.2024.578411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Olfml3 is a microglia-specific protein whose role in neuroinflammation is elusive. In silico analysis was conducted to characterize the Olfml3 protein, followed by molecular docking and MD simulation to check possible interaction with Iba1. Further, expression and co-localization analysis was performed in the LPS-induced neuroinflammatory mice brains. Results suggest that Olfml3 physically interacts with Iba1. Olfml3 and Iba1 expression increases during neuroinflammation in mice brains. Olfml3 was observed to co-localize with Iba1, and the number of Olfml3 and Iba1 dual-positive cells increased in the brain of the neuroinflammatory mice model. Thus, Olfml3 could potentially participate in microglia functions by interacting with Iba1.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Vishal Singh
- Electron Microscope Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Prateek Paul
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Mok GF, Turner S, Smith EL, Mincarelli L, Lister A, Lipscombe J, Uzun V, Haerty W, Macaulay IC, Münsterberg AE. Single cell RNA-sequencing and RNA-tomography of the avian embryo extending body axis. Front Cell Dev Biol 2024; 12:1382960. [PMID: 38863942 PMCID: PMC11165230 DOI: 10.3389/fcell.2024.1382960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction: Vertebrate body axis formation initiates during gastrulation and continues within the tail bud at the posterior end of the embryo. Major structures in the trunk are paired somites, which generate the musculoskeletal system, the spinal cord-forming part of the central nervous system, and the notochord, with important patterning functions. The specification of these different cell lineages by key signalling pathways and transcription factors is essential, however, a global map of cell types and expressed genes in the avian trunk is missing. Methods: Here we use high-throughput sequencing approaches to generate a molecular map of the emerging trunk and tailbud in the chick embryo. Results and Discussion: Single cell RNA-sequencing (scRNA-seq) identifies discrete cell lineages including somites, neural tube, neural crest, lateral plate mesoderm, ectoderm, endothelial and blood progenitors. In addition, RNA-seq of sequential tissue sections (RNA-tomography) provides a spatially resolved, genome-wide expression dataset for the avian tailbud and emerging body, comparable to other model systems. Combining the single cell and RNA-tomography datasets, we identify spatially restricted genes, focusing on somites and early myoblasts. Thus, this high-resolution transcriptome map incorporating cell types in the embryonic trunk can expose molecular pathways involved in body axis development.
Collapse
Affiliation(s)
- G. F. Mok
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - S. Turner
- Earlham Institute, Norwich, United Kingdom
| | - E. L. Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - A. Lister
- Earlham Institute, Norwich, United Kingdom
| | | | - V. Uzun
- Earlham Institute, Norwich, United Kingdom
| | - W. Haerty
- Earlham Institute, Norwich, United Kingdom
| | | | - A. E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Chen H, Li R, Bian J, Li X, Su C, Wang Y, Zhang H, Zheng J, Wang Y, Zhang H. OLFML3 suppresses trophoblast apoptosis via the PI3K/AKT pathway: A possible therapeutic target in preeclampsia. Placenta 2024; 147:1-11. [PMID: 38277999 DOI: 10.1016/j.placenta.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy complication that encompasses various pathogenic mechanisms. Shallow implantation of the placenta due to abnormal trophoblast behavior is considered an important mechanism underlying PE; however, its exact etiology remains unclear. METHODS The expression of OLFML3 in the placenta and important clinical indicators were performed, followed by a correlation analysis. The effect of OLFML3 on the behavior of HTR-8/SVneo cells was examined, and the downstream molecular mechanisms of OLFML3 were investigated in HTR-8/SVneo cells. Additionally, a rat model of PE was generated by adenovirus injection via the tail vein to verify the role of OLFML3. RESULTS OLFML3 is highly expressed in both syncytiotrophoblasts and cytotrophoblasts and deregulated in preeclamptic placentas. OLFML3 overexpression in HTR-8/SVneo cells promoted cell proliferation, migration, invasion, and impeded apoptosis, and triggered phosphorylation on ser473 of AKT. Conversely, OLFML3 knockdown exerted opposite effects. Furthermore, OLFML3 overexpression ameliorates CoCl2-induced apoptosis of HTR-8/SVneo cells. In a rat model, OLFML3 overexpression alleviates PE-associated maternal symptoms, leading to lower blood pressure, less severe proteinuria, improved fetal growth restriction, as well as upregulation of P-AKT and downregulation of Cleaved caspase3 and Bax. DISCUSSION OLFML3 may alleviate PE development by inhibiting extravillous trophoblast cell apoptosis through the PI3K/AKT pathway. Our findings indicated that OLFML3 may provide a possible therapeutic target for PE.
