1
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Gu Y, Dong Z, Gu Y, Gao Y, Li D, Zhang Y, Zhang X. Paeoniae radix alba improved intestinal mucosal microcirculation disturbance by regulating lncRNA MALAT1/HIF-1α pathway in the treatment of ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156037. [PMID: 39303508 DOI: 10.1016/j.phymed.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Microcirculatory problems in the intestinal mucosa are the primary cause of ulcerative colitis (UC). Although UC is commonly treated with paeoniae radix alba (PRA), its exact mechanism of action is unclear. PURPOSE To examine how PRA affects UC induced by dextran sulfate sodium (DSS) and the mechanism of its effects. METHODS The primary active components of PRA were identified using high-performance liquid chromatography (HPLC), and network pharmacology techniques were used to predict the possible targets of action and signaling pathways in treatment for UC. A model of UC was established in vivo using rats, and a PRA intervention was performed. The amounts of cytokines in the colonic tissues and serum were measured using enzyme-linked immunosorbent assay (ELISA). The permeability of the intestinal mucosa was measured using a fluorescein isothiocyanate (FITC)-dextran assay and western blot. A PeriCam PSI system was used to view the microcirculation of the intestinal mucosa, and immunohistochemistry and immunofluorescence stains were used to detect angiogenesis. An electron microscope was used to observe the damage to the endothelium of the colon. Western blot and immunohistochemistry analyses were used to evaluate the protein expression of hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissues, and qRT-PCR was used to assess the lncRNA expression of MALAT1. RESULTS HPLC identified 10 main active components of PRA, and the network pharmacology results showed that the treatment of UC with PRA was associated with the HIF-1 signaling pathway. The results of animal experiments revealed that PRA significantly improved the pathological damage to the colon and the microcirculatory issues in the intestinal mucosa. PRA also inhibited colonic endothelial cell damage and angiogenesis, which may be related to the inhibition of the increased expression of lncRNA MALAT1 and HIF-1α in colon tissues. CONCLUSIONS The anti-UC effect of PRA by improving intestinal mucosal microcirculatory disorders was first reported in this study. PRA deactivated the lncRNA MALAT1/HIF-1α pathway, inhibited endothelial angiogenesis, restored intestinal mucosal microvascular homeostasis, improved microcirculatory disorders, and alleviated the symptoms of DSS-induced UC in rats.
Collapse
Affiliation(s)
- Yaru Gu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Zhikuo Dong
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Ying Gu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Ya Gao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Dantong Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China.
| | - Xiaoying Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China.
| |
Collapse
|
3
|
Wei W, Xu D, Hu F, Jiang T, Liu H. Platelet-rich plasma promotes wound repair in diabetic foot ulcer mice via the VEGFA/VEGFR2/ERK pathway. Growth Factors 2024; 42:161-170. [PMID: 39543829 DOI: 10.1080/08977194.2024.2422014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Diabetic foot ulcers (DFUs) are a severe microvascular complication. Platelet-rich plasma (PRP) pitches in DFU treatment. This study explored the mechanism of PRP facilitating wound repair in DFU mice via vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2)/extracellular signal-regulated kinase (ERK) pathway. The DFU mouse model was established, with wound skin injected with PRP, followed by the detections of wound area, histopathological changes, and CD31-positive cells. IL-6/TNF-α/VEGFA/VEGFR2/p-VEGFR2/(ERK1/2)/(p-ERK1/2) levels in wound tissue homogenates were assessed. VEGFA-VEGFR2 interaction was evaluated. PRP-treated DFU mice were simultaneously treated with fruquintinib/PD98059. PRP reduced wound area, IL-6 and TNF-α levels, elevated epidermal dermal thickness, CD31-positive cell number, and aligned tissue structure, which were mitigated by fruquintinib/PD98059. PRP promoted VEGFR2 phosphorylation. PRP and fruquintinib/PD98059 abated p-VEGFR2/VEGFR2 or p-ERK1/2/ERK1/2 levels in DFU mice. PRP activated the ERK pathway through VEGFA/VEGFR2. Collectively, PRP promoted VEGFR2 phosphorylation and activated the ERK pathway, thereby facilitating wound repair in DFU mice.
Collapse
Affiliation(s)
- Weiqiang Wei
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Di Xu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Fan Hu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Tenglong Jiang
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Hong Liu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| |
Collapse
|
4
|
Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol 2024; 12:1349077. [PMID: 38303912 PMCID: PMC10830866 DOI: 10.3389/fbioe.2024.1349077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Gene therapy is a technique that rectifies defective or abnormal genes by introducing exogenous genes into target cells to cure the disease. Although gene therapy has gained some accomplishment for the diagnosis and therapy of inherited or acquired cardiovascular diseases, how to efficiently and specifically deliver targeted genes to the lesion sites without being cleared by the blood system remains challenging. Based on nanotechnology development, the non-viral vectors provide a promising strategy for overcoming the difficulties in gene therapy. At present, according to the physicochemical properties, nanotechnology-based non-viral vectors include polymers, liposomes, lipid nanoparticles, and inorganic nanoparticles. Non-viral vectors have an advantage in safety, efficiency, and easy production, possessing potential clinical application value when compared with viral vectors. Therefore, we summarized recent research progress of gene therapy for cardiovascular diseases based on commonly used non-viral vectors, hopefully providing guidance and orientation for future relevant research.
