1
|
Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP. Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 2022; 919:174798. [DOI: 10.1016/j.ejphar.2022.174798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
|
2
|
Cultured hippocampal neurons of dystrophic mdx mice respond differently from those of wild type mice to an acute treatment with corticosterone. Exp Cell Res 2020; 386:111715. [PMID: 31711918 DOI: 10.1016/j.yexcr.2019.111715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy is a lethal genetic disease characterised by progressive degeneration of skeletal muscles induced by deficiency of dystrophin, a cytoskeletal protein expressed in myocytes and in certain neuron populations. The severity of the neurological disorder varies in humans and animal models owing to dysfunction in numerous brain areas, including the hippocampus. Cyclic treatments with high-dose glucocorticoids remain a major pharmacological approach for treating the disease; however, elevated systemic levels of either stress-induced or exogenously administered anti-inflammatory molecules dramatically affect hippocampal activity. In this study, we analysed and compared the response of hippocampal neurons isolated from wild-type and dystrophic mdx mice to acute administration of corticosterone in vitro, without the influence of other glucocorticoid-regulated processes. Our results showed that in neurons of mdx mice, both the genomic and intracellular signalling-mediated responses to corticosterone were affected compared to those in wild-type animals, evoking the characteristic response to detrimental chronic glucocorticoid exposure. Responsiveness to glucocorticoids is, therefore, another function of hippocampal neurons possibly affected by deficiency of Dp427 since embryonic development. Knowing the pivotal role of hippocampus in stress hormone signalling, attention should be paid to the effects that prolonged glucocorticoid treatments may have on this and other brain areas of DMD patients.
Collapse
|
3
|
Pro-apoptotic Action of Corticosterone in Hippocampal Organotypic Cultures. Neurotox Res 2016; 30:225-38. [PMID: 27189478 PMCID: PMC4947107 DOI: 10.1007/s12640-016-9630-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 01/31/2023]
Abstract
Elevated levels of glucocorticoids exert neurotoxic effects, and the hippocampus is particularly sensitive to the effects of glucocorticoids. Because some data have indicated that an increased action of glucocorticoids in the perinatal period enhances the susceptibility of brain tissue to adverse substances later in life, the main purpose of the present study was to compare necrotic/apoptotic corticosterone action in hippocampal organotypic cultures obtained from control animals with the effect of this steroid in tissue from prenatally stressed rats. Because the adverse effects of glucocorticoid action on nerve cell viability appear to result mainly from an increase in the intensity of the effects of glutamate and changes in growth factor and pro-inflammatory cytokine synthesis, the involvement of these factors in corticosterone action were also determined. In stress-like concentration (1 μM), corticosterone, when added to hippocampal cultures for 1 and 3 days, alone or jointly with glutamate, did not induce necrosis. In contrast, in 3-day cultures, corticosterone (1 μM) increased caspase-3 activity and the mRNA expression of the pro-apoptotic Bax. Moreover, corticosterone’s effect on caspase-3 activity was stronger in hippocampal cultures from prenatally stressed compared to control rats. Additionally, 24 h of exposure to corticosterone and glutamate, when applied separately and together, increased Bdnf, Ngf, and Tnf-α expression. In contrast, after 72 h, a strong decrease in the expression of both growth factors was observed, while the expression of TNF-α remained high. The present study showed that in stress-like concentrations, corticosterone exerted pro-apoptotic but not necrotic effects in hippocampal organotypic cultures. Prenatal stress increased the pro-apoptotic effects of corticosterone. Increased synthesis of the pro-inflammatory cytokine TNF-α may be connected with the adverse effects of corticosterone on brain cell viability.
