1
|
Park JH, Park JH, Yu HY, Seok H. Effects of Aging on New Bone Regeneration in a Mandibular Bone Defect in a Rat Model. Biomimetics (Basel) 2024; 9:466. [PMID: 39194445 DOI: 10.3390/biomimetics9080466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
The effects of aging on the healing capacity of maxillofacial bone defects have not been studied. The aim of this study was to evaluate the effects of aging on the regeneration of round bony defects in the mandible. We created a round-shaped bony defect in the mandibular angle area in rats of different ages (2-[2 M], 10-[10 M], and 20-month-old [20 M]) and evaluated new bone regeneration in these groups. Changes in bone turnover markers such as alkaline phosphatase, procollagen type I N-terminal propeptide (PINP), cross-linked C-telopeptide of type I collagen, and tartrate-resistant acid phosphatase 5B (TRAP5b) were investigated. The bone volume/total volume and bone mineral density of the 20 M group were significantly higher than those of the 2 M group (p = 0.029, 0.019). A low level of the bone formation marker PINP was observed in the 20 M group, and a high level of the bone resorption marker TRAP5b was observed in the 10 M and 20 M groups. Micro-computed tomography (µ-CT) results showed that older rats had significantly higher bone formation than younger rats, with lower serum levels of PINP and higher levels of TRAP5b. The local environment of the old rat bone defects, surrounded by thickened bone, may have affected the results of our study. In conclusion, old rats showed greater new bone regeneration and healing capacity for round mandibular bone defects. This result was related to the fact that the bone defects in the 20 M rat group provided more favorable conditions for new bone regeneration.
Collapse
Affiliation(s)
- Jung Ho Park
- Department of Orl and Maxillofacial Surgery, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong Hoon Park
- Department of Orl and Maxillofacial Surgery, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hwa Young Yu
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun Seok
- Department of Orl and Maxillofacial Surgery, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
2
|
Cheon EJ, Kim SH, Lee DK, Jo YK, Ki MR, Park CJ, Jang HS, Ahn JS, Pack SP, Jun SH. Osteostimulating Ability of β-tricalcium Phosphate/collagen Composite as a Practical Bone-grafting Substitute: In vitro and in vivo Comparison Study with Commercial One. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
4
|
Dréno M, Bléry P, Guicheux J, Weiss P, Malard O, Espitalier F. Development of a Rat Model of Mandibular Irradiation Sequelae for Preclinical Studies of Bone Repair. Tissue Eng Part C Methods 2020; 26:447-455. [PMID: 32729379 DOI: 10.1089/ten.tec.2020.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repairing mandibular bone defects after radiotherapy of the upper aerodigestive tract is clinically challenging. Although bone tissue engineering has recently generated a number of innovative treatment approaches for osteoradionecrosis (ORN), these modalities must be evaluated preclinically in a relevant, reproducible, animal model. The objective of this study was to evaluate a novel rat model of mandibular irradiation sequelae, with a focus on the adverse effects of radiotherapy on bone structure, intraosseous vascularization, and bone regeneration. Rats were irradiated with a single 80 Gy dose to the jaws. Three weeks after irradiation, mandibular bone defects of different sizes (0, 1, 3, or 5 mm) were produced in each hemimandible. Five weeks after the surgical procedure, the animals were euthanized. Explanted mandibular samples were qualitatively and quantitatively assessed for bone formation, bone structure, and intraosseous vascular volume by using micro-computed tomography, scanning electron microscopy, and histology. Twenty irradiated hemimandibles and 20 nonirradiated hemimandibles were included in the study. The bone and vessel volumes were significantly lower in the irradiated group. The extent of bone remodeling was inversely related to the defect size. In the irradiated group, scanning electron microscopy revealed a large number of polycyclic gaps consistent with periosteocytic lysis (described as being pathognomonic for ORN). This feature was correlated with elevated osteoclastic activity in a histological assessment. In the irradiated areas, the critical-sized defect was 3 mm. Hence, our rat model of mandibular irradiation sequelae showed hypovascularization and osteopenia. Impact statement Repairing mandibular bone defects after radiotherapy of the upper aerodigestive tract is clinically challenging. Novel tissue engineering approaches for healing irradiated bone must first be assessed in animal models. The current rat model of mandibular irradiation sequelae is based on tooth extraction after radiotherapy. However, the mucosal sequelae of radiotherapy often prevent the retention of tissue-engineered biomaterials within the bone defect. We used a submandibular approach to create a new rat model of mandibular irradiation sequelae, which enables the stable retention of biomaterials within the bone defect and should thus facilitate the assessment of bone regeneration.
