1
|
Han Z, Deng T, Yan D, Jia Y, Tang J, Wang X. Hydrogen sulfide protects against cisplatin-induced experimental nephrotoxicity in animal models: a systematic review and meta-analysis. PeerJ 2025; 13:e19481. [PMID: 40416612 PMCID: PMC12103845 DOI: 10.7717/peerj.19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Background Cisplatin-induced acute kidney injury (cis-AKI) is not rare in oncological patients clinically, but there are limited prevention and treatment methods available. The efficacy of hydrogen sulfide (H2S) in mitigating cis-AKI has been studied and determined in animal models. Methods According to the pre-registered program (PROSPERO: CRD 42023463779), we searched PubMed/Medline, Embase, and Web of Science databases using the keywords: hydrogen sulfide, cisplatin, acute kidney injury, and alternatives. A total of 13 articles met the inclusion criteria were included. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated and aggregated using random effects meta-analysis. Results The results showed that H2S treatment significantly improved renal function (serum creatinine SMD = -2.96, 95% CI [-3.72 to -2.19], p < 0.00001; blood urea nitrogen SMD = -2.73, 95% CI [-3.68 to -1.78], p < 0.00001), decreased oxidative stress (superoxide dismutase SMD = 2.90, 95% CI [1.36-4.43], p = 0.0002) and inflammation levels (interleukin-1β SMD = -4.41, 95% CI [-5.84 to -2.97], p < 0.00001). However, there was a high degree of heterogeneity between studies (I2 > 70%). Further subgroup analysis did not show a clear source of the heterogeneity, but various H2S donors exhibited positive renal protection in those studies. Conclusions H2S could be a new approach for treating cis-AKI, while the differential efficacies among natural and slow-release H2S donors remain to be compared and evaluated further. This meta-analysis may shed light on establishing preclinical and clinical investigation guidelines for treating human cis-AKI with H2S donors.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Tianyu Deng
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Dechao Yan
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Jing Tang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Hu YT, Liu ZW, Zhang TH, Ma YE, He L, Zhang J, Zhou YY, Vidal-Puig A, Pan DJ, Wu F. Cystathionine γ-lyase-derived H 2S negatively regulates thymic egress via allosteric inhibition of sphingosine-1-phosphate lyase. Acta Pharmacol Sin 2024; 45:2366-2379. [PMID: 38914678 PMCID: PMC11489676 DOI: 10.1038/s41401-024-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.
Collapse
Affiliation(s)
- You-Tian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi-Wei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Tong-Hui Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-E Ma
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lei He
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yue-Yang Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Antonio Vidal-Puig
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
- Metabolic Research Laboratories, MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, 210031, China
| | - De-Jing Pan
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
4
|
Zhang M, Liu M, Wang W, Ren Z, Wang P, Xue Y, Wang X. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys. Hypertens Res 2024; 47:2144-2156. [PMID: 38778170 DOI: 10.1038/s41440-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4-/- and Drd4+/+ mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4-/- than Drd4+/+; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4-/- relative to Drd4+/+ mice. Drd4-/- mice exhibited increased renal sodium-hydrogen exchanger 3 (NHE3), sodium-potassium-2-chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa+-K+-ATPase on LS, and increased αENaC on HS. NKCC2, NCC, αENaC, and αNa+-K+-ATPase in plasma membrane were greater in Drd4-/- than in Drd4+/+ mice with HS. D4R was expressed in proximal and distal convoluted tubules, thick ascending limbs, and outer medullary collecting ducts and colocalized with NKCC2 and NCC. The phosphorylation of NKCC2 was enhanced but ubiquitination was reduced in the KO mice. There were no differences between the mouse strains in serum aldosterone concentrations and urinary dopamine excretions despite their changes with diets. The mRNA expressions of renal NHE3, NKCC2, NCC, and αENaC on NS were not altered in Drd4-/- mice. Thus, increased protein expressions of NHE3, NKCC2, NCC and αENaC are associated with hypertension in Drd4-/- mice; increased plasma membrane protein expression of NKCC2, NCC, αENaC, and αNa+-K+-ATPase may mediate the salt sensitivity of Drd4-/- mice.
