1
|
Jung H, Paust S. Chemokines in the tumor microenvironment: implications for lung cancer and immunotherapy. Front Immunol 2024; 15:1443366. [PMID: 39114657 PMCID: PMC11304008 DOI: 10.3389/fimmu.2024.1443366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) is a complex interconnected network of immune cells, fibroblasts, blood vessels, and extracellular matrix surrounding the tumor. Because of its immunosuppressive nature, the TME can pose a challenge for cancer immunotherapies targeting solid tumors. Chemokines have emerged as a crucial element in enhancing the efficacy of cancer immunotherapy, playing a direct role in immune cell signaling within the TME and facilitating immune cell migration towards cancer cells. However, chemokine ligands and their receptors exhibit context-dependent diversity, necessitating evaluation of their tumor-promoting or inhibitory effects based on tumor type and immune cell characteristics. This review explores the role of chemokines in tumor immunity and metastasis in the context of the TME. We also discuss current chemokine-related advances in cancer immunotherapy research, with a particular focus on lung cancer, a common cancer with a low survival rate and limited immunotherapy options.
Collapse
Affiliation(s)
| | - Silke Paust
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
2
|
Xiao B, Ackun-Farmmer MA, Adjei-Sowah E, Liu Y, Chandrasiri I, Benoit DSW. Advancing Bone-Targeted Drug Delivery: Leveraging Biological Factors and Nanoparticle Designs to Improve Therapeutic Efficacy. ACS Biomater Sci Eng 2024; 10:2224-2234. [PMID: 38537162 DOI: 10.1021/acsbiomaterials.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Designing targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity. Therefore, this work investigated the effect of target ligand density, the treatment window after injury, specificity of TRAP binding peptide (TBP), the extent of TRAP deposition, and underlying genetic factors (e.g., mouse strain differences) on TBP-NP targeting. Data based on in vitro binding studies and in vivo biodistribution analyses using a murine femoral fracture model suggest that TBP-NP-TRAP interactions and TBP-NP bone accumulation were ligand-density-dependent; in vitro, TRAP affinity was correlated with ligand density up to the maximum of 200,000 TBP ligands/NP, while NPs with 80,000 TBP ligands showed 2-fold increase in fracture accumulation at day 21 post injury compared with that of untargeted or scrambled controls. While fracture accumulation exhibited similar trends when injected at day 3 compared to that at day 21 postfracture, there were no significant differences observed between TBP-functionalized and control NPs, possibly due to saturation of TRAP by NPs at day 3. Leveraging a calcium-depletion diet, TRAP deposition and TBP-NP bone accumulation were positively correlated, confirming that TRAP-TBP binding leads to TBP-NP bone accumulation in vivo. Furthermore, TBP-NP exhibited similar bone accumulation in both C57BL/6 and BALB/c mouse strains versus control NPs, suggesting the broad applicability of TBP-NP regardless of the underlying genetic differences. These studies provide insight into TBP-NP design, mechanism, and therapeutic windows, which inform NP design and treatment strategies for fractures and other bone-associated diseases that leverage TRAP, such as marrow-related hematologic diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Marian A Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, New York 14623, United States
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14623, United States
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14623, United States
- Materials Science Program, University of Rochester, Rochester, New York 14623, United States
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
3
|
Xiao B, Liu Y, Chandrasiri I, Adjei-Sowah E, Mereness J, Yan M, Benoit DSW. Bone-Targeted Nanoparticle Drug Delivery System-Mediated Macrophage Modulation for Enhanced Fracture Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305336. [PMID: 37797180 PMCID: PMC10922143 DOI: 10.1002/smll.202305336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Indexed: 10/07/2023]
Abstract
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3β) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Ming Yan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
4
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
5
|
Xiao B, Liu Y, Chandrasiri I, Overby C, Benoit DSW. Impact of Nanoparticle Physicochemical Properties on Protein Corona and Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2023:10.1021/acsami.2c22471. [PMID: 36916683 PMCID: PMC11955209 DOI: 10.1021/acsami.2c22471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Macrophages, the major component of the mononuclear phagocyte system, uptake and clear systemically administered nanoparticles (NPs). Therefore, leveraging macrophages as a druggable target may be advantageous to enhance NP-mediated drug delivery. Despite many studies focused on NP-cell interactions, NP-mediated macrophage polarization mechanisms are still poorly understood. This work aimed to explore the effect of NP physicochemical parameters (size and charge) on macrophage polarization. Upon exposure to biological fluids, proteins