Collapse
|
4
|
Payne RS, Schurr A. Corticosterone disrupts glucose-, but not lactate-supported hippocampal PS-LTP. Neurosci Lett 2007; 424:111-5. [PMID: 17709185 DOI: 10.1016/j.neulet.2007.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/07/2007] [Accepted: 07/22/2007] [Indexed: 11/16/2022]
Abstract
We previously reported that acute exposure of rat hippocampal brain slices to stress levels of corticosterone aggravated ischemic neuronal damage. The present study examined whether or not an acute stress level corticosterone exposure interferes with expression of rat hippocampal CA1 population spike long-term potentiation (PS-LTP) in slices supplemented either with glucose or lactate. Exposure of glucose-supplemented (5mM) slices to corticosterone (1microM) for 90min significantly diminished their ability to generate and maintain PS-LTP compared to equicaloric lactate-supplemented (10mM) slices (p<0.05). Moreover, this diminished expression of LTP in glucose-supplemented slices was ameliorated by either treatment with RU38486 (5microM), a potent corticosterone receptor antagonist or with10mM glucose. These results suggest that lactate may serve as an effective alternate energy substrate during exposure to elevated levels of corticosterone, allowing maintenance of glucocorticoid-sensitive neuronal functions such as synaptic potentiation during metabolically critical periods when glucose utilization is compromised.
Collapse
Affiliation(s)
- Ralphiel S Payne
- Department of Anesthesiology & Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | |
Collapse
|
5
|
Mulholland PJ, Stepanyan TD, Self RL, Hensley AK, Harris BR, Kowalski A, Littleton JM, Prendergast MA. Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience 2005; 136:259-67. [PMID: 16182452 DOI: 10.1016/j.neuroscience.2005.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 11/17/2022]
Abstract
Many patients display elevated levels of serum cortisol following acute ischemic stroke. Given that glucocorticoids may potentiate some forms of insult, these studies examined the effects of corticosterone or dexamethasone exposure on cytotoxicity following oxygen-glucose deprivation in the cerebellum, a brain region susceptible to stroke. In organotypic cerebellar slice cultures prepared from neonatal rat pups, 90-min of oxygen-glucose deprivation at 15 days in vitro resulted in significant cytotoxicity at 24-, 48-, and 72-h post-oxygen-glucose deprivation, as measured by uptake of propidium iodide. Exposure of cultures following oxygen-glucose deprivation to the antioxidant trolox (500 microM), but not to the glucocorticoid receptor antagonist RU486 (10 microM), completely blocked oxygen-glucose deprivation-induced cytotoxicity. Corticosterone (1 microM) or dexamethasone (10 microM) exposure alone did not significantly increase propidium iodide uptake above levels observed in control cultures. However, corticosterone or dexamethasone exposure after oxygen-glucose deprivation potentiated oxygen-glucose deprivation-mediated propidium iodide uptake at each time point. Trolox, as well as RU486, co-exposure of cultures to corticosterone or dexamethasone after oxygen-glucose deprivation abolished all cytotoxicity. In conclusion, these data demonstrated that glucocorticoid exposure modulated oxygen-glucose deprivation-mediated propidium iodide uptake, which likely involved glucocorticoid receptor activation and pro-oxidant effects.
Collapse
Affiliation(s)
- P J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fontella FU, Cimarosti H, Crema LM, Thomazi AP, Leite MC, Salbego C, Gonçalves CAS, Wofchuk S, Dalmaz C, Netto CA. Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 2005; 65:443-50. [PMID: 15833599 DOI: 10.1016/j.brainresbull.2005.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/24/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
Several studies have shown that high corticosteroid hormone levels increase neuronal vulnerability. Here we evaluate the consequences of in vivo acute or repeated restraint stress on cellular viability in rat hippocampal slices suffering an in vitro model of ischemia. Cellular injury was quantified by measuring lactate dehydrogenase (LDH) and neuron-specific enolase released into the medium. Acute stress did not affect cellular death when oxygen and glucose deprivation (OGD) was applied both immediately or 24h after restraint. The exposure to OGD, followed by reoxygenation, resulted in increased LDH in the medium. Repeated stress potentiated the effect of OGD both, on LDH and neuron-specific enolase released to the medium. There was no effect of repeated stress on the release of S100B, an astrocytic protein. Additionally, no effect of repeated stress was observed on glutamate uptake by the tissue. These results suggest that repeated stress increases the vulnerability of hippocampal cells to an in vitro model of ischemia, potentiating cellular damage, and that the cells damaged by the exposure to repeated stress+OGD are mostly neurons. The uptake of glutamate was not observed to participate in the mechanisms responsible for rendering the neurons more susceptible to ischemic damage after repeated stress.
