1
|
Cui CY, Liu X, Peng MH, Liu Q, Zhang Y. Identification of key candidate genes and biological pathways in neuropathic pain. Comput Biol Med 2022; 150:106135. [PMID: 36166989 DOI: 10.1016/j.compbiomed.2022.106135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuropathic pain is a common chronic pain, characterized by spontaneous pain and mechanical allodynia. The incidence of neuropathic pain is on the rise due to infections, higher rates of diabetes and stroke, and increased use of chemotherapy drugs in cancer patients. At present, due to its pathophysiological process and molecular mechanism remaining unclear, there is a lack of effective treatment and prevention methods in clinical practice. Now, we use bioinformatics technology to integrate and filter hub genes that may be related to the pathogenesis of neuropathic pain, and explore their possible molecular mechanism by functional annotation and pathway enrichment analysis. METHODS The expression profiles of GSE24982, GSE2884, GSE2636 and GSE30691 were downloaded from the Gene Expression Omnibus(GEO)database, and these datasets include 93 neuropathic pain Rattus norvegicus and 59 shame controls. After the four datasets were all standardized by quantiles, the differentially expressed genes (DEGs) between NPP Rattus norvegicus and the shame controls were finally identified by the robust rank aggregation (RRA) analysis method. In order to reveal the possible underlying biological function of DEGs, the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of DEGs were performed. In addition, a Protein-protein Interaction (PPI) network was also established. At the end of our study, a high throughput sequencing dataset GSE117526 was used to corroborate our calculation results. RESULTS Through RRA analysis of the above four datasets GSE24982, GSE2884, GSE2636, and GSE30691, we finally obtained 231 DEGs, including 183 up-regulated genes and 47 down-regulated genes. Arranging 231 DEGs in descending order according to |log2 fold change (FC)|, we found that the top 20 key genes include 14 up-regulated genes and 6 down-regulated genes. The most down-regulated hub gene abnormal expressed in NPP was Egf17 (P-value = 0.008), Camk2n2 (P-value = 0.002), and Lep (P-value = 0.02), and the most up-regulated hub gene abnormal expressed in NPP was Nefm (P-value = 1.08E-06), Prx (P-value = 2.68E-07), and Stip1 (P-value = 4.40E-07). In GO functional annotation analysis results, regulation of ion transmembrane transport (GO:0034765; P-value = 1.45E-09) was the most remarkable enriched for biological process, synaptic membrane (GO:0097060; P-value = 2.95E-08) was the most significantly enriched for cellular component, channel activity (GO:0015267; P-value = 2.44E-06) was the most prominent enriched for molecular function. In KEGG pathway enrichment analysis results, the top three notable enrichment pathways were Neuroactive ligand-receptor interaction (rno04080; P-value = 3.46E-08), Calcium signaling pathway (rno04020; P-value = 5.37E-05), and Osteoclast differentiation (rno04380; P-value = 0.000459927). Cav1 and Lep appeared in the top 20 genes in both RRA analysis and PPI analysis, while Nefm appeared in RRA analysis and datasets GSE117526 validation analysis, so we finally identified these three genes as hub genes. CONCLUSIONS Our research identified the hub genes and signal pathways of neuropathic pain, enriched the pathophysiological mechanism of neuropathic pain to some extent, and provided a possible basis for the targeted therapy of neuropathic pain.
Collapse
Affiliation(s)
- Chun-Yan Cui
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ming-Hui Peng
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Ying Zhang
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
3
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
4
|
Shen YY, Gu XK, Zhang RR, Qian TM, Li SY, Yi S. Biological characteristics of dynamic expression of nerve regeneration related growth factors in dorsal root ganglia after peripheral nerve injury. Neural Regen Res 2020; 15:1502-1509. [PMID: 31997815 PMCID: PMC7059586 DOI: 10.4103/1673-5374.274343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
The regenerative capacity of peripheral nerves is limited after nerve injury. A number of growth factors modulate many cellular behaviors, such as proliferation and migration, and may contribute to nerve repair and regeneration. Our previous study observed the dynamic changes of genes in L4-6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing. Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3, 9 hours, 1, 4, or 7 days after nerve crush, compared with the 0 hour control. Thirty-six rat models of sciatic nerve crush injury were prepared as described previously. Then, they were divided into six groups to measure the expression changes of representative genes at 0, 3, 9 hours, 1, 4 or 7 days post crush. Our current study measured the expression levels of representative upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin genes, and explored critical signaling pathways and biological process through bioinformatic analysis. Our data revealed that many of these dysregulated upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin, participated in tissue remodeling and axon growth-related biological processes Therefore, the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury. Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves. All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals, China (approval No. 20170302-017) on March 2, 2017.