1
|
Buoso E, Masi M, Limosani RV, Fagiani F, Oliviero C, Colombo G, Cari L, Gentili M, Lusenti E, Rosati L, Pisati F, Pasini A, Lenti MV, Di Sabatino A, Mobbs CL, Przyborski S, Ronchetti S, Travelli C, Racchi M. Disruption of Epithelial Barrier Integrity via Altered GILZ/c-Rel/RACK1 Signaling in Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae191. [PMID: 39693354 DOI: 10.1093/ecco-jcc/jjae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Given the role of Receptor for Activated C Kinase 1 (RACK1) in both immune cell activation and in the maintenance of the intestinal epithelial barrier integrity, we investigated whether it was involved in inflammatory bowel disease (IBD). METHODS RACK1 expression was analyzed in intestinal mucosal samples of healthy and IBD patients, in mice with chemically induced colitis, and in diseased in vitro 2D and 3D coculture models by luciferase assay, reverse transcription-quantitative PCR, Western blotting, immunofluorescence, and immunohistochemistry. Based on our finding that glucocorticoid-induced leucine zipper (GILZ or tsc22d3) positively correlates with RACK1 expression in IBD patients, GILZ knockout mice and cell silencing experiments were performed. RESULTS RACK1 was significantly decreased in IBD, especially in ulcerative colitis. This was associated with an NF-κB/c-Rel-related mechanism, correlating with decreased GILZ protein expression. GILZ depletion confirmed a decrease in RACK1 expression, which favored SRC activation and led to a significant reduction in E-cadherin, resulting in impaired epithelial barrier integrity. Finally, our data highlighted that this novel mechanism could be considered to develop new therapies since dexamethasone, the first line of treatment in IBD, restored RACK1 expression through the glucocorticoid receptor in a c-Rel/GILZ-independent manner. CONCLUSIONS We provide the first evidence that an alteration of RACK1/SRC/E-cadherin regulatory mechanism, correlating with decreased GILZ protein expression, is involved in epithelial barrier disruption. The clinical relevance is based on the fact that this mechanism involving GILZ/c-Rel-related RACK1 expression could be considered to improve IBD therapies, particularly in patients with low or no response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany St W302 Boston, MA 02215, USA
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- University School of Advanced Studies IUSS, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| | | | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Chiara Oliviero
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Eleonora Lusenti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Lucrezia Rosati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation With a Sole Shareholder, via Adamello 16, 20139 Milan, Italy
| | - Alessandra Pasini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, South Rd, Durham DH1 3LE, UK
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cristina Travelli
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| |
Collapse
|
2
|
Gentili M, Sabbatini S, Nunzi E, Lusenti E, Cari L, Mencacci A, Ballet N, Migliorati G, Riccardi C, Ronchetti S, Monari C. Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis. Biomolecules 2024; 14:1321. [PMID: 39456254 PMCID: PMC11506796 DOI: 10.3390/biom14101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)", known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Eleonora Lusenti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Luigi Cari
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Antonella Mencacci
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Nathalie Ballet
- Lesaffre Institute of Science & Technology, Lesaffre International, 59700 Marcq-en-Baroeul, France;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| |
Collapse
|
3
|
Naeini SE, Bhandari B, Gouron J, Rogers HM, Chagas PS, Naeini GE, Chagas HIS, Khodadadi H, Salles ÉL, Seyyedi M, Yu JC, Grochowska BK, Wang LP, Baban B. Reprofiling synthetic glucocorticoid-induced leucine zipper fusion peptide as a novel and effective hair growth promoter. Arch Dermatol Res 2024; 316:190. [PMID: 38775976 DOI: 10.1007/s00403-024-02988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.