rapidly adsorb to NPs and form protein coronas. To this end, we hypothesized that NP protein coronas govern NP-macrophage interactions, uptake, and subsequent macrophage polarization. To test this hypothesis, model polystyrene NPs with various charges and sizes, as well as NPs relevant to drug delivery, were utilized. Data suggest that cationic NPs potentiate both M1 and M2 macrophage markers, while anionic NPs promote M1-to-M2 polarization. Additionally, anionic polystyrene nanoparticles (APNs) of 50 nm exhibit the greatest influence on M2 polarization. Proteomics was pursued to further understand the effect of NPs physicochemical parameters on protein corona, which revealed unique protein patterns based on NP charge and size. Several proteins impacting M1 and M2 macrophage polarization were identified within cationic polystyrene nanoparticles (CPNs) corona, while APNs corona included fewer M1 but more M2-promoting proteins. Nevertheless, size impacts protein corona abundance but not identities. Altogether, protein corona identities varied based on NP surface charge and correlated to dramatic differences in macrophage polarization. In contrast, NP size differentially impacts macrophage polarization, which is dominated by NP uptake level rather than protein corona. In this work, specific corona proteins were identified as a function of NP physicochemical properties. These proteins are correlated to specific macrophage polarization programs and may provide design principles for developing macrophage-mediated NP drug delivery systems.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, NY 14623, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Clyde Overby
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY 14623, USA
- Knight Campus, Department of Bioengineering, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Pradhan L, Moore D, Ovadia EM, Swedzinski SL, Cossette T, Sikes RA, van Golen K, Kloxin AM. Dynamic bioinspired coculture model for probing ER + breast cancer dormancy in the bone marrow niche. SCIENCE ADVANCES 2023; 9:eade3186. [PMID: 36888709 PMCID: PMC9995072 DOI: 10.1126/sciadv.ade3186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/03/2023] [Indexed: 05/28/2023]
Abstract
Late recurrences of breast cancer are hypothesized to arise from disseminated tumor cells (DTCs) that reactivate after dormancy and occur most frequently with estrogen receptor-positive (ER+) breast cancer cells (BCCs) in bone marrow (BM). Interactions between the BM niche and BCCs are thought to play a pivotal role in recurrence, and relevant model systems are needed for mechanistic insights and improved treatments. We examined dormant DTCs in vivo and observed DTCs near bone lining cells and exhibiting autophagy. To study underlying cell-cell interactions, we established a well-defined, bioinspired dynamic indirect coculture model of ER+ BCCs with BM niche cells, human mesenchymal stem cells (hMSCs) and fetal osteoblasts (hFOBs). hMSCs promoted BCC growth, whereas hFOBs promoted dormancy and autophagy, regulated in part by tumor necrosis factor-α and monocyte chemoattractant protein 1 receptor signaling. This dormancy was reversible by dynamically changing the microenvironment or inhibiting autophagy, presenting further opportunities for mechanistic and targeting studies to prevent late recurrence.
Collapse
Affiliation(s)
- Lina Pradhan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - DeVonte Moore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Samantha L. Swedzinski
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Travis Cossette
- Office of Laboratory Animal Medicine, University of Delaware, Newark, DE 19716, USA
| | - Robert A. Sikes
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kenneth van Golen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Tang Z, Gu Y, Shi Z, Min L, Zhang Z, Zhou P, Luo R, Wang Y, Cui Y, Sun Y, Wang X. Multiplex immune profiling reveals the role of serum immune proteomics in predicting response to preoperative chemotherapy of gastric cancer. Cell Rep Med 2023; 4:100931. [PMID: 36724786 PMCID: PMC9975277 DOI: 10.1016/j.xcrm.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Responses toward preoperative chemotherapy are heterogeneous in patients with gastric adenocarcinoma. Existing studies in the field focus heavily on the tumor microenvironment (TME), whereas little is known about the relationship between systemic immunity and chemotherapy response. In this study, we collect serum samples from patients with gastric adenocarcinoma before, on, and after preoperative chemotherapy and study their immune proteomics using an antibody-based proteomics panel. We also collect surgically resected tumor samples and incorporate multiple methods to assess their TME. We find that both local and systemic immune features are associated with treatment response. Preoperative chemotherapy induces a sophisticated systemic immune response indicated by dynamic serum immune proteomics. A pretreatment serum protein scoring system is established for response prediction. Together, these findings highlight the fundamental but largely underestimated role of systemic immunity in the treatment of gastric cancer, suggesting a patient stratification strategy based on pretreatment serum immune proteomics.
