1
|
Miao F, Luan J, Feng X, Zhang Y, Feng Z, Wang Z, Wang Y, Yang R, Zhang C, Kopp JB, Pi J, Zhou H. Trametinib ameliorated Adriamycin-induced podocyte injury by inhibiting METTL3 modified m 6A RCAN1 RNA methylation. Eur J Pharmacol 2025; 999:177680. [PMID: 40287046 DOI: 10.1016/j.ejphar.2025.177680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
N6-methyladenosine (m6A) plays a crucial role in kidney diseases. Methyltransferase-like 3 (METTL3) as a key m6A writer can be regulated by trametinib. However, the epigenetic regulation of trametinib in focal segmental glomerulosclerosis (FSGS) remains unclear. We investigated whether trametinib protects podocytes by modulating METTL3-methylated target RNAs. Regulator of calcineurin 1 (RCAN1) was predicted as a target binding RNA of METTL3 by THEW database. Immunostaining of METTL3 and RCAN1 with podocyte marker Wilm's tumor-1 (WT-1) confirmed their localization within podocytes in renal biopsy from FSGS patients. Transfection METTL3 to human podocytes reduced WT-1, synaptopodin (SYNPO), and RCAN1 protein levels. Total m6A, m6A methylated RNA of RCAN1 increased and total RCAN1 mRNA decreased. Inhibition of METTL3 using siRNA or trametinib reversed these changes and attenuated the ADR-induced downregulation of WT-1 and SYNPO in vitro. In ADR-induced FSGS mice, trametinib ameliorated proteinuria, hypoalbuminemia, renal dysfunction, glomerulosclerosis and podocyte foot process effacement. Additionally, trametinib preserved podocyte function assessed by WT-1 and SYNPO as well as delayed renal fibrosis assessed by α-smooth muscle actin and fibronectin. Consistent with results in vitro, trametinib also decreased the ADR-induced upregulation of METTL3 and reversed the changed levels of total m6A, m6A methylated Rcan1 and total Rcan1 in FSGS mice. In conclusion, trametinib may serve as a renal protective agent for FSGS by regulating METTL3-dependent RCAN1 methylation levels.
Collapse
Affiliation(s)
- Feifei Miao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaochen Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yonghe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiduo Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuqing Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Yang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Aranda-Rivera AK, Amador-Martínez I, Aparicio-Trejo OE, León-Contreras JC, Hernández-Pando R, Saavedra E, García-Arroyo FE, Pedraza-Chaverri J, Sánchez-Lozada LG, Tapia E. Sulforaphane Restores Mitochondrial β-Oxidation and Reduces Renal Lipid Accumulation in a Model of Releasing Unilateral Ureteral Obstruction. Antioxidants (Basel) 2025; 14:288. [PMID: 40227243 PMCID: PMC11939561 DOI: 10.3390/antiox14030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Obstructive nephropathy (ON), characterized by urine flow disruption, can induce chronic kidney disease (CKD). Although the release of the obstruction is performed as the primary intervention, renal pathology often persists and progresses. Accordingly, the murine model of releasing unilateral ureteral obstruction (RUUO) is valuable for investigating the molecular events underlying renal damage after obstruction release. Remarkably, after RUUO, disturbances such as oxidative stress, inflammation, lipid accumulation, and fibrosis continue to increase. Mitochondrial dysfunction contributes to fibrosis in the UUO model, but its role in RUUO remains unclear. Additionally, the impact of using antioxidants to restore mitochondrial function and prevent renal fibrosis in RUUO has not been determined. This study aimed to determine the therapeutic effect of pre-administering the antioxidant sulforaphane (SFN) in the RUUO model. SFN was administered 1 day before RUUO to evaluate mitochondrial biogenesis, fatty acids (FA) metabolism, bioenergetics, dynamics, and mitophagy/autophagy mechanisms in the kidney. Our data demonstrated that SFN enhanced mitochondrial biogenesis and reestablished mitochondrial oxygen consumption and β-oxidation. These effects collectively reduced lipid accumulation and normalized mitochondrial dynamics, mitophagy, and autophagy, thereby mitigating fibrosis after obstruction. Our findings suggest that SFN holds promise as a potential therapeutic agent in ON-induced CKD progression in RUUO and opens new avenues in studying antioxidant molecules to treat this disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Isabel