Collapse
Affiliation(s)
- Marine Dréno
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Pauline Bléry
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France.,Service d'Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Jérôme Guicheux
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Pierre Weiss
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France.,Service d'Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Malard
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Florent Espitalier
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| |
Collapse
|
5
|
Sarkarat F, Vahdati SA, Mahaseni aghdam HR, Nematallahi Z, Farahmand M. Bone Repair via Osteon and Bio-Oss: A Comparative Histological and Histomorphometric Animal Study. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2020. [DOI: 10.29252/jrdms.5.2.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
6
|
Yiğiter Ö, Yorukoglu AC, Şentürk N, Dodurga Y, Demirkan AF. The effects of type I collagen on bone defects and gene expression changes for osteogenesis: In a rat model. J Cell Biochem 2019; 120:11525-11530. [PMID: 30816601 DOI: 10.1002/jcb.28432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study is to investigate the effects of type I collagen on bone defects and on genes specifically for osteogenesis in a rat model. Two millimeter drill hole bone defect was created in the femur of rats. In the experimental group, type I collagen was applied in bone defects whereas in control group defects were left empty. Inflammation, development of connective tissue, osteogenesis, and foreign body reaction parameters evaluated with histologically and genes evaluated by blood samples. In the experimental group, the histopathologically significant change was found in favor of bone healing only at the first week. A significant increase was found in genetic expressions of BMP-1, 2, 3, 4, 5, 6, 7, TGF-βRII, Smad-1, IL-6, BMPR-IA, BMPR-IB, Eng, BMPR-II, c-fos, Cdkn1a, Chrd, Gdf-5, Id-1, PDGF-β, IGF-1, Serpine-1, and TGF-βRI at the first hour. At the first, third, and sixth week, no significant increase was found in any of the gene expressions. Type I collagen is found to be effective in favor of bone healing through increased inflammatory cytokines and expression of BMP genes in the early stages of fracture healing.
Collapse
Affiliation(s)
- Özgür Yiğiter
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Ali Cagdas Yorukoglu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey
| | - Nilay Şentürk
- Department of Pathology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Pamukkale University, Denizli, Turkey
| | - Ahmet Fahir Demirkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey
| |
Collapse
|
7
|
Le BQ, Nurcombe V, Cool SM, van Blitterswijk CA, de Boer J, LaPointe VLS. The Components of Bone and What They Can Teach Us about Regeneration. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E14. [PMID: 29271933 PMCID: PMC5793512 DOI: 10.3390/ma11010014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
The problem of bone regeneration has engaged both physicians and scientists since the beginning of medicine. Not only can bone heal itself following most injuries, but when it does, the regenerated tissue is often indistinguishable from healthy bone. Problems arise, however, when bone does not heal properly, or when new tissue is needed, such as when two vertebrae are required to fuse to stabilize adjacent spine segments. Despite centuries of research, such procedures still require improved therapeutic methods to be devised. Autologous bone harvesting and grafting is currently still the accepted benchmark, despite drawbacks for clinicians and patients that include limited amounts, donor site morbidity, and variable quality. The necessity for an alternative to this "gold standard" has given rise to a bone-graft and substitute industry, with its central conundrum: what is the best way to regenerate bone? In this review, we dissect bone anatomy to summarize our current understanding of its constituents. We then look at how various components have been employed to improve bone regeneration. Evolving strategies for bone regeneration are then considered.
Collapse
Affiliation(s)
- Bach Quang Le
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #6-06 Immunos, Singapore 138648, Singapore.
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #6-06 Immunos, Singapore 138648, Singapore.
| | - Simon McKenzie Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #6-06 Immunos, Singapore 138648, Singapore.
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore.