Collapse
Affiliation(s)
- Zhaoqing Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhongyi Shi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lingqiang Min
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ziwei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peng Zhou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone Marrow Microenvironment-On-Chip for Culture of Functional Hematopoietic Stem Cells. Front Bioeng Biotechnol 2022; 10:855777. [PMID: 35795163 PMCID: PMC9252162 DOI: 10.3389/fbioe.2022.855777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Hematopoiesis takes place in the bone marrow and is supported by a complex cellular and molecular network in the bone marrow microenvironment. Commonly used models of the human bone marrow microenvironment include murine models and two-dimensional and three-dimensional tissue cultures. While these model systems have led to critical advances in the field, they fail to recapitulate many aspects of the human bone marrow. This has limited our understanding of human bone marrow pathophysiology and has led to deficiencies in therapy for many bone marrow pathologies such as bone marrow failure syndromes and leukemias. Therefore, we have developed a modular murine bone marrow microenvironment-on-chip using a commercially available microfluidic platform. This model includes a vascular channel separated from the bone marrow channel by a semi-porous membrane and incorporates critical components of the bone marrow microenvironment, including osteoblasts, endothelial cells, mesenchymal stem cells, and hematopoietic stem and progenitor cells. This system is capable of maintaining functional hematopoietic stem cells in vitro for at least 14 days at frequencies similar to what is found in the primary bone marrow. The modular nature of this system and its accessibility will allow for acceleration of our understanding of the bone marrow.
Collapse
Affiliation(s)
- Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Maggie L. Lesch
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin J. Frisch
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Benjamin J. Frisch,
| |
Collapse
|
9
|
Ackun-Farmmer MA, Alwaseem H, Counts M, Bortz A, Giovani S, Frisch BJ, Fasan R, Benoit DSW. Nanoparticle-Mediated Delivery of Micheliolide Analogs to Eliminate Leukemic Stem Cells in the Bone Marrow. ADVANCED THERAPEUTICS 2022; 5:2100100. [PMID: 35097186 PMCID: PMC8791645 DOI: 10.1002/adtp.202100100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 01/03/2023]
Abstract
Micheliolide (MCL) is a naturally occurring sesquiterpene lactone that selectively targets leukemic stem cells (LSCs), which persist after conventional chemotherapy for myeloid leukemias, leading to disease relapse. To overcome modest MCL cytotoxicity, analogs with ≈two-threefold greater cytotoxicity against LSCs are synthesized via late-stage chemoenzymatic C-H functionalization. To enhance bone marrow delivery, MCL analogs are entrapped within bone-targeted polymeric nanoparticles (NPs). Robust drug loading capacities of up to 20% (mg drug mg-1 NP) are obtained, with release dominated by analog hydrophobicity. NPs loaded with a hydrolytically stable analog are tested in a leukemic mouse model. Median survival improved by 13% and bone marrow LSCs are decreased 34-fold following NPMCL treatments versus controls. Additionally, selective leukemic cell and LSC cytotoxicity of the treatment versus normal hematopoietic cells is observed. Overall, these studies demonstrate that MCL-based antileukemic agents combined with bone-targeted NPs offer a promising strategy for eradicating LSCs.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- University of Rochester, Department of Biomedical Engineering, 308 Robert B. Goergen Hall, Box 270168, Rochester, NY 14627, USA
| | - Hanan Alwaseem
- University of Rochester, Department of Chemistry, 418 Hutchison Hall, RC Box 270216, Rochester, NY 14627-0216, USA
| | - Michele Counts
- University of Rochester, Department of Biomedical Engineering, 308 Robert B. Goergen Hall, Box 270168, Rochester, NY 14627, USA
| | - Andrew Bortz
- University of Rochester, Department of Chemistry, 418 Hutchison Hall, RC Box 270216, Rochester, NY 14627-0216, USA
| | - Simone Giovani
- University of Rochester, Department of Chemistry, 418 Hutchison Hall, RC Box 270216, Rochester, NY 14627-0216, USA
| | - Benjamin J Frisch
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, 601 Elmwood Ave, Box 704, Rochester, NY 14642, USA
| | - Rudi Fasan
- University of Rochester, Department of Chemistry, 418 Hutchison Hall, RC Box 270216, Rochester, NY 14627-0216, USA