Collapse
Affiliation(s)
- Sahar Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bidhan Bhandari
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hannah M Rogers
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pablo Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Golnaz Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Henrique Izumi Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Évila Lopes Salles
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad Seyyedi
- Piedmont Ear, Nose, Throat and Related Allergy, Atlanta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - Lei P Wang
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Babak Baban
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Paglialunga M, Flamini S, Contini R, Febo M, Ricci E, Ronchetti S, Bereshchenko O, Migliorati G, Riccardi C, Bruscoli S. Anti-Inflammatory Effects of Synthetic Peptides Based on Glucocorticoid-Induced Leucine Zipper (GILZ) Protein for the Treatment of Inflammatory Bowel Diseases (IBDs). Cells 2023; 12:2294. [PMID: 37759516 PMCID: PMC10528232 DOI: 10.3390/cells12182294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used to treat autoimmune and inflammatory diseases, but their clinical effects and long-term use can lead to serious side effects. New drugs that can replace GCs are needed. Glucocorticoid-induced leucine zipper (GILZ) is induced by GCs and mediates many of their anti-inflammatory effects, such as inhibiting the pro-inflammatory molecule NF-κB. The GILZ C-terminal domain (PER region) is responsible for GILZ/p65NF-κB interaction and consequent inhibition of its transcriptional activity. A set of five short peptides spanning different parts of the PER region of GILZ protein was designed, and their anti-inflammatory activity was tested, both in vitro and in vivo. We tested the biological activity of GILZ peptides in human lymphocytic and monocytic cell lines to evaluate their inhibitory effect on the NF-κB-dependent expression of pro-inflammatory cytokines. Among the tested peptides, the peptide named PEP-1 demonstrated the highest efficacy in inhibiting cell activation in vitro. Subsequently, PEP-1 was further evaluated in two in vivo experimental colitis models (chemically induced by DNBS administration and spontaneous colitis induced in IL-10 knock-out (KO) mice (to assess its effectiveness in counteracting inflammation. Results show that PEP-1 reduced disease severity in both colitis models associated with reduced NF-κB pro-inflammatory activity in colon lamina propria lymphocytes. This study explored GILZ-based 'small peptides' potential efficacy in decreasing lymphocyte activation and inflammation associated with experimental inflammatory bowel diseases (IBDs). Small peptides have several advantages over the entire protein, including higher selectivity, better stability, and bioavailability profile, and are easy to synthesize and cost-effective. Thus, identifying active GILZ peptides could represent a new class of drugs for treating IBD patients.
Collapse
Affiliation(s)
- Musetta Paglialunga
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Sara Flamini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Raffaele Contini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Erika Ricci
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06123 Perugia, Italy;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| |
Collapse
|
5
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Villanacci V, Del Sordo R, Parigi TL, Leoncini G, Bassotti G. Inflammatory Bowel Diseases: Does One Histological Score Fit All? Diagnostics (Basel) 2023; 13:2112. [PMID: 37371007 PMCID: PMC10296999 DOI: 10.3390/diagnostics13122112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal healing (MH) is the main treatment target in ulcerative colitis (UC) and Crohn's disease, and it is defined by the combination of complete endoscopic and histologic remission. The complete resolution of mucosal inflammation should be confirmed by histology but its assessment is not always univocal. Neutrophil infiltration represents the unique histological marker in discriminating the active vs. quiescent phases of the disease, together with crypt injuries (cryptitis and crypt abscesses), erosions, and ulcerations. On the contrary, basal plasmacytosis is not indicative of activity or the remission of inflammatory bowel diseases (IBDs) but instead represents a diagnostic clue, mostly at the onset. Several histological scoring systems have been developed to assess grade severity, particularly for UC. However, most are complex and/or subjective. The aim of this review was to summarize available scores, their characteristics and limitations, and to present the advantages of a simplified mucosa healing scheme (SHMHS) based on neutrophils and their distribution in the gut mucosa. Finally, we overview future developments including artificial intelligence models for standardization of disease assessments and novel molecular markers of inflammation with potential application in diagnostic practice.
Collapse
Affiliation(s)
- Vincenzo Villanacci
- Institute of Pathology, ASST-Spedali Civili University of Brescia, 25123 Brescia, Italy;
| | - Rachele Del Sordo
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, 06132 Perugia, Italy
| | - Tommaso Lorenzo Parigi
- Division of Immunology, Trasplantation and Infectious Disease, Università Vita Salute San Raffaele, 20132 Milan, Italy;
| | - Giuseppe Leoncini
- 1 st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy;
| |
Collapse
|
7
|
Grossi LC, Zaidan I, Souza JAM, Carvalho AFS, Sanches RCO, Cardoso C, Lara ES, Montuori-Andrade ACM, Bruscoli S, Marchetti MC, Riccardi C, Teixeira MM, Tavares LP, Vago JP, Sousa LP. GILZ Modulates the Recruitment of Monocytes/Macrophages Endowed with a Resolving Phenotype and Favors Resolution of Escherichia coli Infection. Cells 2023; 12:1403. [PMID: 37408237 DOI: 10.3390/cells12101403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-β levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.