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jan de Boer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Vanessa Lydia Simone LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
8
|
Shah SR, Young S, Goldman JL, Jansen JA, Wong ME, Mikos AG. A composite critical-size rabbit mandibular defect for evaluation of craniofacial tissue regeneration. Nat Protoc 2016; 11:1989-2009. [PMID: 27658014 DOI: 10.1038/nprot.2016.122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational biomaterials targeted toward the regeneration of large bone defects in the mandible require a preclinical model that accurately recapitulates the regenerative challenges present in humans. Computational modeling and in vitro assays do not fully replicate the in vivo environment. Consequently, in vivo models can have specific applications such as those of the mandibular angle defect, which is used to investigate bone regeneration in a nonload-bearing area, and the inferior border mandibular defect, which is a model for composite bone and nerve regeneration, with both models avoiding involvement of soft tissue or teeth. In this protocol, we describe a reproducible load-bearing critical-size composite tissue defect comprising loss of soft tissue, bone and tooth in the mandible of a rabbit. We have previously used this procedure to investigate bone regeneration, vascularization and infection prevention in response to new biomaterial formulations for craniofacial tissue engineering applications. This surgical approach can be adapted to investigate models such as that of regeneration in the context of osteoporosis or irradiation. The procedure can be performed by researchers with basic surgical skills such as dissection and suturing. The procedure takes 1.5-2 h, with ∼2 h of immediate postoperative care, and animals should be monitored daily for the remainder of the study. For bone tissue engineering applications, tissue collection typically occurs 12 weeks after surgery. In this protocol, we will present the necessary steps to ensure reproducibility; tips to minimize complications during and after surgery; and analytical techniques for assessing soft tissue, bone and vessel regeneration by gross evaluation, microcomputed tomography (microCT) and histology.
Collapse
Affiliation(s)
- Sarita R Shah
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julia L Goldman
- Center for Laboratory Animal Medicine and Care, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing. J Oral Maxillofac Surg 2014; 72:1852-68. [PMID: 24815793 DOI: 10.1016/j.joms.2014.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE A large animal model is desired for preclinical studies aimed at reconstructing severe mandibular skeletal defects using tissue engineering techniques. To identify the size and location requirements for a mandibular critical-size bone defect in growing pigs, the present study investigated the spontaneous healing of surgically created mandibular defects. MATERIALS AND METHODS Six 4-month-old domestic pigs were used. In pigs 1 and 2, a 3-, 5-, or 7-cm(3) subperiosteal mandibular defect was created. In pigs 3 to 6, 3- to 5-cm(3) bilateral defects were randomly created at the anterior (apical to the molars) and posterior (mandibular angle) mandibular regions. Spontaneous healing of these defects was assessed by serial computed tomography scans (postoperative week 1, 6, and 12) and histologic analyses. RESULTS In pigs 1 and 2, regardless of defect size, the anterior, but not posterior, defects had largely healed. Systematic analyses of pigs 3 to 6 revealed, first, the extent of defect regeneration from spontaneous healing was significantly less in the posterior than in the anterior defects, with about two thirds and one third of the original defect volume remaining, respectively. Second, histologically, the posterior defects had considerably less regeneration and more evident tapering of the new bone than did the anterior defects. Finally, the buccal periosteum had completely regenerated in the anterior defects, but had only partially done so in the posterior defects. Also, the buccal surface contour was moderately concave in the anterior defects, but it was severely concave in the posterior defects. CONCLUSIONS Despite robust spontaneous healing of mandibular defects in growing pigs, 5-cm(3) defects in the mandibular angle region without buccal periosteum would be a reasonable critical-size defect model relevant to mandibular defects in adolescent humans.
Collapse
|
10
|
Wang X, Liu Z, Cui F. Biomimetic Synthesis of Self‐Assembled Mineralized Collagen‐Based Composites for Bone Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
11
|
Tissue engineering: using collagen type I matrix for bone healing of bone defects. J Craniofac Surg 2013; 24:e394-6. [PMID: 23851732 DOI: 10.1097/scs.0b013e3182802324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Among the many tissues in the human body, bone has been considered as a powerful marker for regeneration and its formation serves as a prototype model for tissue engineering based on morphogenesis. Therefore, collagen type I is one of the most useful biomaterials used in tissue engineering as extracellular matrix components capable to promote bone healing. The literature reveals excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, making collagen type I the primary resource in medical applications. Thus, it was also used for tissue engineering including skin replacement, bone substitutes, and artificial blood vessels and valves. The authors describe the treatment of an abscessed apical periodontal cyst and show good outcomes of bone healing, using tissue engineering, as collagen type I matrix.
