1
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
2
|
Pan Y, Short JL, Newman SA, Choy KHC, Tiwari D, Yap C, Senyschyn D, Banks WA, Nicolazzo JA. Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of β-amyloid. Brain Behav Immun 2018; 70:36-47. [PMID: 29545118 DOI: 10.1016/j.bbi.2018.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022] Open
Abstract
Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain β-amyloid (Aβ) levels, and the brain clearance of Aβ is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aβ. The brain clearance of intracerebroventricularly (icv) administered 125I-Aβ42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125I-Aβ42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aβ42, plaque-associated Aβ42, and brain efflux of 125I-Aβ42. LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aβ42, soluble Aβ42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125I-Aβ42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125I-Aβ42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aβ42 lowering effects of LiCl are associated with enhanced brain clearance of Aβ42, possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jennifer L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Durgesh Tiwari
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher Yap
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Danielle Senyschyn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience 2018; 370:46-61. [DOI: 10.1016/j.neuroscience.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
|
4
|
Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function. J Neurosci 2017; 36:11755-11767. [PMID: 27852782 DOI: 10.1523/jneurosci.1583-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5+/+ and FABP5-/- mice using a battery of memory paradigms. FABP5-/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5+/+ and FABP5-/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14C-DHA uptake into brain endothelial cells and brain capillaries of FABP5-/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5+/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5-/- mice are associated with reduced CNS access of DHA. SIGNIFICANCE STATEMENT Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5-/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function.
Collapse
|
5
|
In search of a recognition memory engram. Neurosci Biobehav Rev 2014; 50:12-28. [PMID: 25280908 PMCID: PMC4382520 DOI: 10.1016/j.neubiorev.2014.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The role of the perirhinal cortex in familiarity discrimination is reviewed. Behavioural, pharmacological and electrophysiological evidence is considered. The cortex is found to be essential for memory acquisition, retrieval and storage. The evidence indicates that perirhinal synaptic weakening is critically involved.
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
Collapse
|
6
|
Banks PJ, Warburton EC, Brown MW, Bashir ZI. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:193-209. [PMID: 24484702 DOI: 10.1016/b978-0-12-420170-5.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Learning is widely believed to involve synaptic plasticity, employing mechanisms such as those used in long-term potentiation (LTP) and long-term depression (LTD). In this chapter, we will review work on mechanisms of synaptic plasticity in perirhinal cortex in vitro and relate these findings to studies underlying recognition memory in vivo. We describe how antagonism of different glutamate and acetylcholine receptors, inhibition of nitric oxide synthase, inhibition of CREB phosphorylation, and interfering with glutamate AMPA receptor internalization can produce deficits in synaptic plasticity in vitro. Inhibition of each of these different mechanisms in vivo also results in recognition memory deficits. Therefore, we provide strong evidence that synaptic plastic mechanisms are necessary for the information processing and storage that underlies object recognition memory.
Collapse
Affiliation(s)
- P J Banks
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - E C Warburton
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - M W Brown
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Z I Bashir
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Portero-Tresserra M, Cristóbal-Narváez P, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine in prelimbic cortex reverses scopolamine-induced deficits in olfactory memory in rats. PLoS One 2013; 8:e70584. [PMID: 23936452 PMCID: PMC3732227 DOI: 10.1371/journal.pone.0070584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/19/2013] [Indexed: 12/02/2022] Open
Abstract
A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paula Cristóbal-Narváez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
8
|
Banks PJ, Bashir ZI, Brown MW. Recognition memory and synaptic plasticity in the perirhinal and prefrontal cortices. Hippocampus 2013; 22:2012-31. [PMID: 22987679 DOI: 10.1002/hipo.22067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Work is reviewed that relates recognition memory to studies of synaptic plasticity mechanisms in perirhinal and prefrontal cortices. The aim is to consider evidence that perirhinal cortex and medial prefrontal cortex store rather than merely transmit information necessary for recognition memory and, if so, to consider what mechanisms are potentially available within these cortices for producing such storage through synaptic change. Interventions with known actions on plasticity mechanisms are reviewed in relation to their effects on recognition memory processes. These interventions importantly include those involving antagonism of glutamatergic and cholinergic receptors but also inhibition of plasticity consolidation and expression mechanisms. It is concluded that there is strong evidence that perirhinal cortex is involved in information storage necessary for object recognition memory and, moreover, that such storage involves synaptic weakening mechanisms including the removal of AMPA glutamate receptors from synapses. There is good evidence that medial prefrontal cortex is necessary for associative and temporal order recognition memory and that this cortex expresses plasticity mechanisms that potentially allow the storage of information. However, the case for medial prefrontal cortex acting as a store requires further support.
Collapse
|
9
|
What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012; 50:3122-40. [PMID: 22841990 PMCID: PMC3500694 DOI: 10.1016/j.neuropsychologia.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/26/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
Abstract
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity).
Collapse
|
10
|
Tinsley CJ, Fontaine-Palmer NS, Vincent M, Endean EPE, Aggleton JP, Brown MW, Warburton EC. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex. Learn Mem 2011; 18:484-92. [PMID: 21693636 DOI: 10.1101/lm.2274911] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.