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Kun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Chen C, Cui S, Li W, Jin H, Fan J, Sun Y, Cui Z. Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis. Exp Ther Med 2020; 19:2997-3008. [PMID: 32256786 PMCID: PMC7086291 DOI: 10.3892/etm.2020.8555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Facet joint osteoarthritis (FJOA) is a common degenerative joint disorder with high prevalence in the elderly. FJOA causes lower back pain and lower extremity pain, and thus severely impacts the quality of life of affected patients. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic genetic changes in FJOA have remained to be clearly determined. In the present study, previously obtained RNA deep sequencing data were subjected to an ingenuity pathway analysis (IPA) and canonical signaling pathways of differentially expressed genes (DEGs) in FJOA were studied. The top 25 enriched canonical signaling pathways were identified and canonical signaling pathways with high absolute values of z-scores, specifically leukocyte extravasation signaling, Tec kinase signaling and osteoarthritis pathway, were investigated in detail. DEGs were further categorized by disease, biological function and toxicity (tox) function. The genetic networks between DEGs as well as hub genes in these functional networks were also investigated. It was demonstrated that C-X-C motif chemokine ligand 8, elastase, neutrophil expressed, growth factor independent 1 transcriptional repressor, Spi-1 proto-oncogene, CCAAT enhancer binding protein epsilon, GATA binding protein 1, TAL bHLH transcription factor 1, erythroid differentiation factor, minichromosome maintenance complex component 4, BTG anti-proliferation factor 2, BRCA1 DNA repair-associated, cyclin D1, chromatin assembly factor 1 subunit A, triggering receptor expressed on myeloid cells 1 and tumor protein p63 were hub genes in the top 5 IPA networks (with a score >30). The present study provides insight into the pathological processes of FJOA from a genetic perspective and may thus benefit the clinical treatment of FJOA.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shengyu Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huricha Jin
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianbo Fan
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
6
|
Sun W, Kou D, Yu Z, Yang S, Jiang C, Xiong D, Xiao L, Deng Q, Xie H, Hao Y. A Transcriptomic Analysis of Neuropathic Pain in Rat Dorsal Root Ganglia Following Peripheral Nerve Injury. Neuromolecular Med 2019; 22:250-263. [PMID: 31858405 DOI: 10.1007/s12017-019-08581-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
The aim of this work is to provide a comprehensive and unbiased understanding at the molecular correlates of peripheral nerve injury. In this study, we screened the differentially expressed genes (DEGs) in the DRG from rats using RNA-seq technique. Moreover, the bioinformatics methods were used to figure out the signaling pathways and expression regulation pattern of the DEGs enriched in. In addition, quantitative real-time RT-PCR was carried out to further confirm the expression of DEGs. 414 genes were upregulated, while 184 genes were downregulated in the DRG of rats 7 days after partial sciatic nerve ligation (pSNL) surgery. Moreover, GO and KEGG enrichment analysis suggested that most of the altered genes were involved in inflammatory responses and signaling transduction. In addition, our results state that they shared similar characters in the DRG among four types of neuropathic pain models. Eighteen genes have been altered (17 of them were upregulated) in the DRG of all four types of neuropathic pain models, in which Vgf, Atf3, Cd74, Gal, Jun, Npy, Serpina3n, and Hspb1 have been reported to be involved in neuropathic pain. Quantitative real-time RT-PCR results further confirmed the mRNA expression levels of Vgf, Atf3, Cd74, Gal, Jun, Npy, Serpina3n, and Hspb1 in the DRG of rats with pSNL surgery. The present study suggested that these eight genes may play important roles in neuropathic pain, revealing that these genes might serve as therapeutic targets for neuropathic pain. Moreover, anti-inflammatory therapy might be an effective approach for neuropathic pain treatment and prevention.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, 400080, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Hengtao Xie
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
7
|
Khoonsari PE, Ossipova E, Lengqvist J, Svensson CI, Kosek E, Kadetoff D, Jakobsson PJ, Kultima K, Lampa J. The human CSF pain proteome. J Proteomics 2019; 190:67-76. [DOI: 10.1016/j.jprot.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
|
8
|
Bravo L, Llorca-Torralba M, Berrocoso E, Micó JA. Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci 2019; 13:1268. [PMID: 31942167 PMCID: PMC6951279 DOI: 10.3389/fnins.2019.01268] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Monoamines are involved in regulating the endogenous pain system and indeed, peripheral and central monoaminergic dysfunction has been demonstrated in certain types of pain, particularly in neuropathic pain. Accordingly, drugs that modulate the monaminergic system and that were originally designed to treat depression are now considered to be first line treatments for certain types of neuropathic pain (e.g., serotonin and noradrenaline (and also dopamine) reuptake inhibitors). The analgesia induced by these drugs seems to be mediated by inhibiting the reuptake of these monoamines, thereby reinforcing the descending inhibitory pain pathways. Hence, it is of particular interest to study the monoaminergic mechanisms involved in the development and maintenance of chronic pain. Other analgesic drugs may also be used in combination with monoamines to facilitate descending pain inhibition (e.g., gabapentinoids and opioids) and such combinations are often also used to alleviate certain types of chronic pain. By contrast, while NSAIDs are thought to influence the monoaminergic system, they just produce consistent analgesia in inflammatory pain. Thus, in this review we will provide preclinical and clinical evidence of the role of monoamines in the modulation of chronic pain, reviewing how this system is implicated in the analgesic mechanism of action of antidepressants, gabapentinoids, atypical opioids, NSAIDs and histaminergic drugs.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Juan Antonio Micó