Collapse
|
12
|
Busuttil Naudi K, Ayoub A, McMahon J, Di Silvio L, Lappin D, Hunter KD, Barbenel J. Mandibular reconstruction in the rabbit using beta-tricalcium phosphate (β-TCP) scaffolding and recombinant bone morphogenetic protein 7 (rhBMP-7) - histological, radiographic and mechanical evaluations. J Craniomaxillofac Surg 2012; 40:e461-9. [PMID: 22507295 DOI: 10.1016/j.jcms.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
This investigation assesses the histological, radiographic and mechanical properties of regenerated bone in a unilateral critical-size osteoperiosteal mandibular continuity defect in the rabbit model, following the application of beta-tricalcium phosphate (β-TCP) scaffolding and recombinant human bone morphogenetic protein 7 (rhBMP-7). The study was carried out on nine cases; in six cases the critical-size defect was filled with rhBMP-7 in the β-TCP scaffolding, and in three cases the β-TCP was used alone. The cases were sacrificed 3 months post-operatively. Histologically the overall mean of the percentage of regenerated bone volume in the cases that received rhBMP-7 was 29.41% ± 6.25%, which was considerably greater than the 6.35% ± 3.08% in the cases treated with β-TCP alone. Mechanical testing of the cases treated with rhBMP-7 gave failure moments (55 mNm-2.040 Nm) that were consistently greater than those treated with β-TCP alone (0 mNm-48 mNm). In some cases the mechanical properties of the regenerated bone were comparable to those of untreated bone. RhBMP-7 in prefabricated β-TCP scaffolding appeared, radiographically and histologically, to be an effective method for bone regeneration in mandibular critical-size defects in the rabbit model. This points towards possible future clinical applications.
Collapse
Affiliation(s)
- Kurt Busuttil Naudi
- Biotechnology & Craniofacial Sciences Research Group, Glasgow Dental Hospital, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:123-45. [PMID: 19891542 DOI: 10.1089/ten.teb.2009.0658] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an overview of animal models for the evaluation, comparison, and systematic optimization of tissue engineering and regenerative medicine strategies related to bone tissue. This review includes an overview of major factors that influence the rational design and selection of an animal model. A comparison is provided of the 10 mammalian species that are most commonly used in bone research, and existing guidelines and standards are discussed. This review also identifies gaps in the availability of animal models: (1) the need for assessment of the predictive value of preclinical models for relative clinical efficacy, (2) the need for models that more effectively mimic the wound healing environment and mass transport conditions in the most challenging clinical settings (e.g., bone repair involving large bone and soft tissue defects and sites of prior surgery), and (3) the need for models that allow more effective measurement and detection of cell trafficking events and ultimate cell fate during the processes of bone modeling, remodeling, and regeneration. The ongoing need for both continued innovation and refinement in animal model systems, and the need and value of more effective standardization are reinforced.
Collapse
Affiliation(s)
- George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
14
|
Nieto-Aguilar R, Serrato D, Garzón I, Campos A, Alaminos M. Pluripotential Differentiation Capability of Human Adipose-derived Stem Cells in a Novel Fibrin-agarose Scaffold. J Biomater Appl 2010; 25:743-68. [DOI: 10.1177/0885328209360425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The potentiality of adipose-derived stem cells (ASCs) cultured on 2D systems has been previously established. Nevertheless, very little is known so far about the differentiation potentiality of ASCs in 3D culture systems using biomaterials. In this work, we have evaluated the transdifferentiation capabilities of ASCs cultured within a novel fibrin-agarose biomaterial by histological analysis, histochemistry and immunofluorescence. Our results showed that 3D fibrin-agarose biomaterial is highly biocompatible and supports the transdifferentiation capabilities of ASCs to the osteogenic, chondrogenic, adipogenic, and neurogenic lineages.