Collapse
Affiliation(s)
- Fernanda Urruth Fontella
- PPG-Fisiologia e Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Payne RS, Tseng MT, Schurr A. The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res 2003; 971:9-17. [PMID: 12691832 DOI: 10.1016/s0006-8993(03)02276-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aggravation of neuronal damage by preischemic hyperglycemia, i.e. the glucose paradox of cerebral ischemia, is a well-established phenomenon that has prompted clinicians around the world to closely monitor and control blood glucose levels in surgical cases at high risk for ischemic episodes. The widely prevalent idea that lactic acidosis is responsible for hyperglycemia-enhanced ischemic neuronal damage is challenged with the hypothesis that glucose-elicited corticosterone release is a more compelling explanation of the glucose paradox. Corticosterone is the main rodent glucocorticoid, and has important effects on glucose metabolism. Rats were exposed to 7 min of cardiac arrest-induced transient global ischemia. Plasma glucose and corticosterone (CT) levels were manipulated and monitored to assess their effects on delayed neuronal damage as measured 7 days postischemia using electrophysiological and histological methods. Seizure activity was assessed 24 h postischemia. The results demonstrate that the extent of postischemic neuronal damage correlates with plasma CT level, not glucose, at the onset of ischemia. Moreover, an elevation in plasma glucose levels triggers a significant increase in CT plasma levels. Pretreatment of hyperglycemic rats with the CT synthesis inhibitor metyrapone or the CT receptor antagonist, RU38486, prevents hyperglycemic aggravation of ischemic neuronal damage. The increased incidence of seizure and delayed neuronal damage resulting from preischemic hyperglycemia corresponds with CT levels rather than with glucose levels and suggests that CT has a greater prognostic value than glucose in predicting cerebral ischemic damage.
Collapse
Affiliation(s)
- Ralphiel S Payne
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
8
|
Reid KH, Paskitti M, Guo SZ, Schmelzer T, Iyer V. Experience with ketamine and sodium pentobarbital as anesthetics in a rat model of cardiac arrest and resuscitation. Resuscitation 2003; 57:201-10. [PMID: 12745189 DOI: 10.1016/s0300-9572(03)00025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We review 7 years experience with the chest compression model of cardiac arrest and resuscitation, comparing two different anesthetics. Ketamine stimulates cardiac function and only mildly depresses respiration; of the two it provides easier resuscitation. However, ketamine severely depresses brain protein synthesis; in studies using this measure ketamine is unsuitable and another agent must be used. Sodium pentobarbital mildly depresses brain protein synthesis, but depresses both cardiac and respiratory function, making resuscitation more difficult. Use of alternate chest/abdominal pumping (Babbs resuscitation technique), with judicious use of intra-cardiac epinephrine (adrenaline), made resuscitation reliable under sodium pentobarbital as well.
Collapse
Affiliation(s)
- K H Reid
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
9
|
Paskitti M, Reid KH. Use of an adenosine triphosphate-based 'cocktail' early in reperfusion substantially improves brain protein synthesis after global ischemia in rats. Neurosci Lett 2002; 331:147-50. [PMID: 12383918 DOI: 10.1016/s0304-3940(02)00588-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurological damage is a serious problem after cardiac arrest and resuscitation. We used a rat cardiac arrest model to test the ability of a post-ischemic infusion of adenosine triphosphate-magnesium chloride (ATP-MgCl(2)) to sustain cortical protein synthesis after 7 min global ischemia. We used norepinephrine (NE) to block the vasodilatory action of ATP, and a trace of vanadate to simulate the equine-derived ATP Chaudry used to protect against ischemia or hemorrhage in other organs. Our ATP 'cocktail' (3 ml of 4 mg/ml ATP-MgCl(2), 18 microg/ml NE, 2.4 microg/ml vanadate, infused intravenously over 18 min) tripled post-ischemic protein synthesis. ATP without vanadate, and vanadate without ATP, both had lesser but still significant effects. This ATP 'cocktail' may be useful as a neuroprotectant after cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Megan Paskitti
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
10
|
Abstract
All the advancements in the understanding of the molecular and cellular processes leading to the great investments in developing neuroprotection against cerebral ischemic/hypoxic damage cannot obscure the simple fact that exhaustion of energy supplies is still at the basis of this disorder. Much has been investigated and postulated over the years about the quick collapse of energy metabolism that follows oxygen and glucose deprivation in the brain. Anaerobic glycolysis, recognized as a pathway of paramount importance in keeping energy supplies, although, at bare minimum, has also presented a dilemma-a significant increase in lactate production during ischemia/hypoxia (IH). The dogma of lactate as a useless end product of anaerobic glycolysis and its postulated role as a detrimental player in the demise of the ischemic cell has persisted for the past quarter of a century. This persistence is due to, at least in part, the well-documented phenomenon termed "the glucose paradox of cerebral ischemia," the unexplained aggravation of postischemic neuronal damage by preischemic hyperglycemia. Recent studies have questioned the deleterious effect of lactic acid, while others even have offered the possibility that this monocarboxylate serves as an aerobic energy substrate during recovery from IH. Reviewed here are studies published over the past few years along with some key older papers on the topic of energy metabolism and recovery of neural tissue from IH. New insights gained from both in vitro and in vivo studies on energy metabolism of the ischemic/hypoxic brain should improve our understanding of this key metabolic process and the chances of protecting this organ from the consequences of energy deprivation.