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Juan Antonio Micó,
| |
Collapse
|
9
|
Hashimoto-Torii K, Sasaki M, Chang YW, Hwang H, Waxman SG, Kocsis JD, Rakic P, Torii M. Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system. IBRO Rep 2018; 5:91-98. [PMID: 30480161 PMCID: PMC6240805 DOI: 10.1016/j.ibror.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Spinal cord and peripheral nerve injury results in extensive damage to the locally injured cells as well as distant cells that are functionally connected to them. Both primary and secondary damage can cause a broad range of clinical abnormalities, including neuropathic pain and cognitive and memory dysfunction. However, the mechanisms underlying these abnormalities remain unclear, awaiting new methods to identify affected cells to enable examination of their molecular, cellular and physiological characteristics. Here, we report that both primary and secondary damage to cells in mouse models of spinal cord and peripheral nerve injury can be detected in vivo using a novel fluorescent reporter system based on the immediate stress response via activation of Heat Shock Factor 1. We also provide evidence for altered electrophysiological properties of reporter-positive secondarily-injured neurons. The comprehensive identification of injured, but surviving cells located both close and at distant locations from the injury site in vivo will provide a way to study their pathophysiology and possibly prevention of their further deterioration.
Collapse
Key Words
- Cellular damage
- DRG, dorsal root ganglion
- FG, Fluoro-Gold
- HRP, horseradish peroxidase
- HSE, heat shock-response element
- HSF1, heat shock factor 1
- HSP, heat shock protein
- Heat shock signaling
- IL-6, interleukin 6
- M1, primary motor cortex
- M2, secondary motor cortex
- MPtA, medial parietal association cortex
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- RFP, red fluorescent protein
- Reporter mouse
- SCI, spinal cord injury
- SNI, sciatic nerve injury
- Sciatic nerve injury
- Spinal cord injury
- WDR, wide-dynamic range
- WGA, wheat germ agglutinin
Collapse
Affiliation(s)
- Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC 20010, USA
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masanori Sasaki
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Yu-Wen Chang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Hye Hwang
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC 20010, USA
- Institute of Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC 20010, USA
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Navarro A, Rioseras B, Del Valle E, Martínez-Pinilla E, Astudillo A, Tolivia J. Expression Pattern of Myelin-Related Apolipoprotein D in Human Multiple Sclerosis Lesions. Front Aging Neurosci 2018; 10:254. [PMID: 30186153 PMCID: PMC6110904 DOI: 10.3389/fnagi.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein D (Apo D) is a key molecule in the lipid transport during homeostasis and repair processes in normal and pathological conditions of the nervous system with a putative neuroprotective effect. In the last decades, huge experimental efforts have been made to know the exact mechanism of action of Apo D, even though, it remains an open question. In this regard, studies in mammals and flies have suggested that Apo D seems to act through a variety of cellular mechanisms related with its ability to selectively bind different lipid ligands. For instance, this apolipoprotein is required to myelin compaction, it participates in axon regeneration/remyelination, and it can control the magnitude and timing of the inflammatory response after injury, promoting myelin clearance, and regulating the number of immune cells recruited to the damaged area. These, among others, are some of the reasons to study Apo D in multiple sclerosis (MS) pathology, where it could be particularly important since the autoimmune reaction against oligodendrocytes (OLGs) and myelin is generally assumed as the most plausible cause of this pathology. The aim of this work was to investigate the Apo D expression pattern in MS lesions, including active and inactive demyelinating plaques, and also remyelinating ones. Human brain tissues with inflammatory demyelination consistent with MS were used to quantify Apo D immunosignal in different lesions. Our results show a clear decrease of Apo D expression in all sclerosis plaques, being lower in the inactive than in active areas but recovers in the remyelination ones. Apo D is mainly produced by the matured OLGs of white matter and is located in cell processes surrounding the myelin sheath. All these data seem to indicate an important role of Apo D in myelination/remyelination processes as a molecule with a neuroprotective potential, and may serve as a good starting point for its study in MS.