Collapse
Affiliation(s)
- R. Nieto-Aguilar
- Faculty of Medicine, Department of Histology (Tissue Engineering Group) University of Granada, Avenida de Madrid 11, E18012 Granada, Spain
| | - D. Serrato
- Faculty of Medicine, Department of Histology (Tissue Engineering Group) University of Granada, Avenida de Madrid 11, E18012 Granada, Spain
| | - I. Garzón
- Faculty of Medicine, Department of Histology (Tissue Engineering Group) University of Granada, Avenida de Madrid 11, E18012 Granada, Spain
| | - A. Campos
- Faculty of Medicine, Department of Histology (Tissue Engineering Group) University of Granada, Avenida de Madrid 11, E18012 Granada, Spain
| | - M. Alaminos
- Faculty of Medicine, Department of Histology (Tissue Engineering Group) University of Granada, Avenida de Madrid 11, E18012 Granada, Spain,
| |
Collapse
|
15
|
Schönmeyr B, Clavin N, Avraham T, Longo V, Mehrara BJ. Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells. Tissue Eng Part A 2009; 15:1833-41. [PMID: 19125645 DOI: 10.1089/ten.tea.2008.0446] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Periosteal grafts can aid in bone repair by providing bone progenitor cells and acting as a barrier to scar tissue. Unfortunately, these grafts have many of the same disadvantages as bone grafts (donor site morbidity and limited donor sites). In this article, we describe a method of synthesizing a periosteum-like material using acellular human dermis and osteoblasts or mesenchymal stem cells (MSC). We show that osteoblasts readily attach to and proliferate on the acellular human dermis in vitro. In addition, osteoblasts retained the potential for differentiation in response to bone morphogenetic protein stimulation. Cells grown on the acellular human dermis were efficiently transfected with adenoviruses with no evidence of cellular toxicity. To assess for in vivo cell delivery and bone-forming potential, the acellular human dermis was seeded with green fluorescent protein (GFP)-positive MSCs, transfected with bone morphogenetic protein 2, wrapped around the adductor muscle in syngeneic mice, and used to treat critical-sized mandibular defects in nude rats. After 3 weeks, GFP-positive cells were still present, and bone had replaced the interface between the muscle and the constructs. After 6 weeks, critical-sized bone defects had been successfully healed. In conclusion, we show that an acellular human dermis can be used to synthesize a tissue-engineered periosteum capable of delivering cells and osteoinductive proteins.
Collapse
Affiliation(s)
- Björn Schönmeyr
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
16
|
Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 2009; 30:4522-32. [PMID: 19501905 DOI: 10.1016/j.biomaterials.2009.05.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/10/2009] [Indexed: 12/13/2022]
Abstract
Premineralized silk fibroin protein scaffolds (mSS) were prepared to combine the osteoconductive properties of biological apatite with aqueous-derived silk scaffold (SS) as a composite scaffold for bone regeneration. The aim of present study was to evaluate the effect of premineralized silk scaffolds combined with bone morphogenetic protein-2 (BMP-2) modified bone marrow stromal cells (bMSCs) to repair mandibular bony defects in a rat model. bMSCs were expanded and transduced with adenovirus AdBMP-2, AdLacZ gene in vitro. These genetically modified bMSCs were then combined with premineralized silk scaffolds to form tissue-engineered bone. Mandibular repairs with AdBMP-2 transduced bMSCs/mSS constructs were compared with those treated with AdLacZ-transduced bMSCs/mSS constructs, native (nontransduced) bMSCs/mSS constructs and mSS alone. Eight weeks after post-operation, the mandibles were explanted and evaluated by radiographic observation, micro-CT, histological analysis and immunohistochemistry. The presence of BMP-2 gene enhanced tissue-engineered bone in terms of the most new bone formed and the highest local bone mineral densities (BMD) found. These results demonstrated that premineralized silk scaffold could serve as a potential substrate for bMSCs to construct tissue-engineered bone for mandibular bony defects. BMP-2 gene therapy and tissue engineering techniques could be used in mandibular repair and bone regeneration.