Collapse
Affiliation(s)
- Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Cao H, Hou C. Cell Division Control Protein 42 Facilitates Diabetic Retinopathy Progression by Activating the MEK/ERK Pathway. TOHOKU J EXP MED 2023; 261:211-219. [PMID: 37635064 DOI: 10.1620/tjem.2023.j068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell division control protein 42 (CDC42) modulates insulin secretion and angiogenesis to participate in the pathology of diabetic complications and retinal vascular-associated diseases. This study intended to explore the role of CDC42 in the progression of diabetic retinopathy, and the underlying mechanism. Human retinal microvascular endothelial cells (hRMECs) were cultured in 5.5 mM glucose (normal glucose) or 25 mM glucose (high glucose; HG) medium, respectively. CDC42 overexpression plasmid and small interference RNA (oe-CDC42 and si-CDC42) or corresponding negative controls (oe-NC and si-NC) were transfected into hRMECs under HG. Then, platelet-activating factor C-16 (C16-PAF) (MEK/ERK pathway activator) was added to si-CDC42 or si-NC transfected hRMECs under HG. Our study showed that HG increased CDC42 mRNA and protein, cell viability, invasive cell count, branch points, and tube length but reduced cell apoptosis in hRMECs. CDC42 upregulation enhanced cell viability, invasive cell count, branch points, tube length, p-MEK, and p-ERK, but attenuated cell apoptosis. Downregulation of CDC42 exhibited opposite trends. In addition, C16-PAF also increased cell viability, invasive cell count, branch points, and tube length, p-MEK, and p-ERK, but retarded cell apoptosis. Notably, C16-PAF diminished the effect of CDC42 downregulation on the above-mentioned functions in hRMECs under HG. Conclusively, CDC42 promotes HG-induced hRMEC viability and invasion, as well as angiogenesis, but inhibits apoptosis by activating the MEK/ERK pathway, which may be responsible for the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Cao
- Department of Ophthalmology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China
| | - Changzheng Hou
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University
| |
Collapse
|
6
|
Su J, Cheng J, Hu Y, Yu Q, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Zhang Z, Wang Y, Zhu K, Du W, Chen X. Transfer RNA-derived small RNAs and their potential roles in the therapeutic heterogeneity of sacubitril/valsartan in heart failure patients after acute myocardial infarction. Front Cardiovasc Med 2022; 9:961700. [PMID: 36247465 PMCID: PMC9558900 DOI: 10.3389/fcvm.2022.961700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundIt has been reported that sacubitril/valsartan can improve cardiac function in acute myocardial infarction (AMI) patients complicated by heart failure (HF). However, a number of patients cannot be treated successfully; this phenomenon is called sacubitril/valsartan resistance (SVR), and the mechanisms remain unclear.MethodsIn our present research, the expression profiles of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in SVR along with no sacubitril/valsartan resistance (NSVR) patients were determined by RNA sequencing. Through bioinformatics, quantitative real-time PCR (qRT-PCR), and cell-based experiments, we identified SVR-related tsRNAs and confirmed their diagnostic value, predicted their targeted genes, and explored the enriched signal pathways as well as regulatory roles of tsRNAs in SVR.ResultsOur research indicated that 36 tsRNAs were upregulated and that 21 tsRNAs were downregulated in SVR. Among these tsRNAs, the expression of tRF-59:76-Tyr-GTA-2-M3 and tRF-60:76-Val-AAC-1-M5 was upregulated, while the expression of tRF-1:29-Gly-GCC-1 was downregulated in the group of SVR. Receiver operating characteristic (ROC) curve analysis demonstrated that these three tsRNAs were potential biomarkers of the therapeutic heterogeneity of sacubitril/valsartan. Moreover, tRF-60:76-Val-AAC-1-M5 might target Tnfrsf10b and Bcl2l1 to influence the observed therapeutic heterogeneity through the lipid and atherosclerosis signaling pathways.ConclusionHence, tsRNA might play a vital role in SVR. These discoveries provide new insights for the mechanistic investigation of responsiveness to sacubitril/valsartan.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Xiaojing Li
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zeqin Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yong Wang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Keqi Zhu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- *Correspondence: Keqi Zhu,
| | - Weiping Du
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Weiping Du,
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Xiaomin Chen,
| |
Collapse
|
7
|