Collapse
Affiliation(s)
- Ana Navarro
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Eva Del Valle
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge Tolivia
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.,Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Ibrahim MM, Patwardhan A, Gilbraith KB, Moutal A, Yang X, Chew LA, Largent-Milnes T, Malan TP, Vanderah TW, Porreca F, Khanna R. Long-lasting antinociceptive effects of green light in acute and chronic pain in rats. Pain 2017; 158:347-360. [PMID: 28092651 DOI: 10.1097/j.pain.0000000000000767] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatments for chronic pain are inadequate, and new options are needed. Nonpharmaceutical approaches are especially attractive with many potential advantages including safety. Light therapy has been suggested to be beneficial in certain medical conditions such as depression, but this approach remains to be explored for modulation of pain. We investigated the effects of light-emitting diodes (LEDs), in the visible spectrum, on acute sensory thresholds in naive rats as well as in experimental neuropathic pain. Rats receiving green LED light (wavelength 525 nm, 8 h/d) showed significantly increased paw withdrawal latency to a noxious thermal stimulus; this antinociceptive effect persisted for 4 days after termination of last exposure without development of tolerance. No apparent side effects were noted and motor performance was not impaired. Despite LED exposure, opaque contact lenses prevented antinociception. Rats fitted with green contact lenses exposed to room light exhibited antinociception arguing for a role of the visual system. Antinociception was not due to stress/anxiety but likely due to increased enkephalins expression in the spinal cord. Naloxone reversed the antinociception, suggesting involvement of central opioid circuits. Rostral ventromedial medulla inactivation prevented expression of light-induced antinociception suggesting engagement of descending inhibition. Green LED exposure also reversed thermal and mechanical hyperalgesia in rats with spinal nerve ligation. Pharmacological and proteomic profiling of dorsal root ganglion neurons from green LED-exposed rats identified changes in calcium channel activity, including a decrease in the N-type (CaV2.2) channel, a primary analgesic target. Thus, green LED therapy may represent a novel, nonpharmacological approach for managing pain.
Collapse
Affiliation(s)
- Mohab M Ibrahim
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Amol Patwardhan
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Aubin Moutal
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaofang Yang
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lindsey A Chew
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - T Philip Malan
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W Vanderah
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
13
|
Fernández-Montoya J, Buendia I, Martin YB, Egea J, Negredo P, Avendaño C. Sensory Input-Dependent Changes in Glutamatergic Neurotransmission- Related Genes and Proteins in the Adult Rat Trigeminal Ganglion. Front Mol Neurosci 2016; 9:132. [PMID: 27965535 PMCID: PMC5124698 DOI: 10.3389/fnmol.2016.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left–right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Izaskun Buendia
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de MadridMadrid, Spain; Departamento de Anatomía, Universidad Francisco de VitoriaMadrid, Spain
| | - Javier Egea
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Negredo
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Carlos Avendaño
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
14
|
Carmel JB, Young W, Hart RP. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS. Front Mol Neurosci 2015; 8:34. [PMID: 26236189 PMCID: PMC4505142 DOI: 10.3389/fnmol.2015.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration.
Collapse
Affiliation(s)
- Jason B Carmel
- Brain Mind Research Institute and Departments of Pediatrics and Neurology, Weill Cornell Medical College New York, NY, USA ; Burke-Cornell Medical Research Institute White Plains, NY, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Ronald P Hart
- W.M. Keck Center for Collaborative Neuroscience and the Department of Cell Biology and Neuroscience, Rutgers University Piscataway, NJ, USA
| |
Collapse
|
15
|
Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110409. [PMID: 23530259 DOI: 10.1098/rstb.2011.0409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1-HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.
Collapse
Affiliation(s)
- Serena Carra
- Dipartimento di Scienze Biomediche, Universita' degli Studi di Modena e Reggio Emilia, , via G. Campi 287, Modena 41125, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Grace PM, Hurley D, Barratt DT, Tsykin A, Watkins LR, Rolan PE, Hutchinson MR. Harnessing pain heterogeneity and RNA transcriptome to identify blood-based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model. J Neurochem 2012; 122:976-94. [PMID: 22697386 DOI: 10.1111/j.1471-4159.2012.07833.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Naik AK, Latham JR, Obradovic A, Jevtovic-Todorovic V. Dorsal root ganglion application of muscimol prevents hyperalgesia and stimulates myelin protein expression after sciatic nerve injury in rats. Anesth Analg 2011; 114:674-82. [PMID: 22190549 DOI: 10.1213/ane.0b013e31823fad7e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Peripheral nerve injuries may result in debilitating pain that is poorly responsive to conventional treatment. Neuropathic pain induced by peripheral nerve injury is caused, in part, by ectopic discharges from the injury site or the dorsal root ganglia (DRG) resulting in enhanced central input and central hyperexcitability. A heterogeneous family of γ-aminobutyric acid (GABA)(A) channels is important in quieting neuronal excitability. We have recently reported that in vivo modulation of GABAergic neurons in DRG can alter the course of neuropathic pain development after peripheral nerve injury. It seems that direct application of a potent GABA(A) agonist, muscimol, to the ipsilateral DRG prevents the development of hyperalgesia in rats subjected to a sciatic nerve crush injury. In addition to potentially curtailing hyperexcitability, GABAergic stimulation upregulated expression of peripheral myelin protein 22 (PMP22), a key component of the basal lamina. PMP22 expression correlates with peripheral myelin formation and nerve regeneration. METHODS Because of the importance of PMP22 for the formation and stability of myelin, and the fact that PMP22 expression could be GABAergically modulated, we examined whether direct DRG application of muscimol can restore PMP22 protein expression and the integrity of nerve fibers after crush injury of a sciatic nerve. RESULTS Using adult female rats and a crush injury model, we found that GABAergic modulation in the ipsilateral DRG restores PMP22 protein expression in the distal segment of the sciatic nerve and improves myelin stability in the basal membrane of nerve fibers, thus giving the morphological appearance of lessened nerve injury or faster nerve fiber regeneration. Both the enhanced PMP22 protein expression and morphological improvements coincide with the abolishment of thermal and mechanical hypersensitivity. CONCLUSIONS The DRG could be a promising therapeutic target in nerve regeneration and pain alleviation after crush injury of a myelinated peripheral nerve.