Collapse
Affiliation(s)
- Xinquan Jiang
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This article examines each class of bone grafting material based on some of the studies in each of the following categories: safety, animal research, periodontal and maxillofacial applications, skeletal grafting, and attempts to qualify the efficacy of each class of material. The article also examines some of the research being done in "tissue engineering" to get a sense of the future of bone grafting.
Collapse
Affiliation(s)
- Harry V Precheur
- Department of Oral and Maxillofacial Surgery and Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
18
|
Vertenten G, Vlaminck L, Gorski T, Schreurs E, Van Den Broeck W, Duchateau L, Schacht E, Gasthuys F. Evaluation of an injectable, photopolymerizable three-dimensional scaffold based on D: ,L: -lactide and epsilon-caprolactone in a tibial goat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2761-2769. [PMID: 18305902 DOI: 10.1007/s10856-008-3404-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/05/2008] [Indexed: 05/26/2023]
Abstract
An in situ crosslinkable, biodegradable, methacrylate-encapped porous bone scaffold composed of D: ,L: -lactide, epsilon-caprolactone, 1,6-hexanediol and poly(ortho-esters), in which crosslinkage is achieved by photoinitiators, was developed for bone tissue regeneration. Three different polymer mixtures (pure polymer and 30% bioactive glass or alpha-tricalcium phosphate added) were tested in a uni-cortical tibial defect model in eight goats. The polymers were randomly applicated in one of four (6.0 mm diameter) defects leaving a fourth defect unfilled. Biocompatibility and bone healing properties were evaluated by serial radiographies, histology and histomorphometry. The pure polymer clearly showed excellent biocompatibility and moderate osteoconductive properties. The addition of alpha-TCP increased the latter characteristics. This product offers potentials as a carrier for bone healing promoter substances.
Collapse
Affiliation(s)
- Geert Vertenten
- Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan, Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cunha MR, Santos AR, Goissis G, Genari SC. Implants of polyanionic collagen matrix in bone defects of ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1341-8. [PMID: 17914639 DOI: 10.1007/s10856-006-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/04/2006] [Indexed: 05/17/2023]
Abstract
In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.
Collapse
Affiliation(s)
- Marcelo Rodrigues Cunha
- Department of Cell Biology, Institute of Biology, State University of Campinas, P.O. Box 6109, Campinas, SP 13084-971, Brazil.
| | | | | | | |
Collapse
|
20
|
Yuan K, Huang JS, Hsu CW, Hung IJ. A mineralization-associated membrane protein plays a role in the biological functions of the peptide-coated bovine hydroxyapatite. J Periodontal Res 2007; 42:420-8. [PMID: 17760819 DOI: 10.1111/j.1600-0765.2006.00963.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Anorganic bovine mineral coated with a cell-binding peptide (P-15) is superior to anorganic bovine mineral alone in the treatment of periodontal osseous defects. However, the molecular interactions between P-15 and periodontal ligament fibroblasts remain unclear. MATERIAL AND METHODS We first compared the in vitro osteogenic activities between periodontal ligament fibroblasts cultured with anorganic bovine mineral alone and with the P-15/anorganic bovine mineral combination. We then harvested the periodontal ligament cell lysate, incubated it with various graft materials, and then washed it to remove unbound proteins. The bound proteins were eluted from graft materials and analyzed using electrophoresis, followed by mass spectrometry and then western blotting. Finally, a neutralizing antibody against one bound protein was added to the cell cultures to repeat the osteogenic assays to clarify its role in the in vitro effects of the P-15/anorganic bovine mineral combination. RESULTS Cells treated with P-15/anorganic bovine mineral were more viable and showed greater osteogenic activities than cells treated with anorganic bovine mineral alone and the no-graft control. Annexin II, a mineralization-associated protein, bound to P-15/anorganic bovine mineral significantly more than to anorganic bovine mineral alone. The addition of neutralizing antibody for annexin II decreased the osteogenic activities of the P-15/anorganic bovine mineral combination. CONCLUSION Annexin II of periodontal ligament fibroblasts interacted with the peptide of P-15, and was partially responsible for better in vitro osteogenesis in the P-15 graft.