Amador-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyocán, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Fernando E. García-Arroyo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Zhao Y, Jia Q, Hao G, Han L, Gao Y, Zhang X, Yan Z, Li B, Wu Y, Zhang B, Li Y, Qin J. JiangyaTongluo decoction ameliorates tubulointerstitial fibrosis via regulating the SIRT1/PGC-1α/mitophagy axis in hypertensive nephropathy. Front Pharmacol 2024; 15:1491315. [PMID: 39726785 PMCID: PMC11669701 DOI: 10.3389/fphar.2024.1491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction With the increasing prevalence of hypertension, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Jiangya Tongluo decoction (JYTL), a recognized prescription in traditional Chinese medicine (TCM), is commonly used to calm an overactive liver and reduce excess yang, while also promoting blood flow to alleviate obstructions in the meridians. Previous research has indicated that JYTL may help mitigate kidney damage caused by hypertension; however, the underlying mechanisms have not been thoroughly assessed. Methods First, an amalgamation of UPLC-QE/MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of JYTL in treating hypertensive nephropathy (HN). Then, we used spontaneous hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) to evaluate the efficacy of JYTL on HN with valsartan as a positive reference. We also conducted DCFH-DA fluorescence staining in rat renal tissues to detect the level of ROS. Western blotting and immunohistochemistry were performed to investigate further the effect of JYTL decoction on key targets and signaling pathways. Results Through UPLC-QE/MS and network analysis, 189 active ingredients and 5 hub targets were identified from JYTL. GSEA in the MitoCarta3.0 database and PPI network analysis revealed that JYTL predominantly engages in the Sirt1-mitophagy signaling pathway. Tanshinone iia, quercetin, and adenosine in JYTL are the main active ingredients for treating HN. In vivo validation showed that JYTL decoction could improve kidney function, ameliorate tubulointerstitial fibrosis (TIF), and improve mitochondrial function by inhibiting ROS production and regulating mitochondrial dynamics in SHRs. JYTL treatment could also increase the expression of SIRT1, PGC-1α, Nrf1, and TFAM, and activate PINK1/Parkin-mediated mitophagy. Conclusion JYTL decoction may exert renal function protective and anti-fibrosis effects in HN by ameliorating mitochondrial function and regulating the SIRT1/PGC-1α-mitophagy pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boya Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Qin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Fan X, Wu L, Wang F, Liu D, Cen X, Xia H. Mitophagy Regulates Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:573-587. [PMID: 39664332 PMCID: PMC11631111 DOI: 10.1159/000541486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/31/2024] [Indexed: 12/13/2024]
Abstract
Background Mitophagy is a crucial process involved in maintaining cellular homeostasis by selectively eliminating damaged or surplus mitochondria. As the kidney is an organ with a high dynamic metabolic rate and abundant mitochondria, it is particularly crucial to control mitochondrial quality through mitophagy. Dysregulation of mitophagy has been associated with various renal diseases, including acute and chronic kidney diseases, and therefore a better understanding of the links between mitophagy and these diseases may present new opportunities for therapeutic interventions. Summary Mitophagy plays a pivotal role in the development of kidney diseases. Upregulation and downregulation of mitophagy have been observed in various kidney diseases, such as renal ischemia-reperfusion injury, contrast-induced acute kidney injury, diabetic nephropathy, kidney fibrosis, and several inherited renal diseases. A growing body of research has suggested that PINK1 and Parkin, the main mitophagy regulatory proteins, represent promising potential therapeutic targets for kidney diseases. In this review, we summarize the latest insights into how the progression of renal diseases can be mitigated through the regulation of mitophagy, while highlighting their performance in clinical trials. Key Message This review comprehensively outlines the mechanisms of mitophagy and its role in numerous kidney diseases. While early research holds promise, most mitophagy-centered therapeutic approaches have yet to reach the clinical application stage.