Collapse
Affiliation(s)
- Laís C Grossi
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jéssica Amanda Marques Souza
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Felipe S Carvalho
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte 30130-100, Brazil
| | - Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Camila Cardoso
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Edvaldo S Lara
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Clara M Montuori-Andrade
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Mauro M Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana P Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lirlândia P Sousa
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
8
|
Adult hypertensive rats are more prone to gut microflora perturbation and fibrosis in response to moderate restraint stress. Transl Res 2023; 254:92-114. [PMID: 36566015 DOI: 10.1016/j.trsl.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022]
Abstract
Hypertension (HTN) is a common endpoint for numerous cardiovascular diseases, the prevalence of which has been quickly increasing due to a wide range of reasons. Previous research has found that following stress, ELISA and 16S rDNA sequencing indicated substantial changes in plasma cytokines or hormones, as well as alterations in gut microbiota in juvenile hypertensive rats. However, it remains still unclear how such interaction modifications affect microbial populations and organismal function. Stress-related hormones show a significant drop. Similar to earlier research, the stress group had dramatically increased release of pro-inflammatory cytokines such as IL-17. Importantly, a unified collection of tools that allows for deep and comprehensive colonic structural investigation has been developed. Stress may limit the transition of macrophages (Mφs) to M1Mφs while increasing the transfer to M2Mφs. Evidence highlighted that tight junction proteins were decreased along with enhancement in intestinal permeability. Morphological analysis revealed that the SHR-S group exhibited considerably higher levels of morphological alterations and fibrosis in colon, heart, and thoracic aorta tissues.Significant improvements in bacteria linked with short-chain fatty acid synthesis, such as Prevotella and Ruminococcus, were discovered by metagenomic analysis. Adult hypertensive rats are more susceptible to gut microbiota disruption and fibrosis as a result of mild restraint stress. This might contribute to some innovative ideas for HTN both treatment and prevention.
Collapse
|
9
|
Cari L, Rosati L, Leoncini G, Lusenti E, Gentili M, Nocentini G, Riccardi C, Migliorati G, Ronchetti S. Association of GILZ with MUC2, TLR2, and TLR4 in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:ijms24032235. [PMID: 36768553 PMCID: PMC9917296 DOI: 10.3390/ijms24032235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn's Disease (CD) are chronic relapsing inflammatory diseases that are caused by genetic, environmental, and immune factors. Treatment strategies are currently based on symptomatic control by immunosuppression. The glucocorticoid-induced leucine zipper (GILZ), a mediator of several effects of glucocorticoids, was recently found to be secreted by goblet cells and play a role in inflammatory bowel disease (IBD). This study investigates which genes GILZ is associated with in its role in intestinal barrier functions. We examined datasets from the Gene Expression Omnibus (GEO) and ArrayExpress profiles of the gut of healthy subjects (HSs), as well as UC and CD patients. The human colonic epithelial HT29 cell line was used for in vitro validation experiments. GILZ was significantly correlated with MUC2, TLR2, and TLR4. In particular, an inverse correlation was found between the GILZ and MUC2 in HS and patients with IBD, mostly in those with an active disease. Further, direct pairwise correlations for GILZ/TLR2 and GILZ/TLR4 were found in HSs and UC patients, but not in CD patients. Overall, our results reveal the crosstalk at the transcription level between the GILZ, MUC2, and TLRs in the mucosal barrier through common pathways, and they open up new perspectives in terms of mucosal healing in IBD patients.
Collapse
Affiliation(s)
- Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Lucrezia Rosati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milano, Italy
| | - Eleonora Lusenti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giuseppe Nocentini
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
- Correspondence:
| |
Collapse
|
10
|
Leoncini G, Gentili M, Lusenti E, Caruso L, Calafà C, Migliorati G, Riccardi C, Villanacci V, Ronchetti S. The novel role of glucocorticoid-induced leucine zipper as a marker of mucosal healing in inflammatory bowel diseases. Pharmacol Res 2022; 182:106353. [PMID: 35835370 DOI: 10.1016/j.phrs.2022.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Glucocorticoid-induced leucin zipper (GILZ) mediates the effects of glucocorticoids in immune cells, but little is known about its role in both the gastro-intestinal (GI) mucosa and inflammatory bowel diseases (IBD) in humans. To investigate the GILZ protein expression profile in the GI tract, mucosal biopsies from 80 patients were retrospectively enrolled in this study and subdivided into three groups: 1) patients without clinical-endoscopic and histological evidence of IBD; 2) IBD patients; 3) patients with chronic atrophic gastritis (CAG) and Barrett esophagus (BE), both characterized by intestinal metaplasia (IM). GILZ expression was assessed by immunohistochemical and immunofluorescence methods. Our results showed that GILZ protein was strongly expressed in the secretory cells in healthy mucosa. GILZ expression was reduced in goblet cells in active disease, whereas it was restored in quiescent diseases. Conversely, entero-endocrine cells were not involved in such inflammation-driven dynamics, as GILZ expression remained detectable in active disease. Moreover, GILZ was expressed in IM, but was limited to CAG, and was not detected in BE. In summary, GILZ acts as a secretory protein in the GI mucosa in healthy, hyperplastic and metaplastic conditions. Its secretion by goblet cells is mostly affected by neutrophils mucosal infiltration and seems to be directly related to active mucosal inflammation in IBD. Overall, our findings suggest that GILZ is a suitable molecule to be considered as a histological marker of mucosal healing.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- Pathology Unit, Department of Pathology and Laboratory Medicine, ASST del Garda Desenzano del Garda, Brescia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Lusenti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, ASST del Garda Desenzano del Garda, Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, ASST del Garda Desenzano del Garda, Brescia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