| | - Danielle S W Benoit
- University of Rochester Medical Center. Department of Orthopaedics. 308 Robert B. Goergen Hall, Box 270168, Rochester, NY 14627, USA
| |
Collapse
|
10
|
Ackun-Farmmer M, Xiao B, Newman MR, Benoit DS. Macrophage depletion increases target specificity of bone-targeted nanoparticles. J Biomed Mater Res A 2022; 110:229-238. [PMID: 34319645 PMCID: PMC8595540 DOI: 10.1002/jbm.a.37279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Despite efforts to achieve tissue selectivity, the majority of systemically administered drug delivery systems (DDSs) are cleared by the mononuclear phagocyte system (MPS) before reaching target tissues regardless of disease or injury pathology. Previously, we showed that while tartrate-resistant acid phosphatase (TRAP) binding peptide (TBP)-targeted polymeric nanoparticles (TBP-NP) delivering a bone regenerative Wnt agonist improved NP fracture accumulation and expedited healing compared with controls, there was also significant MPS accumulation. Here we show that TBP-NPs are taken up by liver, spleen, lung, and bone marrow macrophages (Mϕ), with 76 ± 4%, 49 ± 11%, 27 ± 9%, and 92 ± 5% of tissue-specific Mϕ positive for NP, respectively. Clodronate liposomes (CLO) significantly depleted liver and spleen Mϕ, resulting in 1.8-fold and 3-fold lower liver and spleen and 1.3-fold and 1.6-fold greater fracture and naïve femur accumulation of TBP-NP. Interestingly, depletion and saturation of MPS using 10-fold greater TBP-NP doses also resulted in significantly higher TBP-NP accumulation at lungs and kidneys, potentially through compensatory clearance mechanisms. The higher NP dose resulted in greater TBP-NP accumulation at naïve bone tissue; however, other MPS tissues (i.e., heart and lungs) exhibited greater TBP-NP accumulation, suggesting uptake by other cell types. Most importantly, neither Mϕ depletion nor saturation strategies improved fracture site selectivity of TBP-NPs, possibly due to a reduction of Mϕ-derived osteoclasts, which deposit the TRAP epitope. Altogether, these data support that MPS-mediated clearance is a key obstacle in robust and selective fracture accumulation for systemically administered bone-targeted DDS and motivates the development of more sophisticated approaches to further improve fracture selectivity of DDS.
Collapse
Affiliation(s)
- Marian Ackun-Farmmer
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA,University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Baixue Xiao
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA,University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Maureen R. Newman
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA,University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Danielle S.W. Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA,University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA,University of Rochester, Department of Chemical Engineering, Rochester, NY, USA,University of Rochester, Materials Science Program, Rochester NY, USA
| |
Collapse
|
11
|
Soto CA, Lo Celso C, Purton LE, Frisch BJ. From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus 2021; 5:e10516. [PMID: 34693187 PMCID: PMC8520063 DOI: 10.1002/jbm4.10516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
The bone marrow microenvironment (BMME) regulates hematopoiesis through a complex network of cellular and molecular components. Hematologic malignancies reside within, and extensively interact with, the same BMME. These interactions consequently alter both malignant and benign hematopoiesis in multiple ways, and can encompass initiation of malignancy, support of malignant progression, resistance to chemotherapy, and loss of normal hematopoiesis. Herein, we will review supporting studies for interactions of the BMME with hematologic malignancies and discuss challenges still facing this exciting field of research. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Celia A. Soto
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Cristina Lo Celso
- Department of Life SciencesImperial College LondonLondonUK
- Sir Francis Crick InstituteLondonUK
| | - Louise E. Purton
- St Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Medicine at St. Vincent's HospitalThe University of MelbourneMelbourneVictoriaAustralia
| | - Benjamin J. Frisch
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Wilmot Cancer InstituteUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
- Center for Musculoskeletal ResearchUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| |
Collapse
|