Collapse
Affiliation(s)
- K Yuan
- Institute of Oral Medicine and Department of Biochemistry, Medical School, National Cheng Kung University, and Department of Dentistry, Tainan Municipal Hospital, Tainan, Taiwan.
| | | | | | | |
Collapse
|
21
|
Abstract
Repair and reconstruction of the craniofacial skeleton represents a significant biomedical burden, with thousands of procedures per-formed annually secondary to injuries and congenital malformations. Given the multitude of current approaches, the need for more effective strategies to repair these bone deficits is apparent. This article explores two major modalities for craniofacial bone tissue engineering: distraction osteogenesis and cellular based therapies. Current understanding of the guiding principles for each of these modalities is elaborated on along with the knowledge gained from clinical and investigative studies. By laying this foundation, future directions for craniofacial distraction and cell-based bone engineering have emerged with great promise for the advancement of clinical practice.
Collapse
Affiliation(s)
- Derrick C Wan
- Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA 94305-5148, USA
| | | | | |
Collapse
|
22
|
Matziolis G, Tuischer J, Kasper G, Thompson M, Bartmeyer B, Krocker D, Perka C, Duda G. Simulation of cell differentiation in fracture healing: mechanically loaded composite scaffolds in a novel bioreactor system. ACTA ACUST UNITED AC 2006; 12:201-8. [PMID: 16499456 DOI: 10.1089/ten.2006.12.201] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell differentiation during bone healing following a fracture is influenced by various biological and mechanical factors. We introduce a method for the examination of cell and tissue differentiation simulating a fracture gap in vitro. A closed bioreactor system allows the imitation of the biological, mechanical, and biochemical conditions in vitro. The initial hematoma formed in a fracture is simulated with a mixed construct composed of lyophilized cancellous bone and a fibrin matrix in a sandwich configuration. The construct may be loaded with osteoprogenitor cells. Exemplarily, constructs were loaded with rabbit periosteal cells and cultivated under mechanical loading with 7 kPa at 0.05 Hz for up to two weeks. During the observation period, cell morphology and correlating protein synthesis changed under mechanical stimulation. Cell differentiation differed between the various regions of the constructs. The periosteal cells were arranged perpendicularly to the mechanical loading and differentiated to osteoblastic forms with rising collagen type I synthesis, constant alkaline phosphatase activity, and initiation of the calcification of the extracellular matrix. The observed pattern of cell and tissue differentiation was similar to the one seen in the early phase of bone healing. In conclusion, the presented method allows simulation of cell and tissue differentiation during the early phase of fracture healing. It could serve as an in vitro model for the examination of mechanical and pharmacological influences during the early phase of bone healing on a cellular level.
Collapse
Affiliation(s)
- Georg Matziolis
- Center for Musculoskeletal Surgery, Charité-University Medicine Berlin, Free and Humboldt-University of Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Reconstruction of craniofacial bony deficiencies, whether acquired through trauma or as a result of treatment for disease, is a chronic problem. Although numerous approaches utilizing a wide array of materials ranging from alloplastic materials to autogenous bone grafts have been employed to achieve bony replacement, no ideal clinical approach exists. In this brief review, we will provide an overview of current approaches to treating craniofacial bony defects. We will then discuss advances being made in the design of scaffolding materials and potential candidate cell types with which to design tissue-engineered constructs for craniofacial skeletal repair.
Collapse
Affiliation(s)
- R P Nacamuli
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
24
|
Kontaxis A, Abu-Serriah M, Ayoub AF, Barbenel JC. Mechanical testing of recombinant human bone morphogenetic protein-7 regenerated bone in sheep mandibles. Proc Inst Mech Eng H 2005; 218:381-8. [PMID: 15648662 DOI: 10.1243/0954411042632135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new method was developed in this study for testing excised sheep mandibles as a cantilever. The method was used to determine the strength and stiffness of sheep hemi-mandibles including a 35 mm defect bridged by regenerated bone. Recombinant human bone morphogenetic protein-7 (rhBMP-7) in a bovine collagen type-I carrier was used for the bone regeneration. Initial tests on ten intact sheep mandibles confirmed that the strength, stiffness and area beneath the load-deformation curves of the right and left hemi-mandibles were not significantly different, confirming the validity of using the contra-lateral hemi-mandible as a control side. Complete bone regeneration occurred in six hemi-mandibles treated with rhBMP, but the quality and mechanical properties of the bone were very variable. The new bone in three samples contained fibrous tissue and was weaker and less stiff than the contra-lateral side (strength, 10-20 per cent; stiffness, 6-15 per cent). The other half had better-quality bone and was significantly stiffer and stronger (p < 0.05), with strength 45-63 per cent and stiffness 35-46 per cent of the contra-lateral side. Hemi-mandibles treated with collagen alone had no regenerated bone bridge suggesting that 35 mm is a critical-size bone defect.