Collapse
Affiliation(s)
- Ajit K Naik
- Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA 22980, USA
| | | | | | | |
Collapse
|
18
|
Kamagata C, Tsuboko Y, Okabe T, Sato C, Sakamoto A. Proteomic analysis of rat brains in a model of neuropathic pain following exposure to electroconvulsive stimulation. ACTA ACUST UNITED AC 2011; 32:91-102. [PMID: 21551944 DOI: 10.2220/biomedres.32.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Some reports have shown that electroconvulsive shock therapy is effective for treating refractory neuropathic pain. However, its mechanism of action remains unknown. This study analyzes changes in protein expression in the brainstems of neuropathic pain model rats with or without electroconvulsive stimulation (ECS). A neuropathic pain model rat is produced by chronic constrictive injury (CCI) of the sciatic nerve. An ECS was administered to rodents once daily for 6 days after the CCI operation. After ECS, the latency to withdrawal from thermal stimulation was significantly increased. The expression of several proteins was changed after CCI. Ten proteins that increased after CCI then had decreased expression levels (close to control) after ECS, and 8 proteins that decreased after CCI then had increased expression levels (close to control) after ECS. In conclusion, ECS improved thermal hypersensitivity in a rat CCI model. Proteomic analysis showed that altered expression levels of proteins in the brainstem of CCI model rats returned to close to control levels after ECS, including many proteins associated with pain. This trend suggests an association of ECS with improved hypersensitivity, and these results may help elucidate the mechanism of this effect.
Collapse
Affiliation(s)
- Chihiro Kamagata
- Department of Anesthesiology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
19
|
Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. ACTA ACUST UNITED AC 2010; 64:304-27. [PMID: 20441777 DOI: 10.1016/j.brainresrev.2010.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/14/2010] [Accepted: 04/27/2010] [Indexed: 01/08/2023]
Abstract
Glial cells are established as essential for many functions of the central nervous system, and this seems to hold also for glial cells in the peripheral nervous system. The main type of glial cells in most types of peripheral ganglia - sensory, sympathetic, and parasympathetic - is satellite glial cells (SGCs). These cells usually form envelopes around single neurons, which create a distinct functional unit consisting of a neuron and its attending SGCs. This review presents the knowledge on the morphology of SGCs in sympathetic and parasympathetic ganglia, and the (limited) available information on their physiology and pharmacology. It appears that SGCs carry receptors for ATP and can thus respond to the release of this neurotransmitter by the neurons. There is evidence that SGCs have an uptake mechanism for GABA, and possibly other neurotransmitters, which enables them to control the neuronal microenvironment. Damage to post- or preganglionic nerve fibers influences both the ganglionic neurons and the SGCs. One major consequence of postganglionic nerve section is the detachment of preganglionic nerve terminals, resulting in decline of synaptic transmission. It appears that, at least in sympathetic ganglia, SGCs participate in the detachment process, and possibly in the subsequent recovery of the synaptic connections. Unlike sensory neurons, neurons in autonomic ganglia receive synaptic inputs, and SGCs are in very close contact with synaptic boutons. This places the SGCs in a position to influence synaptic transmission and information processing in autonomic ganglia, but this topic requires much further work.
