1
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Luque-Uría Á, Calvo MV, Visioli F, Fontecha J. Milk fat globule membrane and its polar lipids: reviewing preclinical and clinical trials on cognition. Food Funct 2024; 15:6783-6797. [PMID: 38828877 DOI: 10.1039/d4fo00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In most parts of the world, life expectancy is increasing thanks to improved healthcare, public health policies, nutrition, and treatment. This increase in lifespan is often not accompanied by an increase in health span, which severely affects people as they age. One notable consequence of this is the increasing prevalence of neurodegenerative diseases such as mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, dietary and pharmaceutical measures must be taken to reduce the burden of such pathologies. Among the different types of nutrients found in the diet, lipids and especially polar lipids are very important for cognition due to their abundance in the brain. Amid the most studied sources of polar lipids, milk fat globule membrane (MFGM) stands out as it is abundant in industrial by-products such as buttermilk. In this narrative review, we discuss the latest, i.e. less than five years old, scientific evidence on the use of MFGM and its polar lipids in cognitive neurodevelopment in early life and their potential effect in preventing neurodegeneration in old age. We conclude that MFGM is an interesting, abundant and exploitable source of relatively inexpensive bioactive molecules that could be properly formulated and utilized in the areas of neurodevelopment and cognitive decline. Sufficiently large randomized controlled trials are required before health-related statements can be made. However, research in this area is progressing rapidly and the evidence gathered points to biological, health-promoting effects.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.
- IMDEA-Food, Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
3
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Zhou Y, Zou X, Feng R, Zhan X, Hong H, Luo Y, Tan Y. Improvement of Spatial Memory and Cognitive Function in Mice via the Intervention of Milk Fat Globule Membrane. Nutrients 2023; 15:nu15030534. [PMID: 36771241 PMCID: PMC9921783 DOI: 10.3390/nu15030534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
With the improvement of living standards, dietary interventions have become an appropriate approach to enhance memory and cognitive performance. The present study investigated the potential mechanisms of spatial memory and cognitive function improvement with the milk fat globule membrane (MFGM) intervention in mice. The Morris water maze experiment revealed that the trajectories of mice in group M were more disordered. Also, the immunohistochemical results demonstrated a significantly higher number of neurons in group M compared with group C, especially in the hippocampal dentate gyrus (DG) area. It is suggested that MFGM enhanced mice's spatial memory and cognition from macroscopic behavior and microscopic cytology, respectively. Meanwhile, 47 differentially expressed proteins (DEPs) were identified, including 20 upregulated and 27 downregulated proteins. Upregulated (Sorbs 2, Rab 39, and Cacna 1e) and downregulated (Hp and Lrg 1) DEPs may improve spatial memory and cognition in mice by promoting synapse formation and increasing neurotransmitter receptors. KEGG enrichment analysis of the DEPs identified seven signaling pathways that were significantly enriched (p < 0.05). One of these pathways was neuroactive ligand-receptor interactions, which are strongly associated with improved spatial memory and cognitive performance. These findings give some new insights and references to the potential mechanisms of spatial memory and cognitive enhancement by MFGM.
Collapse
Affiliation(s)
- Yongjie Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoxiao Zou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Zhan
- Department of Product and Development, Heibei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
5
|
Cavaletto M, Givonetti A, Cattaneo C. The Immunological Role of Milk Fat Globule Membrane. Nutrients 2022; 14:nu14214574. [PMID: 36364836 PMCID: PMC9655658 DOI: 10.3390/nu14214574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Human milk is the ideal food for newborns until the age of six months. Human milk can be defined as a dynamic living tissue, containing immunological molecules, such as immunoglobulins, supra-molecular structures, such as the milk fat globule membrane (MFGM), and even entire cells, such as the milk microbiota. The milk composition changes throughout lactation to fulfill the infant’s requirements and reflect the healthy/disease status of the lactating mother. Many bioactive milk components are either soluble or bound to the MFGM. In this work, we focus on the peculiar role of the MFGM components, from their structural organization in fat globules to their route into the gastrointestinal tract. Immunometabolic differences between human and bovine MFGM components are reported and the advantages of supplementing infant formula with the MFGM are highlighted.
Collapse
Affiliation(s)
- Maria Cavaletto
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence:
| | - Annalisa Givonetti
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Chiara Cattaneo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15121 Alessandria, Italy
| |
Collapse
|
6
|
Yuan Q, Gong H, Du M, Li T, Mao X. Milk fat globule membrane supplementation to obese rats during pregnancy and lactation promotes neurodevelopment in offspring via modulating gut microbiota. Front Nutr 2022; 9:945052. [PMID: 36046136 PMCID: PMC9421050 DOI: 10.3389/fnut.2022.945052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pre-pregnancy obesity and high-fat diet (HFD) during pregnancy and lactation are associated with neurodevelopmental delay in offspring. This study aimed to investigate whether milk fat globule membrane (MFGM) supplementation in obese dams could promote neurodevelopment in offspring. Obese female rats induced by HFD were supplemented with MFGM during pregnancy and lactation. Maternal HFD exposure significantly delayed the maturation of neurological reflexes and inhibited neurogenesis in offspring, which were significantly recovered by maternal MFGM supplementation. Gut microbiota analysis revealed that MFGM supplementation modulated the diversity and composition of gut microbiota in offspring. The abundance of pro-inflammatory bacteria such as Escherichia shigella and Enterococcus were down-regulated, and the abundance of bacteria with anti-inflammatory and anti-obesity functions, such as Akkermansia and Lactobacillus were up-regulated. Furthermore, MFGM alleviated neuroinflammation by decreasing the levels of lipopolysaccharides (LPS) and pro-inflammatory cytokines in the circulation and brain, as well as inhibiting the activation of microglia. Spearman’s correlation analysis suggested that there existed a correlation between gut microbiota and inflammation-related indexes. In conclusion, maternal MFGM supplementation promotes neurodevelopment partly via modulating gut microbiota in offspring.
Collapse
Affiliation(s)
- Qichen Yuan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
8
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|
9
|
Li T, Gong H, Zhan B, Mao X. Chitosan oligosaccharide attenuates hepatic steatosis in HepG2 cells via the activation of AMP‐activated protein kinase. J Food Biochem 2022; 46:e14045. [DOI: 10.1111/jfbc.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Tiange Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China Beijing China
| | - Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China Beijing China
| | - Biyuan Zhan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China Beijing China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China Beijing China
| |
Collapse
|