Collapse
Affiliation(s)
- Avital Schurr
- Brain Attack Research Laboratory, Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Abstract
The glucose paradox of cerebral ischemia (namely, the aggravation of delayed ischemic neuronal damage by preischemic hyperglycemia) has been promoted as proof that lactic acidosis is a detrimental factor in this brain disorder. Recent studies, both in vitro and in vivo, have demonstrated lactate as an excellent aerobic energy substrate in the brain, and possibly a crucial one immediately postischemia. Moreover, evidence has been presented that refutes the lactic acidosis hypothesis of cerebral ischemia and thus has questioned the traditional explanation given for the glucose paradox. An alternative explanation for the aggravating effect of preischemic hyperglycemia on the postischemic outcome has consequently been offered, according to which glucose loading induces a short-lived elevation in the release of glucocorticoids. When an episode of cerebral ischemia in the rat coincided with glucose-induced elevated levels of corticosterone (CT), the main rodent glucocorticoid, an aggravation of the ischemic outcome was observed. Both the blockade of CT elevation by chemical adrenalectomy with metyrapone or the blockade of CT receptors in the brain with mifepristone (RU486) negated the aggravating effect of preischemic hyperglycemia on the postischemic outcome.
Collapse
Affiliation(s)
- Avital Schurr
- Brain Attack Research Laboratory, Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Schurr A, Payne RS, Miller JJ, Tseng MT. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental. J Neurosci Res 2001; 66:782-9. [PMID: 11746402 DOI: 10.1002/jnr.10065] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aerobic lactate utilization is crucial for recovery of neuronal function posthypoxia in vitro. In vivo models of cerebral ischemia pose a conceptual challenge when compared to in vitro models. First, the glucose paradox of cerebral ischemia, namely, the aggravation of delayed neuronal damage by preischemic hyperglycemia, cannot be reproduced in vitro. Second, in vitro elevated glucose levels protect against ischemic (hypoxic) damage, an outcome that has seldom been reproduced in vivo. Employing a rat model of cardiac-arrest-induced transient global cerebral ischemia (TGI), we found that hyperglycemic conditions, when induced 120-240 min pre-TGI, significantly reduced post-TGI neuronal damage as compared to normoglycemic conditions. In contrast, hyperglycemia, when induced 15-60 min pre-TGI, significantly aggravated post-TGI neuronal damage. Brain lactate levels in rats loaded with glucose either 15 min or 120 min pre-TGI were significantly and equally higher than those of control, saline-injected rats. The beneficial effect of 120 min pre-TGI glucose loading was abolished by lactate transport inhibition. A significant increase in blood corticosterone (CT) levels was observed upon glucose loading that peaked at 15-30 min and returned to baseline levels by 60-120 min. When rats loaded with glucose 15 min pre-TGI were treated with metyrapone, a CT synthesis inhibitor, a significantly lower degree of delayed neuronal damage in comparison to both untreated, 15 min glucose-loaded rats and normoglycemic, control rats was observed. Thus, although elevated levels of brain lactate cannot explain the glucose paradox of cerebral ischemia, hyperglycemia-induced, short-lived elevation in CT blood levels could. More importantly, lactate appears to play a crucial role in improving postischemic outcome.
Collapse
Affiliation(s)
- A Schurr
- Brain Attack Research Laboratory, Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|