Collapse
|
25
|
Xu XL, Lou J, Tang T, Ng KW, Zhang J, Yu C, Dai K. Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater 2005; 75:289-303. [PMID: 16025445 DOI: 10.1002/jbm.b.30299] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To better understand the effects of scaffold materials for bone morphogenetic protein 2 (BMP-2) genetic tissue engineering in vivo, several gels, including alginate, collagen, agarose, hyaluronate, fibrin, or Pluronic, were mixed with adenovirus-mediated human BMP-2 gene (Adv-hBMP-2) transduced bone marrow stromal cells (BMSCs) and injected into the muscles of athymic mice to evaluate the resulting osteogenesis and chondrogenesis. These gel and gene-transduced BMSC mixtures were also loaded onto beta-TCP/HAP biphasic calcined bone (BCB) and observed under scanning electron microscopy (SEM). In addition, these composite scaffolds were implanted into the subcutaneous site of athymic mice to construct tissue-engineered bone. After injection, collagen, hyaluronate, or alginate gel mixed with gene-transduced BMSCs induced more bone formation than a cell suspension in alpha-MEM. The agarose-gene-transduced BMSC gel was found to contain much more hyaline cartilage. SEM showed the BMSCs could survive in alginate, agarose, and collagen gel in vitro for up to 8 d. After implantation of tissue-engineered bone, the alginate, collagen, and agarose gel could promote new bone formation within a BCB in vivo. Little or no bone formed after injection of fibrin or Pluronic gel mixed with BMSCs or implantation with BCB. These findings help to elucidate the effects of various scaffold materials for future research in orthopedic tissue engineering using BMP-2 transduced cells.
Collapse
Affiliation(s)
- X Leon Xu
- Department of Orthopedic Surgery, Ninth People's Hospital, Shanghai Second Medical University, Shanghai, 200011, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Nacamuli RP, Wan DC, Lenton KA, Longaker MT. New developments in pediatric plastic surgery research. Clin Plast Surg 2005; 32:123-36, ix-x. [PMID: 15636770 DOI: 10.1016/j.cps.2004.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pediatric plastic surgery research is a rapidly expanding field. Unique in many ways, researchers in this field stand at the union of multiple scientific specialties, including biomedical engineering, tissue engineering, polymer science, molecular biology, developmental biology, and genetics. The goal of this scientific effort is to translate research advances into improved treatments for children with congenital and acquired defects. Although the last decade has seen a dramatic acceleration in research related to pediatric plastic surgery, the next 10 years will no doubt lead to novel treatment strategies with improved clinical outcomes.
Collapse
Affiliation(s)
- Randall P Nacamuli
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford University Medical Center, 257 Campus Drive, Stanford, CA 94305-5148, USA
| | | | | | | |
Collapse
|
27
|
Abstract
There are many different types of scaffold materials now available for tissue engineering applications. Hydrogels form one group of materials that have been used in a wide variety of applications. These hydrogels can be formed using natural materials, synthetic materials, or some combination of the two. There are advantages and disadvantages to using each type of material, and detailed investigations into the effects on various aspects of cell behavior of chemical and physical properties of the materials are needed to make an informed decision as to which material is best suited for a given application. By combining appropriate scaffold materials, such as hydrogels, with cells and proper signaling for those cells, more commercial tissue engineering products will become available for general use.
Collapse
Affiliation(s)
- Brenda K Mann
- Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA.
| |
Collapse
|
28
|
Warren SM, Fong KD, Nacamuli RP, Song HM, Fang TD, Longaker MT. Biomaterials for skin and bone replacement and repair in plastic surgery. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1071-0949(03)90003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|