Collapse
Affiliation(s)
- Haiying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruiping Li
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangyujing Bian
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqing Li
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Cunjing Su
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Wang
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Yeping Wang
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Institute of Clinical Immunology, China.
| |
Collapse
|
5
|
Hunter R, Baird B, Garcia M, Begay J, Goitom S, Lucas S, Herbert G, Scieszka D, Padilla J, Brayer K, Ottens AK, Suter MA, Barrozo ER, Hines C, Bleske B, Campen MJ. Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicol Sci 2023; 196:238-249. [PMID: 37695302 PMCID: PMC10682975 DOI: 10.1093/toxsci/kfad092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brenna Baird
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Siem Goitom
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jamie Padilla
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kathryn Brayer
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Enrico R Barrozo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Curt Hines
- Department of Biochemistry & Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
7
|
Microglia-Derived Olfactomedin-like 3 Is a Potent Angiogenic Factor in Primary Mouse Brain Endothelial Cells: A Novel Target for Glioblastoma. Int J Mol Sci 2022; 23:ijms232314613. [PMID: 36498941 PMCID: PMC9741462 DOI: 10.3390/ijms232314613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Neoangiogenesis, a hallmark feature of all malignancies, is robust in glioblastoma (GBM). Vascular endothelial growth factor (VEGF) has long been regarded as the primary pro-angiogenic molecule in GBM. However, anti-VEGF therapies have had little clinical efficacy, highlighting the need to explore VEGF-independent mechanisms of neoangiogenesis. Olfactomedin-like 3 (OLFML3), a secreted glycoprotein, is an established proangiogenic factor in many cancers, but its role in GBM neoangiogenesis is unknown. To gain insight into the role of OLFML3 in microglia-mediated angiogenesis, we assessed endothelial cell (EC) viability, migration and differentiation following (1) siRNA knockdown targeting endogenous EC Olfml3 and (2) EC exposure to human recombinant OLFML3 (rhOLFML3; 10 ng/mL, 48 h), and conditioned medium (CM) from isogenic control and Olfml3−/− microglia (48 h). Despite a 70% reduction in Olfml3 mRNA levels, EC angiogenic parameters were not affected. However, exposure to both rhOLFML3 and isogenic control microglial CM increased EC viability (p < 0.01), migration (p < 0.05) and differentiation (p < 0.05). Strikingly, these increases were abolished, or markedly attenuated, following exposure to Olfml3−/− microglial CM despite corresponding increased microglial secretion of VEGF-A (p < 0.0001). Consistent with reports in non-CNS malignancies, we have demonstrated that OLFML3, specifically microglia-derived OLFML3, promotes VEGF-independent angiogenesis in primary brain microvascular ECs and may provide a complementary target to mitigate neovascularization in GBM.
Collapse
|
8
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
9
|
Li J, Li R, Tuleta I, Hernandez SC, Humeres C, Hanna A, Chen B, Frangogiannis NG. The role of endogenous Smad7 in regulating macrophage phenotype following myocardial infarction. FASEB J 2022; 36:e22400. [PMID: 35695814 DOI: 10.1096/fj.202101956rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Smad7 restrains TGF-β responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-β responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-β has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-β-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-β-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-β in macrophages are not restrained by endogenous Smad7 induction.
Collapse
Affiliation(s)
- Jun Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA.,Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruoshui Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Silvia C Hernandez
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Bijun Chen
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| |
Collapse
|
10
|
Zhou T, Zhang Y, Chen Y, Shan J, Wang J, Wang Y, Chang J, Jiang W, Chen R, Wang Z, Shi X, Yu Y, Li C, Li X. ROBO1 p.E280* Loses the Inhibitory Effects on the Proliferation and Angiogenesis of Wild-Type ROBO1 in Cholangiocarcinoma by Interrupting SLIT2 Signal. Front Oncol 2022; 12:879963. [PMID: 35615148 PMCID: PMC9124974 DOI: 10.3389/fonc.2022.879963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) remains one of the most lethal malignancies with an increasing incidence globally. Through whole-exome sequencing of 67 CCA tissues, we identified new mutated genes in CCA, including MACF1, METTL14, ROBO1, and so on. The study was designed to explore the effects and mechanism of ROBO1 wild type (ROBO1WT) and ROBO1E280* mutation on the progression of CCA. METHODS Whole-exome sequencing was performed to identify novel mutations in CCAs. In vitro and in vivo experiments were used to examine the function and mechanism of ROBO1WT and ROBO1E280* in cholangiocarcinoma. A tissue microarray including 190 CCA patients and subsequent analyses were performed to indicate the clinical significance of ROBO1. RESULTS Through whole-exome sequencing, we identified a novel CCA-related mutation, ROBO1E280*. ROBO1 was downregulated in CCA tissues, and the downregulation of ROBO1 was significantly correlated with poor prognosis. ROBO1WT suppressed the proliferation and angiogenesis of CCA in vitro and in vivo, while ROBO1E280* lost the inhibitory effects. Mechanically, ROBO1E280* translocated from the cytomembrane to the cytoplasm and interrupted the interaction between SLIT2 and ROBO1. We identified OLFML3 as a potential target of ROBO1 by conducting RNA-Seq assays. OLFML3 expression was downregulated by ROBO1WT and recovered by ROBO1E280*. Functionally, the silence of OLFML3 inhibited CCA proliferation and angiogenesis and was sufficient to repress the loss-of-function role of ROBO1E280*. CONCLUSIONS These results suggest that ROBO1 may act as a tumor suppressor and potential prognostic marker for CCA. ROBO1E280* mutation is a loss-of-function mutation, and it might serve as a candidate therapeutic target for CCA patients.