Collapse
|
20
|
Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 2009; 164:711-23. [PMID: 19699278 DOI: 10.1016/j.neuroscience.2009.08.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
Chronic neuropathic pain caused by peripheral nerve injury is associated with global changes in gene expression in damaged neurons. To understand the molecular mechanisms underlying neuropathic pain, it is essential to elucidate how nerve injury alters gene expression and how the change contributes to the development and maintenance of chronic pain. MicroRNAs are non-protein-coding RNA molecules that regulate gene expression in a wide variety of biological processes mainly at the level of translation. This study investigated the possible involvement of microRNAs in gene regulation relevant to neuropathic pain. The analyses focused on a sensory organ-specific cluster of microRNAs that includes miR-96, -182, and -183. Quantitative real-time polymerase chain reaction (qPCR) analyses confirmed that these microRNAs were highly enriched in the dorsal root ganglion (DRG) of adult rats. Using the L5 spinal nerve ligation (SNL) model of chronic neuropathic pain, we observed a significant reduction in expression of these microRNAs in injured DRG neurons compared to controls. In situ hybridization and immunohistochemical analyses revealed that these microRNAs are expressed in both myelinated (N52 positive) and unmyelinated (IB4 positive) primary afferent neurons. They also revealed that the intracellular distributions of the microRNAs in DRG neurons were dramatically altered in animals with mechanical hypersensitivity. Whereas microRNAs were uniformly distributed within the DRG soma of non-allodynic animals, they were preferentially localized to the periphery of neurons in allodynic animals. The redistribution of microRNAs was associated with changes in the distribution of the stress granule (SG) protein, T-cell intracellular antigen 1 (TIA-1). These data demonstrate that SNL induces changes in expression levels and patterns of miR-96, -182, and -183, implying their possible contribution to chronic neuropathic pain through translational regulation of pain-relevant genes. Moreover, SGs were suggested to be assembled and associated with microRNAs after SNL, which may play a role in modification of microRNA-mediated gene regulation in DRG neurons.
Collapse
Affiliation(s)
- B T Aldrich
- Department of Anesthesia, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
21
|
Yukhananov R, Kissin I. Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: a preliminary study on pain memory. BMC Neurosci 2008; 9:32. [PMID: 18366630 PMCID: PMC2315656 DOI: 10.1186/1471-2202-9-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 03/13/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity. RESULTS To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis. CONCLUSION Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.
Collapse
Affiliation(s)
- Rustam Yukhananov
- Neurogenomic Laboratory Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
22
|
Klass MG, Gavrikov V, Krishnamoorthy M, Csete M. Heat shock proteins, endothelin, and peripheral neuronal injury. Neurosci Lett 2008; 433:188-93. [DOI: 10.1016/j.neulet.2008.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/16/2007] [Accepted: 01/03/2008] [Indexed: 11/28/2022]
|
23
|
Wintz H, Yoo LJ, Loguinov A, Wu YY, Steevens JA, Holland RD, Beger RD, Perkins EJ, Hughes O, Vulpe CD. Gene Expression Profiles in Fathead Minnow Exposed to 2,4-DNT: Correlation with Toxicity in Mammals. Toxicol Sci 2006; 94:71-82. [PMID: 16917068 DOI: 10.1093/toxsci/kfl080] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Toxicogenomics, the genome-wide analysis of gene expression to study the effect of toxicants, has great potential for use in environmental toxicology. Applied to standard test organisms, it has possible applications in aquatic toxicology as a sensitive monitoring tool to detect the presence of contaminants while providing information on the mechanisms of action of these pollutants. We describe the use of a complementary DNA (cDNA) microarray of the fathead minnow (Pimephales promelas) a standard sentinel organism in aquatic toxicology, to better understand the mechanisms of toxicity of 2,4-dinitrotoluene (2,4-DNT) which is released in the environment through military and industrial use. We have constructed a fathead minnow microarray containing 5000 randomly picked anonymous cDNAs from a whole fish cDNA library. Expression profiles were analyzed in fish exposed to 2,4-DNT for 10 days at three concentrations (11, 22, and 44 microM, respectively) below the measured median lethal concentration (58 microM). Sequence analysis of cDNAs corresponding to differentially expressed genes affected by exposure revealed that lipid metabolism and oxygen transport genes were prominently affected in a dose-specific manner. We measured liver lipids and demonstrate that lipid metabolism is indeed perturbed following exposure. These observations correlate well with available toxicological data on 2,4-DNT. We present possible modes of action of 2,4-DNT toxicity and suggest that fathead minnow cDNA microarrays can be useful to identify mechanisms of toxicity in fish and as a predictive tool for toxicity in mammals.