Collapse
Affiliation(s)
- Chris J Tinsley
- MRC Centre for Synaptic Plasticity, School of Physiological Sciences, Bristol University, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
12
|
Abe H, Ishida Y, Nonaka H, Iwasaki T. Functional difference between rat perirhinal cortex and hippocampus in object and place discrimination tasks. Behav Brain Res 2009; 197:388-97. [DOI: 10.1016/j.bbr.2008.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 11/16/2022]
|
13
|
Pitsikas N, Sakellaridis N. Memantine and recognition memory: Possible facilitation of its behavioral effects by the nitric oxide (NO) donor molsidomine. Eur J Pharmacol 2007; 571:174-9. [PMID: 17628527 DOI: 10.1016/j.ejphar.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, University of Thessaly, 22, Papakiriazi str., 412-22 Larissa, Greece.
| | | |
Collapse
|
14
|
De Souza Silva MA, Dolga A, Pieri I, Marchetti L, Eisel ULM, Huston JP, Dere E. Cholinergic cells in the nucleus basalis of mice express the N-methyl-d-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels. GENES BRAIN AND BEHAVIOR 2006; 5:552-60. [PMID: 17010101 DOI: 10.1111/j.1601-183x.2006.00206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-d-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the nucleus basalis has not yet been investigated. Here, by means of choline acetyl transferase and NR2B or NR2C double staining, we demonstrate that mice express both the NR2C and NR2B subunits in nucleus basalis cholinergic cells. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether a subunit exchange in cholinergic neurons would affect acetylcholine (ACh) content in several brain structures. We found increased ACh levels in the frontal cortex and amygdala in the brains of NR2C-2B mutant mice. Brain ACh has been implicated in neuroplasticity, novelty-induced arousal and encoding of novel stimuli. We therefore assessed behavioral habituation to novel environments and objects as well as object recognition in NR2C-2B subunit exchange mice. The behavioral analysis did not indicate any gross behavioral alteration in the mutant mice compared with the wildtype mice. Our results show that the NR2C by NR2B subunit exchange in mice affects ACh content in two target areas of the nucleus basalis.
Collapse
Affiliation(s)
- M A De Souza Silva
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Dere E, Huston JP, De Souza Silva MA. Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. ACTA ACUST UNITED AC 2005; 16:10-9. [PMID: 16185914 DOI: 10.1016/j.brainresprot.2005.08.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/26/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
Episodic memory refers to the conscious recollection of a unique past experience in terms of "what" happened and "where" and "when" it happened. Since deficits in episodic memory are found in a number of neuropsychiatric diseases, such as Alzheimer's disease, for which several pharmacological, lesion and genetic animal models are available, there is a need for animal models of episodic-like memory, which can be used to devise appropriate treatments. However, even when the problem of conscious recollection in animals is factored out, episodic memory has been difficult to demonstrate in nonhuman mammals because it has not yet been possible to demonstrate an integrated memory for "what",-"where"-and-"when". We designed a three-trial "what",-"where"-and-"when" object exploration task in which different versions of the novelty preference paradigm were combined to subsume (a) object recognition memory, (b) the memory for locations in which objects were explored and (c) the temporal order memory for objects presented at distinct time points. Our results suggest that mice are able to (a) recognize previously explored objects, (b) remember the location in which particular objects were previously encountered and (c) discriminate the relative recency in which different objects were presented. We suggest that our protocol providing the simultaneous assessment of object memory for "what",-"where"-and-"when" in mice might be useful in the search for the neural substrates of episodic memory, the screening for promnestic drugs and the behavioral phenotyping of genetic models of neuropsychiatric diseases affecting episodic memory.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
16
|
Xu SJ, Chen Z, Zhu LJ, Shen HQ, Luo JH. Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats. Acta Pharmacol Sin 2005; 26:177-80. [PMID: 15663895 DOI: 10.1111/j.1745-7254.2005.00532.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To examine the basic expression levels of N-methyl-D-aspartate (NMDA) receptor NR1 and NR2B subunits in six brain regions of Sprague-Dawley (SD) rats with different visual recognition memory. METHODS Rats were tested by a novel-object-recognition model and grouped into the high and the low visual recognition memory groups. The expression levels of NR1 and NR2B subunits in the cortex, hippocampus, striatum, amygdala, diencephalon, and olfactory bulb were measured by semiquantitative immunoblotting. RESULTS The NR1 and NR2B subunit protein levels in the hippocampus of the high visual recognition memory group were 35.9% (P<0.01) and 53.4% (P<0.05) higher respectively than those in the low group. In addition, the NR2B level in the striatum in the high visual recognition memory group was 25.0% (P<0.05) higher than that in the low one. However, no significant difference was found in the levels of the subunits between the two groups in other brain regions. CONCLUSION The visual recognition memory in rats is related to the basic expression level of NMDA receptor NR1/NR2B subtype in the hippocampus and striatum.
Collapse
Affiliation(s)
- Shu-Jun Xu
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310031, China
| | | | | | | | | |
Collapse
|
17
|
Abe H, Ishida Y, Iwasaki T. Perirhinal N-methyl-D-aspartate and muscarinic systems participate in object recognition in rats. Neurosci Lett 2004; 356:191-4. [PMID: 15036627 DOI: 10.1016/j.neulet.2003.11.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 11/17/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
To determine the possible involvement of N-methyl-d-aspartate (NMDA) and muscarinic activation of the perirhinal cortex in object recognition, an NMDA antagonist (d,l-2-amino-5-phosphonopentanoic acid (AP5)) and a muscarinic antagonist (scopolamine) were injected into the perirhinal cortex of rats. A high dose of AP5 (60 mM) and two doses of scopolamine (20 and 80 mM), but not a low dose of AP5 (30 mM) alone, significantly impaired discrimination between novel and familiar objects in a spontaneous object recognition task, which is one of the recognition memory tasks. These results suggest that activation of both NMDA and muscarinic receptors in the perirhinal cortex contributes to object recognition.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Psychiatry, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan.
| | | | | |
Collapse
|