Collapse
Affiliation(s)
- Xiaolu Fan
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Linlin Wu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Fengqi Wang
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Liu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Xufeng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Hu JW, Xiao JJ, Cai S, Zhong Y, Wang S, Liu S, Wu X, Cai Y, Zhang BF. Inhibition of mitochondrial over-division by (+)-14,15-Dehydrovincamine attenuates cisplatin-induced acute kidney injury via the JNK/Mff pathway. Free Radic Biol Med 2024; 224:190-203. [PMID: 39197599 DOI: 10.1016/j.freeradbiomed.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) is characterized by mitochondrial damage and apoptosis, and safe and effective therapeutic agents are urgently needed. Renal tubular epithelial cells, the main site of AKI, are enriched with a large number of mitochondria, which are crucial for the progression of AKI with an impaired energy supply. Vincamine has anti-inflammatory and antioxidant effects in mouse AKI models. As a natural compound derived from Tabernaemontana pandacaqui, (+)-14, 15-Dehydrovincamine and Vincamine differ in structure by only one double bond, and the role and exact mechanism of (+)-14, 15-Dehydrovincamine remains to be elucidated in AKI. The present study demonstrated that (+)-14,15-Dehydrovincamine significantly ameliorated mitochondrial dysfunction and maintained mitochondrial homeostasis in a cisplatin-induced AKI model. Furthermore, (+)-14,15-Dehydrovincamine ameliorates cytochrome C-dependent apoptosis in renal tubular epithelial cells. c-Jun NH2-terminal kinase (JNK) was identified as a potential target protein of (+)-14,15-Dehydrovincamine attenuating AKI by network pharmacological analysis. (+)-14,15-Dehydrovincamine inhibited cisplatin-induced JNK activation, mitochondrial fission factor (Mff) phosphorylation, and dynamin-related protein 1 (Drp1) translocation to the mitochondria in renal tubular epithelial cells. Meanwhile, the JNK activator anisomycin restored Mff phosphorylation and Drp1 translocation, counteracting the protective effect of (+)-14,15-Dehydrovincamine on mitochondrial dysfunction in cisplatin-induced TECs injury. In conclusion, (+)-14,15-Dehydrovincamine reduced mitochondrial fission, maintained mitochondrial homeostasis, and attenuated apoptosis by inhibiting the JNK/Mff/Drp1 pathway, which in turn ameliorated cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun-Wei Hu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - ShiQi Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - YuTing Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - ShenTao Wang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - ShuYe Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - YouSheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| |
Collapse
|
6
|
Zhao X, Li Y, Yu J, Teng H, Wu S, Wang Y, Zhou H, Li F. Role of mitochondria in pathogenesis and therapy of renal fibrosis. Metabolism 2024; 155:155913. [PMID: 38609039 DOI: 10.1016/j.metabol.2024.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Yang K, Li T, Geng Y, Zou X, Peng F, Gao W. The role of mitophagy in the development of chronic kidney disease. PeerJ 2024; 12:e17260. [PMID: 38680884 PMCID: PMC11056108 DOI: 10.7717/peerj.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yingpu Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangyu Zou
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Fujun Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Jin X, He R, Lin Y, Liu J, Wang Y, Li Z, Liao Y, Yang S. Shenshuaifu Granule Attenuates Acute Kidney Injury by Inhibiting Ferroptosis Mediated by p53/SLC7A11/GPX4 Pathway. Drug Des Devel Ther 2023; 17:3363-3383. [PMID: 38024532 PMCID: PMC10656853 DOI: 10.2147/dddt.s433994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common clinical condition resulting in a rapid decline in renal function, and requires improvement in effective preventive measures. Ferroptosis, a novel form of cell death, is closely related to AKI. Shenshuaifu granule (SSF) has been demonstrated to prevent AKI through suppressing inflammation and apoptosis. Objective This study aimed to explore whether SSF can inhibit ferroptosis in AKI. Methods Active ingredients in SSF were detected through HPLC-MS/MS, and their binding abilities