Collapse
Affiliation(s)
- Henri Wintz
- Department of Nutritional Sciences and Toxicology, Morgan Hall and Berkeley Institute of the Environment, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bosse F, Hasenpusch-Theil K, Küry P, Müller HW. Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. J Neurochem 2006; 96:1441-57. [PMID: 16478531 DOI: 10.1111/j.1471-4159.2005.03635.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most striking features of the injured mature peripheral nervous system is the ability to regenerate. The lesioned peripheral nervous system displays stereotypic histopathological reactions indicating the activation of a co-ordinated lesion-induced gene expression programme. Previous research has already identified molecular components of this axonal switch from a mature transmitting to a regenerative growth mode. The observed alterations in gene expression within the lesioned distal nerve stump were largely attributed to recapitulated developmental processes. However, to our knowledge, this hypothesis has not been proven systematically. Most of the stereotypic molecular and cellular reactions during nerve development and repair can be assigned to specific time windows. Consequently, we have compared gene expression profiles of both paradigms at six different time-points each by means of cDNA array hybridization. Our data identified injury-specific molecular reactions and revealed to what extent developmental mechanisms are reactivated in response to nerve lesion. Ninety-one genes (47% of the regeneration-associated genes) were found to be significantly regulated in both paradigms, suggesting that regeneration only partially recapitulates development and that approximately half of the regulated genes are part of a regeneration-dependent programme. Interestingly, mainly genes encoding signal transducers or factors involved in processes such as cell death, immune response, transport and transcriptional regulation showed injury-specific gene expression.
Collapse
Affiliation(s)
- Frank Bosse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
25
|
Davis-Taber RA, Scott VE. Transcriptional profiling of dorsal root ganglia in a neuropathic pain model using microarray and laser capture microdissection. Drug Dev Res 2006. [DOI: 10.1002/ddr.20096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Del Signore A, De Sanctis V, Di Mauro E, Negri R, Perrone-Capano C, Paggi P. Gene expression pathways induced by axotomy and decentralization of rat superior cervical ganglion neurons. Eur J Neurosci 2006; 23:65-74. [PMID: 16420416 DOI: 10.1111/j.1460-9568.2005.04520.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To identify genes potentially involved in remodelling synaptic connections, we induced the temporary detachment of pre- and post-synaptic elements by axotomy or denervation of rat superior cervical ganglion neurons. cDNA microarray analysis followed by stringent selection criteria allowed the identification of a panel of genes whose expression was modulated by axotomy at various time points after injury. Among these genes, 11 were validated by real-time reverse transcriptase-polymerase chain reaction on independently prepared samples after superior cervical ganglion neuron axotomy (1, 3 and 6 days) and compared with the effect of decentralization (8 h, 1 and 3 days). These genes code for extracellular matrix/space [apolipoprotein D (apoD), decorin, collagen alpha1 type I, collagen alpha1 type III] and intermediate filament (vimentin) proteins, for modulators of neurite outgrowth (thrombin receptor, plasminogen activator inhibitor-1, bone morphogenetic protein 4, annexin II and S-100-related protein, clone 42C) and for a nerve cell transcription factor (brain finger protein). Eight of these 11 genes showed significant and persistent modulations after both types of injury. Finally, protein levels of apoD were shown to increase in superior cervical ganglion after axotomy. Our results identify hitherto unrecorded genes responsive to axotomy and decentralization of superior cervical ganglion neurons, and probably involved in synapse formation, remodelling and elimination.
Collapse
Affiliation(s)
- Arianna Del Signore
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Akeson WH, Massie JB, Huang B, Giurea A, Sah R, Garfin SR, Kim CW. Topical high-molecular-weight hyaluronan and a roofing barrier sheet equally inhibit postlaminectomy fibrosis. Spine J 2005; 5:180-90. [PMID: 15749618 DOI: 10.1016/j.spinee.2004.06.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 06/19/2004] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The relevance of epidural fibrosis to failed back surgical outcomes remains controversial. Previous studies on the correlation between epidural fibrosis and clinical outcome after laminectomy are inconclusive, and clinical approaches applied to reduce postlaminectomy spinal canal scarring have produced mixed outcomes. PURPOSE Improved preclinical models are required to address the fundamental question of the relationship between postlaminectomy fibrosis and chronic pain. This study is directed at establishing small animal postlaminectomy models characterized by significantly reduced scar within the spinal canal postoperatively. Such preclinical models are offered as a platform for future studies to explore the potential relationship between postlaminectomy epidural fibrosis and persistent neuropathy with its potential for altered spinal mechanisms for pain processing, so-called spinal facilitation. Such experiments could be constructed in these models for comparison of pain behavior and its underlying neurochemistry both in the presence and absence of extensive postlaminectomy epidural scar. STUDY DESIGN/SETTING A modified rat laminectomy model was employed to assess epidural fibrosis using a quantitative biochemical collagen assessment approach along with correlative histology. This group served as the control for comparison with groups in which antifibrotic