Collapse
Affiliation(s)
- Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
| |
Collapse
|
11
|
Li X, Liu L, Whitehead C, Li J, Thierry B, Le TD, Winter M. OUP accepted manuscript. Brief Funct Genomics 2022; 21:296-309. [PMID: 35484822 PMCID: PMC9328024 DOI: 10.1093/bfgp/elac006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia is a pregnancy-specific disease that can have serious effects on the health of both mothers and their offspring. Predicting which women will develop preeclampsia in early pregnancy with high accuracy will allow for improved management. The clinical symptoms of preeclampsia are well recognized, however, the precise molecular mechanisms leading to the disorder are poorly understood. This is compounded by the heterogeneous nature of preeclampsia onset, timing and severity. Indeed a multitude of poorly defined causes including genetic components implicates etiologic factors, such as immune maladaptation, placental ischemia and increased oxidative stress. Large datasets generated by microarray and next-generation sequencing have enabled the comprehensive study of preeclampsia at the molecular level. However, computational approaches to simultaneously analyze the preeclampsia transcriptomic and network data and identify clinically relevant information are currently limited. In this paper, we proposed a control theory method to identify potential preeclampsia-associated genes based on both transcriptomic and network data. First, we built a preeclampsia gene regulatory network and analyzed its controllability. We then defined two types of critical preeclampsia-associated genes that play important roles in the constructed preeclampsia-specific network. Benchmarking against differential expression, betweenness centrality and hub analysis we demonstrated that the proposed method may offer novel insights compared with other standard approaches. Next, we investigated subtype specific genes for early and late onset preeclampsia. This control theory approach could contribute to a further understanding of the molecular mechanisms contributing to preeclampsia.
Collapse
Affiliation(s)
- Xiaomei Li
- UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia
| | - Clare Whitehead
- Pregnancy Research Centre, Dept of Obstetrics & Gynaecology, University of Melbourne, Royal Women’s Hospital, Melbourne, 3052, VIC, Australia
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, 5095, SA, Australia
| | - Thuc D Le
- Corresponding authors: Thuc D. Le, UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia. E-mail: ; M. Winter, Future Industries Institute, University of South Australia, Mawson Lakes, 5095, SA, Australia. E-mail:
| | - Marnie Winter
- Corresponding authors: Thuc D. Le, UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia. E-mail: ; M. Winter, Future Industries Institute, University of South Australia, Mawson Lakes, 5095, SA, Australia. E-mail:
| |
Collapse
|
12
|
Stalin J, Imhof BA, Coquoz O, Jeitziner R, Hammel P, McKee TA, Jemelin S, Poittevin M, Pocard M, Matthes T, Kaci R, Delorenzi M, Rüegg C, Miljkovic-Licina M. Targeting OLFML3 in Colorectal Cancer Suppresses Tumor Growth and Angiogenesis, and Increases the Efficacy of Anti-PD1 Based Immunotherapy. Cancers (Basel) 2021; 13:cancers13184625. [PMID: 34572851 PMCID: PMC8464773 DOI: 10.3390/cancers13184625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
- Correspondence: ; Tel.: +41-26-300-8658
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland
| | - Oriana Coquoz
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Rachel Jeitziner
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
| | - Philippe Hammel
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Thomas A. McKee
- Division of Clinical Pathology, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marine Poittevin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marc Pocard
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Oncologic and Digestive Surgery, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Thomas Matthes
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Rachid Kaci
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Anatomopathology, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
- Department of Oncology, University Lausanne, CH-1011 Lausanne, Switzerland
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|