with ferroptosis were evaluated by molecular docking. Then, male C57/BL/6J mice were randomly divided into control, cisplatin, and cisplatin+SSF groups. In the latter two groups, mice were intraperitoneally injected with 20 mg/kg of cisplatin. For five consecutive days prior to cisplatin injection, mice in the cisplatin+SSF group were gavaged with 5.2 g/kg of SSF per day.72 h after cisplatin injection, the mice were sacrificed. Serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to evaluate renal function. H&E and PAS staining were used to observe pathological damage of kidney. Cell death was observed by TUNEL staining, and iron accumulation in kidneys of mice was detected by Prussian blue staining. Western blotting, immunohistochemistry, and immunofluorescence were used to investigate the presence of inflammation, oxidative stress, mitochondrial dysfunction, iron deposition, and lipid peroxidation in mouse kidneys. Results Active ingredients in SSF had strong affinities with ferroptosis. SSF reduced SCr (p<0.01) and BUN (p<0.0001) levels, pathological damage (p<0.0001), dead cells in the tubular epithelium (p<0.0001) and iron deposition (p<0.01) in mice with cisplatin induced AKI. And SSF downregulated macrophage infiltration (p<0.01), the expressions of high mobility group box 1 (HMGB1, p<0.05) and interleukin (IL)-17 (p<0.05), upregulated superoxide dismutase (SOD) 1 and 2 (p<0.01), and catalase (CAT, p<0.05), and alleviated mitochondrial dysfunction (p<0.05). More importantly, SSF regulated iron transport and intracellular iron overload and reduced the expression of ferritin (p<0.05). Moreover, it downregulated the expressions of cyclo-oxygenase-2 (Cox-2, p<0.001), acid CoA ligase 4 (ACSL4, p<0.05), and solute carrier family 7, member 11 (SLC7A11, p<001), upregulated glutathione peroxidase 4 (GPX4, p<0.01) and p53 (p<0.01), and decreased 4-hydroxynonenal (4-HNE) level (p<0.001). Conclusion SSF attenuates AKI by inhibiting ferroptosis mediated by p53/SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yunxin Lin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Jiahui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yijiao Liao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| |
Collapse
|
10
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway. Cell Death Dis 2022; 13:774. [PMID: 36071051 PMCID: PMC9452577 DOI: 10.1038/s41419-022-05220-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI), characterized by excessive mitochondrial damage and cell apoptosis, remains a clinical challenge. Recent studies suggest that regulator of calcineurin 1 (RCAN1) regulates mitochondrial function in different cell types, but the underlying mechanisms require further investigation. Herein, we aim to explore whether RCAN1 involves in mitochondrial dysfunction in AKI and the exact mechanism. In present study, AKI was induced by I/R and cisplatin in RCAN1flox/flox mice and mice with renal tubular epithelial cells (TECs)-specific deletion of RCAN1. The role of RCAN1 in hypoxia-reoxygenation (HR) and cisplatin-induced injury in human renal proximal tubule epithelial cell line HK-2 was also examined by overexpression and knockdown of RCAN1. Mitochondrial function was assessed by transmission electron microscopy, JC-1 staining, MitoSOX staining, ATP production, mitochondrial fission and mitophagy. Apoptosis was detected by TUNEL assay, Annexin V-FITC staining and Western blotting analysis of apoptosis-related proteins. It was found that protein expression of RCAN1 was markedly upregulated in I/R- or cisplatin-induced AKI mouse models, as well as in HR models in HK-2 cells. RCAN1 deficiency significantly reduced kidney damage, mitochondrial dysfunction, and cell apoptosis, whereas RCAN1 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration demonstrated that RCAN1 increases the phosphorylation of mitochondrial fission factor (Mff) by binding to downstream c-Jun N-terminal kinase (JNK), then promotes dynamin related protein 1 (Drp1) migration to mitochondria, ultimately leads to excessive mitochondrial fission of renal TECs. In conclusion, our study suggests that RCAN1 could induce mitochondrial dysfunction and apoptosis by activating the downstream JNK/Mff signaling pathway. RCAN1 may be a potential therapeutic target for conferring protection against I/R- or cisplatin-AKI.