Zheng L, Ji YY, Dai YC, Wen XL, Wu SC. Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis. World J Clin Cases 2022; 10:7674-7685. [PMID: 36158488 PMCID: PMC9372848 DOI: 10.12998/wjcc.v10.i22.7674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a complex chronic IBD that is closely associated with risk factors such as environment, diet, medications and lifestyle that may influence the host microbiome or immune response to antigens. At present, with the increasing incidence of IBD worldwide, it is of great significance to further study the pathogenesis of IBD and seek new therapeutic targets. Traditional Chinese medicine (TCM) treatment of diseases is characterized by multiple approaches and multiple targets and has a long history of clinical application in China. The mechanism underlying the effect of zedoary turmeric-trisomes on inducing mucosal healing in IBD is not clear. AIM To explore the effective components and potential mechanism of zedoary turmeric-trisomes in the treatment of IBD with intestinal fibrosis using network pharmacology and molecular docking techniques. METHODS The chemical constituents and targets of Rhizoma zedoary and Rhizoma sanarum were screened using the TCMSP database. The GeneCards database was searched to identify targets associated with intestinal fibrosis in IBD. The intersection of chemical component targets and disease targets was obtained using the Venny 2.1 online analysis platform, and the common targets were imported into the STRING 11.0 database to construct a protein interaction regulatory network. A "zedoary turmeric-trisomes-chemical composition-target-disease" network diagram was subsequently constructed using Cytoscape 3.7.2 software, and the topological properties of the network were analyzed using the "Network Analysis" plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the common targets were performed using the DAVID 6.8 database to elucidate the mechanism of zedoary turmeric-trisomes in the treatment of IBD. Subsequently, molecular docking of the compounds and targets with the highest intermediate values in the "zedoary turmeric-trisomes-chemical composition-target-disease" network was performed using Sybyl-x 2.1.1 software. RESULTS A total of 5 chemical components with 60 targets were identified, as well as 3153 targets related to IBD and 44 common targets. The protein-protein interaction network showed that the core therapeutic targets included JUN, MAPK14, CASP3, AR, and PTGS2. The GO enrichment analysis identified 759 items, and the KEGG enrichment analysis yielded 52 items, including the cancer pathway, neuroactive ligand-receptor interaction, hepatitis B, and the calcium signaling pathway, reflecting the complex biological processes of the multicomponent, multitarget and multipathway treatment of diseases with zedoary turmeric-trisomes. Molecular docking showed that the compound bonded with the target through hydrogen bond interactions and exhibited good docking activity. CONCLUSION This study identified the potential mechanism of action of zedoary turmeric-trisomes in the treatment of inflammatory bowel fibrosis using network pharmacology and molecular docking technology, providing a scientific basis for further expansion of their clinical use.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, GanSu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
8
|
Han R, Gong R, Liu W, Xu G. Proteome changes associated with the VEGFR pathway and immune system in diabetic macular edema patients at different diabetic retinopathy stages. Curr Eye Res 2022; 47:1050-1060. [PMID: 35435079 DOI: 10.1080/02713683.2022.2068181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Diabetic macular edema (DME) is a major cause of vision loss in all stages of diabetic retinopathy (DR). However, there is limited recognition of aqueous humor (AH) proteome profiles of DME patients at different DR stages. In this study, we aimed to investigate the AH proteome changes between DME patients at the nonproliferative diabetic retinopathy (NPDR) stage and those at the proliferative diabetic retinopathy (PDR) stage. METHODS A label-free data-independent acquisition based liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed to profile the abundances of AH proteins in 73 eyes from DME patients at different DR stages. Enzyme-linked immunosorbent assay (ELISA) was used to confirm the proteomics results with AH samples from non-diabetic patients and DME patients at the NPDR or PDR stage. RESULTS LC-MS/MS results showed significantly changed expression of 308 proteins between DME patients in the NPDR and PDR groups. Compared to the NPDR group, the proteins relatively up-regulated in the PDR group are involved in the immune system and/or negative regulation of the cell cycle, while proteins relatively down-regulated in the PDR group are associated with the vascular endothelial growth factor receptor (VEGFR) pathway and/or metabolism. ELISA results further verified the proteomic result of down-regulated expression of the immune-associated protein cystatin C (CST3) in the PDR group compared to that in the NPDR and non-diabetic groups. CONCLUSIONS In this study, we reported for the first time the decreased abundances of AH proteins associated with the VEGFR pathway and both down- and up-regulated expression of AH proteins associated with the immune system in the PDR group compared to that in the NPDR group. Furthermore, we found negative correlations of immune-associated protein, CST3 concentration in AH with DR severity and central retinal thickness, suggesting CST3 as a promising target independent of the VEGFR pathway in DME-involved DR treatment.
Collapse
Affiliation(s)
- Ruyi Han
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Ruowen Gong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Wei Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| |
Collapse
|