11
|
Mozaffari MS, Abdelsayed R. Expression Profiles of GILZ and Annexin A1 in Human Oral Candidiasis and Lichen Planus. Cells 2022; 11:cells11091470. [PMID: 35563776 PMCID: PMC9100531 DOI: 10.3390/cells11091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Adrenal glands are the major source of glucocorticoids, but recent studies indicate tissue-specific production of cortisol, including that in the oral mucosa. Both endogenous and exogenous glucocorticoids regulate the production of several proteins, including the glucocorticoid-induced leucine zipper (GILZ) and Annexin A1, which play important roles in the regulation of immune and inflammatory responses. Common inflammation-associated oral conditions include lichen planus and candidiasis, but the status of GILZ and Annexin A1 in these human conditions remains to be established. Accordingly, archived paraffin-embedded biopsy samples were subjected to immunohistochemistry to establish tissue localization and profile of GILZ and Annexin A1 coupled with the use of hematoxylin–eosin stain for histopathological assessment; for comparison, fibroma specimens served as controls. Histopathological examination confirmed the presence of spores and pseudohyphae for oral candidiasis (OC) specimens and marked inflammatory cell infiltrates for both OC and oral lichen planus (OLP) specimens compared to control specimens. All specimens displayed consistent and prominent nuclear staining for GILZ throughout the full thickness of the epithelium and, to varying extent, for inflammatory infiltrates and stromal cells. On the other hand, a heterogeneous pattern of nuclear, cytoplasmic, and cell membrane staining was observed for Annexin A1 for all specimens in the suprabasal layers of epithelium and, to varying extent, for inflammatory and stromal cells. Semi-quantitative analyses indicated generally similar fractional areas of staining for both GILZ and Annexin A1 among the groups, but normalized staining for GILZ, but not Annexin A1, was reduced for OC and OLP compared to the control specimens. Thus, while the cellular expression pattern of GILZ and Annexin A1 does not differentiate among these conditions, differential cellular profiles for GILZ vs. Annexin A1 are suggestive of their distinct physiological functions in the oral mucosa.
Collapse
|
12
|
Souza JAM, Carvalho AFS, Grossi LC, Zaidan I, de Oliveira LC, Vago JP, Cardoso C, Machado MG, Souza GVS, Queiroz-Junior CM, Morand EF, Bruscoli S, Riccardi C, Teixeira MM, Tavares LP, Sousa LP. Glucocorticoid-Induced Leucine Zipper Alleviates Lung Inflammation and Enhances Bacterial Clearance During Pneumococcal Pneumonia. Cells 2022; 11:cells11030532. [PMID: 35159341 PMCID: PMC8834062 DOI: 10.3390/cells11030532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ−/−) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ−/− macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections.
Collapse
Affiliation(s)
- Jéssica Amanda Marques Souza
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Felipe S. Carvalho
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lais C. Grossi
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Juliana P. Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Camila Cardoso
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marina G. Machado
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Geovanna V. Santos Souza
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Eric F. Morand
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne 3168, Australia;
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06156 Perugia, Italy; (S.B.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06156 Perugia, Italy; (S.B.); (C.R.)
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Luciana P. Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
- Correspondence: ; Tel.: +55-31-3409-6883
| |
Collapse
|
13
|
Kordulewska NK, Topa J, Rozmus D, Jarmołowska B. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci 2021; 22:ijms222413634. [PMID: 34948440 PMCID: PMC8708099 DOI: 10.3390/ijms222413634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Hyperactivity of the immune system in the gastrointestinal tract leads to the development of chronic, inflammation-associated disorders. Such diseases, including inflammatory bowel disease, are not completely curable, but the specific line of treatment may reduce its symptoms. However, the response to treatment varies among patients, creating a necessity to uncover the pathophysiological basis of immune-mediated diseases and apply novel therapeutic strategies. The present study describes the anti-inflammatory properties of osthole during histamine-induced inflammation in the intestinal Caco-2 cell line. Osthole reduced the secretion of cytokines (CKs) and the expression level of inflammation-associated genes, which were increased after a histamine treatment. We have shown that the secretion of pro-inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) during inflammation may be mediated by NFκB, and, after osthole treatment, this signaling pathway was disrupted. Our results suggest a possible role for osthole in the protection against inflammation in the gastrointestinal tract; thus, osthole may be considered as an anti-inflammatory modulator.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| |
Collapse
|