Collapse
|
12
|
Lin C, Chen W, Han Y, Sun Y, Zhao X, Yue Y, Li B, Fan W, Zhang T, Xiao L. PTEN-induced kinase 1 enhances the reparative effects of bone marrow mesenchymal stromal cells on mice with renal ischaemia/reperfusion-induced acute kidney injury. Hum Cell 2022; 35:1650-1670. [PMID: 35962179 PMCID: PMC9515057 DOI: 10.1007/s13577-022-00756-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) is a common severe acute syndrome caused by multiple factors and is characterized by a rapid decline in renal function during a short period. Bone marrow mesenchymal stromal cells (BMSCs) are effective in treating AKI. However, the mechanism of their beneficial effects remains unclear. PTEN-induced kinase 1 (PINK1) may play an important role in kidney tissue repair. In this study, we explored the effect of PINK1 overexpression on enhancing BMSC-mediated repair of AKI. In this study, ischaemia/reperfusion-induced AKI (IRI-AKI) in mice and a hypoxia-reoxygenation model in cells were established, and the indices were examined by pathology and immunology experiments. After ischaemia/reperfusion, PINK1 overexpression reduced apoptosis in injured kidney tissue cell, decreased T lymphocyte infiltration, increased macrophage infiltration, and alleviated the inflammatory response. PINK1 relieved the stress response of BMSCs and renal tubular epithelial cells (RTECs), reduced apoptosis, altered the release of inflammatory factors, and reduced the proliferation of peripheral blood mononuclear cells (PBMCs). In conclusion, BMSCs and RTECs undergo stress responses in response to hypoxia, inflammation and other conditions, and overexpressing PINK1 in BMSCs could enhance their ability to resist these stress reactions. Furthermore, PINK1 overexpression can regulate the distribution of immune cells and improve the inflammatory response. The regulation of mitochondrial autophagy during IRI-AKI maintains mitochondrial homeostasis and protects renal function. The results of this study provide new strategies and experimental evidence for BMSC-mediated repair of IRI-AKI.
Collapse
Affiliation(s)
- Chenyu Lin
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Wen Chen
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Yong Han
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Yujie Sun
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Xiaoqiong Zhao
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.,Jiamusi University, Jiamusi, China
| | - Yuan Yue
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.,Jiamusi University, Jiamusi, China
| | - Binyu Li
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | - Wenmei Fan
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China
| | | | - Li Xiao
- Institute of Respiratory and Critical Medicine, Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, the 8th Medical Centre of Chinese PLA General Hospital, No. 17 Heishan Hu road, Qinglongqiao street, Haidian district, Beijing, 100091, China.
| |
Collapse
|
13
|
Jin L, Yu B, Liu G, Nie W, Wang J, Chen J, Xiao L, Xia H, Han F, Yang Y. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB J 2022; 36:e22342. [PMID: 35524750 DOI: 10.1096/fj.202200199rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
Abstract
Renal fibrosis is the final common outcome of chronic kidney disease (CKD), which remains a huge challenge due to a lack of targeted treatment. Growing evidence suggests that during the process of CKD, the integrity and function of mitochondria in renal tubular epithelial cells (TECs) are generally impaired and strongly connected with the progression of renal fibrosis. Mitophagy, a selective form of autophagy, could remove aberrant mitochondria to maintain mitochondrial homeostasis. Deficiency of mitophagy has been reported to aggravate renal fibrosis. However, whether induction of mitophagy could alleviate renal fibrosis has not been stated. In this study, we explored the effect of mitophagy activation by UMI-77, a compound recently verified to induce mitophagy, on murine CKD model of unilateral ureteral obstruction (UUO) in vivo and TECs in vitro. In UUO mice, we found the changes of mitochondrial damage, ROS production, transforming growth factor (TGF)-β1/Smad pathway activation, as well as epithelial-mesenchymal transition phenotype and renal fibrosis, and these changes were ameliorated by mitophagy enhancement using UMI-77. Moreover, TEC apoptosis, nuclear factor (NF)-κB signaling activation, and interstitial inflammation after UUO were significantly mitigated by augmented mitophagy. Then, we found UMI-77 could effectively and safely induce mitophagy in TECs in vitro, and reduced TGF-β1/Smad signaling and downstream profibrotic responses in TGF-β1-treated TECs. These changes were restored by a mitophagy inhibitor. In conclusion, we demonstrated that mitophagy activation protected against renal fibrosis through improving mitochondrial fitness, downregulating TGF-β1/Smad signaling and alleviating TEC injuries and inflammatory infiltration in kidneys.
