1
|
Tsai HY, Wang JC, Hsu YJ, Lin CY, Huang PH, Tsai MC, Hsu CW, Yang SF, Tsai SH. miR-424/322 attenuates cardiac remodeling by modulating the nuclear factor-activated T-cell 3/furin pathway. Biomed J 2024:100818. [PMID: 39586376 DOI: 10.1016/j.bj.2024.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Cardiac remodeling is implicated in numerous physiologic and pathologic conditions, including scar formation, heart failure, and cardiac arrhythmias. Nuclear factor-activated T-cell cytoplasmic (NFATc) is a crucial transcription factor that regulates cardiac remodeling. MicroRNA (miR)-424/322 has pathophysiological roles in the cardiovascular and respiratory systems by modulating hypoxia and inflammatory pathways. The role of miR-424/322 in regulating cardiac remodeling is under investigation. We identified several cardiac hypertrophy and fibrosis-related molecules as putative targets of miR-424/322. We propose that miR-424/322 could have crucial roles in cardiac remodeling by modulating several key molecules for cardiac fibrosis and hypertrophy. METHODS Human cardiac fibroblasts (HCFs) and a myogenic cell line H9c2 cells were used for in vitro experiments. A murine model of angiotensin II (AngII)-induced cardiac remodeling was used to assess the roles of miR-322 on cardiac hypertrophy and fibrosis in vivo. Immunoblotting, immunofluorescence, real-time polymerase chain reaction and cell proliferation, Sirius Red, and dual-luciferase reporter assays were used to decipher the molecular mechanism. RESULTS We found that miR-322 knockout mice were susceptible to AngII-induced cardiac fibrosis and hypertrophy in vivo. Administration of miR-424/322 inhibitors aggravated AngII-induced overexpression of NFATc3, furin, natriuretic peptides and collagen 1A1 in H9c2 cells and HCFs. miR-424/322 mimics reversed the AngII-induced fibrosis, hypertrophy, and proliferation by targeting NFATc3 and furin in vitro. miR-424/322 could be transactivated by NFATc3. Exogenous miR-322 ameliorated AngII-induced hypertrophy and cardiac fibrosis in vivo. CONCLUSIONS The NFATc3/miR-424/322/furin axis is crucial for developing cardiac remodeling, and exogenous miR-322 mimics could have therapeutic potential in cardiac remodeling.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency Medicine, School of Medicine, College of Medicine; Taipei Medical University, Taipei, Taiwan; Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shang-Feng Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan.
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan; Taichung Armed Forces General Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Fry H, Mazidi M, Kartsonaki C, Clarke R, Walters RG, Chen Z, Millwood IY. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9237. [PMID: 39273186 PMCID: PMC11394739 DOI: 10.3390/ijms25179237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Furin is an important proteolytic enzyme, converting several proteins from inactive precursors to their active forms. Recently, proteo-genomic analyses in European and East Asian populations suggested a causal association of furin with ischaemic heart disease, and there is growing interest in its role in cardiovascular disease (CVD) aetiology. In this narrative review, we present a critical appraisal of evidence from population studies to assess furin's role in CVD risk and potential as a drug target for CVD. Whilst most observational studies report positive associations between furin expression and CVD risk, some studies report opposing effects, which may reflect the complex biological roles of furin and its substrates. Genetic variation in FURIN is also associated with CVD and its risk factors. We found no evidence of current clinical development of furin as a drug target for CVD, although several phase 1 and 2 clinical trials of furin inhibitors as a type of cancer immunotherapy have been completed. The growing field of proteo-genomics in large-scale population studies may inform the future development of furin and other potential drug targets to improve the treatment and prevention of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (H.F.); (M.M.); (C.K.); (R.C.); (R.G.W.); (Z.C.)
| |
Collapse
|
3
|
Chua R, Wang L, Singaraja R, Ghosh S. Functional and Multi-Omics Effects of an Optimized CRISPR-Mediated FURIN Depletion in U937 Monocytes. Cells 2024; 13:588. [PMID: 38607027 PMCID: PMC11154428 DOI: 10.3390/cells13070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.
Collapse
Affiliation(s)
- Ruiming Chua
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Lijin Wang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Roshni Singaraja
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore;
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
4
|
Wichaiyo S, Koonyosying P, Morales NP. Functional Roles of Furin in Cardio-Cerebrovascular Diseases. ACS Pharmacol Transl Sci 2024; 7:570-585. [PMID: 38481703 PMCID: PMC10928904 DOI: 10.1021/acsptsci.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2025]
Abstract
Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | |
Collapse
|
5
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
6
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
7
|
Teng D, Chen H, Jia W, Ren Q, Ding X, Zhang L, Gong L, Wang H, Zhong L, Yang J. Identification and validation of hub genes involved in foam cell formation and atherosclerosis development via bioinformatics. PeerJ 2023; 11:e16122. [PMID: 37810795 PMCID: PMC10557941 DOI: 10.7717/peerj.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
Background Foam cells play crucial roles in all phases of atherosclerosis. However, until now, the specific mechanisms by which these foam cells contribute to atherosclerosis remain unclear. We aimed to identify novel foam cell biomarkers and interventional targets for atherosclerosis, characterizing their potential mechanisms in the progression of atherosclerosis. Methods Microarray data of atherosclerosis and foam cells were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expression genes (DEGs) were screened using the "LIMMA" package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) annotation were both carried out. Hub genes were found in Cytoscape after a protein-protein interaction (PPI) enrichment analysis was carried out. Validation of important genes in the GSE41571 dataset, cellular assays, and tissue samples. Results A total of 407 DEGs in atherosclerosis and 219 DEGs in foam cells were identified, and the DEGs in atherosclerosis were mainly involved in cell proliferation and differentiation. CSF1R and PLAUR were identified as common hub genes and validated in GSE41571. In addition, we also found that the expression of CSF1R and PLAUR gradually increased with the accumulation of lipids and disease progression in cell and tissue experiments. Conclusion CSF1R and PLAUR are key hub genes of foam cells and may play an important role in the biological process of atherosclerosis. These results advance our understanding of the mechanism behind atherosclerosis and potential therapeutic targets for future development.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Hongping Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoning Ding
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Lihui Zhang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| | - Lei Gong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Hua Wang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Lin Zhong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Jun Yang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- Qingdao University, Qingdao, China
| |
Collapse
|