Collapse
Affiliation(s)
- Mingzhuo Zhang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Wang P, Ren Z, Wang W, Liu M, Jia Y, Zhang M, Xue Y, Zhang C, Xu J, Wang C, Wang X. Candesartan upregulates angiotensin-converting enzyme 2 in kidneys of male animals by decreased ubiquitination. FASEB J 2024; 38:e23537. [PMID: 38498345 DOI: 10.1096/fj.202302707r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Candesartan is a common angiotensin-II receptor-1 blocker used for patients with cardiovascular and renal diseases. Angiotensin-converting enzyme 2 (ACE2) is a negative regulator of blood pressure (BP), and also a major receptor for coronaviruses. To determine whether and how candesartan upregulates ACE2, we examined BP and ACE2 in multi-organs from male and female C57BL/6J mice treated with candesartan (1 mg/kg, i.p.) for 7 days. Relative to the vehicle, candesartan lowered BP more in males than females; ACE2 protein abundances were increased in kidneys, not lungs, hearts, aorta, liver, spleen, brain, or serum, only from males. Ace2-mRNA was similar in kidneys. Candesartan also decreased BP in normal, hypertensive, and nephrotic male rats. The renal ACE2 was increased by the drug in normal and nephrotic male rats but not spontaneously hypertensive ones. In male mouse kidneys, ACE2 was distributed at sodium-hydrogen-exchanger-3 positive proximal-convoluted-tubules; ACE2-ubiquitination was decreased by candesartan, accompanied with increased ubiquitin-specific-protease-48 (USP48). In candesartan-treated mouse renal proximal-convoluted-tubule cells, ACE2 abundances and activities were increased while ACE2-ubiquitination and colocalization with lysosomal and proteosomal markers were decreased. The silence of USP48 by siRNA caused a reduction of ACE2 in the cells. Thus, the sex-differential ACE2 upregulation by candesartan in kidney from males may be due to the decreased ACE2-ubiquitination, associated with USP48, and consequent degradation in lysosomes and proteosomes. This is a novel mechanism and may shed light on candesartan-like-drug choice in men and women prone to coronavirus infections.
Collapse
Affiliation(s)
- Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingzhuo Zhang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyang Zhang
- Department of Neurology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianteng Xu
- Laboratory Division, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- The Department of Pulmonary and Critical Care Medicine, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wang P, Zhu G, Wu Q, Shen L, Liu D, Wang Z, Wang W, Ren Z, Jia Y, Liu M, Xue Y, Ji D, Hu Y, Yu Y, Wang X. Renal CD81 interacts with sodium potassium 2 chloride cotransporter and sodium chloride cotransporter in rats with lipopolysaccharide-induced preeclampsia. FASEB J 2023; 37:e22834. [PMID: 36961378 PMCID: PMC11977528 DOI: 10.1096/fj.202201546rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/25/2023]
Abstract
The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.
Collapse
Affiliation(s)
- Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
- Department of Nephrology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Gangyi Zhu
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiaozhen Wu
- Department of Obstetrics and Gynecology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Shen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Yutao Jia
- Department of Nephrology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Daxi Ji
- Department of Nephrology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yanting Yu
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
- Department of Nephrology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
- Department of Nephrology, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Ettinger S. Diet Strategies for the Patient with Chronic Kidney Disease. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ascenção K, Dilek N, Zuhra K, Módis K, Sato T, Szabo C. Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids. Antioxidants (Basel) 2022; 11:antiox11091823. [PMID: 36139896 PMCID: PMC9495861 DOI: 10.3390/antiox11091823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H2S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H2S producing enzymes. Western blotting was used to detect the expression of the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H2S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H2S levels were detected by live-cell imaging using a fluorescent H2S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H2S-producing enzymes coincided with the downregulation of the H2S-degrading enzyme SQR, increased H2S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H2S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Reduced Levels of H2S in Diabetes-Associated Osteoarthritis Are Linked to Hyperglycaemia, Nrf-2/HO-1 Signalling Downregulation and Chondrocyte Dysfunction. Antioxidants (Basel) 2022; 11:antiox11040628. [PMID: 35453313 PMCID: PMC9024787 DOI: 10.3390/antiox11040628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Different findings indicate that type 2 diabetes is an independent risk factor for osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Changes in the balance of hydrogen sulphide (H2S) are thought to play an important role in the pathogenesis of diabetes and its complications, although its role is still controversial. In this study, we examined the modulation of H2S levels in serum and chondrocytes from OA diabetic (DB) and non-diabetic (non-DB) patients and in cells under glucose stress, in order to elucidate whether impairment in H2S-mediated signalling could participate in the onset of DB-related OA. Here, we identified a reduction in H2S synthesis in the cartilage from OA-DB patients and in cells under glucose stress, which is associated with hyperglycaemia-mediated dysregulation of chondrocyte metabolism. In addition, our results indicate that H2S is an inductor of the Nrf-2/HO-1 signalling pathway in cartilage, but is also a downstream target of Nrf-2 transcriptional activity. Thereby, impairment of the H2S/Nrf-2 axis under glucose stress or DB triggers chondrocyte catabolic responses, favouring the disruption of cartilage homeostasis that characterizes OA pathology. Finally, our findings highlight the benefits of the use of exogeneous sources of H2S in the treatment of DB-OA patients, and warrant future clinical studies.
Collapse
|