Collapse
Affiliation(s)
- Lini Jin
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Binfeng Yu
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangjun Liu
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanyun Nie
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Junni Wang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Xiao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongguang Xia
- Liangzhu Laboratory, Zhejiang University Medical Center, Department of Biochemistry & Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Jia Q, Han L, Zhang X, Yang W, Gao Y, Shen Y, Li B, Wang S, Qin M, Lowe S, Qin J, Hao G. Tongluo Yishen Decoction Ameliorates Renal Fibrosis via Regulating Mitochondrial Dysfunction Induced by Oxidative Stress in Unilateral Ureteral Obstruction Rats. Front Pharmacol 2021; 12:762756. [PMID: 34712143 PMCID: PMC8545824 DOI: 10.3389/fphar.2021.762756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tongluo Yishen (TLYS) decoction is an herb that is extensively applied for the treatment of chronic kidney disease (CKD) in traditional Chinese medicine. In this study, 37 different dominant chemical constituents of TLYS were identified. Rats with unilateral ureteral obstruction (UUO) were used as animal models, and TLYS decoction was administered orally for 14 days. TLYS decoction reduced the levels of renal function indicators, serum creatinine levels and blood urea nitrogen levels and alleviated renal pathological changes. Gene Ontology (GO) and KEGG pathway analyses of RNA sequencing data showed that TLYS decoction had significant effects on biological processes, cellular components and molecular functions in UUO rats and that the phagosome (a membrane source in the early stages of autophagy), lysosome (an important component of autolysosome), and oxidation pathways (which contribute to mitochondrial function) might be related to the antifibrotic effects of TLYS decoction. Moreover, we found significant mitochondrial function impairment, including a decreased mitochondrial membrane potential (MMP) and an imbalance in mitochondrial dynamics, excessive oxidative stress, and activation of Pink1/Parkin-mediated mitophagy in UUO rats. Treatment with TLYS decoction significantly increased the MMP, normalized mitochondrial dynamics and ameliorated renal injury. Moreover, TLYS alleviated the mitophagy clearance deficiency. In conclusion, our study showed that TLYS decoction can ameliorate mitochondrial dynamics by reducing oxidative stress and regulating mitophagy, thereby relieving renal injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research on TLYS decoction.
Collapse
Affiliation(s)
- Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Shen
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shang Hai, China
| | - Bing Li
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shuyan Wang
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Scott Lowe
- Kansas City University of Medicine and Biosciences, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang J, Chen H, Weng X, Liu H, Chen Z, Huang Q, Wang L, Liu X. RCAN1.4 attenuates renal fibrosis through inhibiting calcineurin-mediated nuclear translocation of NFAT2. Cell Death Discov 2021; 7:317. [PMID: 34707090 PMCID: PMC8551295 DOI: 10.1038/s41420-021-00713-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is thus deemed to a global health problem. Renal fibrosis, characterized by accumulation of extracellular matrix (ECM) components in the kidney, is considered a common pathway leading to CKD. Regulator of calcineurin1 (RCAN1), identified as a competitive endogenous inhibitor of the phosphatase calcineurin, participates in ECM deposition in various organs. However, the role of RCAN1 in renal fibrosis remains unclear. Here, unilateral ureteral obstruction (UUO), a well-known model to induce renal fibrosis in vivo, was performed on mice for a week. To overexpress RCAN1.4 in vivo, recombinant adeno-associated virus 9-packed RCAN1.4 over-expression plasm was employed in mice kidney. Lentivirus-packed RCAN1.4 over-expression plasm was employed to transfer into HK-2 and NRK-49F cells in vitro. The results indicated that RCAN1.4 expression was impaired both in UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibrosis in vitro. However, knocking in of RCAN1.4 suppressed the production of extracellular matrix (ECM) both in vivo and in vitro. Furthermore, in vitro, the apoptosis-related proteins, including the ratio of Bax/Bcl-2 and cleaved-caspase3, were elevated in cells transfected with RCAN1.4 overexpression plasmid. In addition, we found that RCAN1.4 could rugulated NFAT2 nuclear distribution by inhibiting calcineurin pathway. So overexpression of RCAN1.4 could reverse renal fibrosis, attenuate ECM related protein accumulation, promote apoptosis of myofibroblast via inhibiting Calcineurin/NFAT2 signaling pathway. Taken together, our study demonstrated that targeting RCAN1.4 may be therapeutic efficacy in renal fibrosis.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|