measures were employed. We compared antifibrotic efficacy of a bioabsorbable roofing barrier sheet placed over the laminectomy defect with topical high-molecular-weight hyaluronan (HMW HA) gel, each applied postoperatively to prevent proliferative epidural scarring. Routine biomechanical tensile strength testing was employed to assess wound-healing strength. METHODS A bilateral laminectomy (L5 and L6) with associated unilateral disc injury (L5-L6) was performed in 98 male Harlan Sprague-Dawley rats. The laminectomy models described incorporated a unilateral disc injury at L5-L6 because herniated disc material has been shown to contribute proinflammatory cytokines in the postoperative wound. Five groups were employed for the study: 1) normal controls without surgery; 2) a laminectomy-disc injury group without treatment; 3) a laminectomy-disc injury group treated with topical HMW HA gel; 4) a laminectomy-disc injury group treated with 0.2-mm thick bioabsorbable roofing barrier sheet in which a protected space was maintained between overlying paraspinous muscles and the dura and 5) a 0.02-mm thin barrier sheet treatment group in which the sheet was placed directly on the dura. The animals were sacrificed at 3- and 8-week postoperative intervals for analysis. The dissected specimens were studied biochemically for hydroxyproline content to estimate total collagen within the canal and on the dura between L4 and L7. Additional specimens were prepared histologically and stained with Masson-Goldner Trichrome stain to confirm presence of proliferative collagen and to describe the presence or absence of wound-healing scar adherence to the dura. The surgical incisions were studied biomechanically by uniaxial tensile testing to determine ultimate force, strain and prefailure stiffness. Statistics were performed using analysis of variance. RESULTS Gross appearance and histology studies showed that the untreated laminectomy group demonstrated postoperative scar formation that is adherent between the wound and the dorsum of the dura mater in both 3- and 8-week groups. Proliferative scar was substantially increased grossly between the 3- and 8-week intervals. By gross observation there was adherence of the L5 spinal nerve to the underlying disc and adjacent pedicle on the disc injury side. Gross observation of treatment groups, in contrast, disclosed that both the 0.2-mm thick roofing barrier sheet and topical HMW HA gel each prevented scar attachment to the dural sleeve at both the 3- and 8-week postoperative intervals. Furthermore, both the HMW HA gel and 0.2-mm thick roofing barrier sheet treatment groups had significant reduction of total collagen content in the laminectomy specimens measured biochemically at the two time periods compared with the untreated controls. Histologically, the HMW HA gel and the 0.2-mm thick barrier sheet findings were consistent with the gross observations concerning lack of adherence between scar of the overlying wound and the dura. Notably, both the 0.2- and the 0.02-mm barrier sheets became enveloped by a fibrotic envelope consistent with a foreign body reaction. In the group in which the 0.02-mm thin sheet was placed within the canal on top of the dura, there was an increase of fibrosis around the sheet within the canal leading to a space-occupying mass within the canal. Although the 0.2-mm thick roofing barrier placed external to the canal became enveloped by scar, it appeared to attract proliferative scar away from the epidural space, leaving the dura relatively free of scarring or adherence to overlying tissues. The mechanical properties of the incisional wound increased significantly between 3 and 8 weeks. The ultimate strength, stress, strain and stiffness of the several groups were similar at each time point. CONCLUSION These results provide two preclinical rat laminectomy models of potential usefulness for the future study of the relevance of epidural fibrosis to behaviorally defined pain states, and for the study of the potential of an altered neurochemical signature in postlaminectomy pain conditions. Such preclinical models have become standard in studies of pain behavior and its neurochemistry in preclinical sciatic nerve and spinal nerve injury models, and should be of utility in the studies of postlaminectomy fibrosis. There was progressive scar proliferation and maturation in the untreated postlaminectomy group in the postoperative interval between 3 and 8 weeks. HMW HA gel applied topically and a 0.2-mm thick bioabsorbable Macropore sheet used as a roofing barrier each significantly reduced postlaminectomy proliferative scar without affecting the integrity of incisional wound healing. However, if the 0.02-mm thin barrier sheet used in this study is placed within the canal in contact with the dura and adjacent to the pedicles, the process of reabsorption results in a fibrotic mass within the canal. The preferred barrier sheet placement for this model is clearly in a roofing position bridging over the open epidural space. It must be placed in a manner to block off the paraspinous muscle healing response and still leave a gap between the sheet and the dura.
Collapse
Affiliation(s)
- Wayne H Akeson
- Department of Orthopaedics, Veterans Administration San Diego Health Care System and University of California, San Diego, 3350 La Jolla Village Dr., 112D, San Diego, CA 92161, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Alzate O, Hussain SRA, Goettl VM, Tewari AK, Madiai F, Stephens RL, Hackshaw KV. Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. ACTA ACUST UNITED AC 2005; 128:193-200. [PMID: 15363894 DOI: 10.1016/j.molbrainres.2004.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2004] [Indexed: 02/03/2023]
Abstract
Neuropathic pain involves co-regulation of many genes and their translational products in both peripheral and central nervous system. We used proteomics approaches to investigate expressional changes in cytosolic protein levels in rat brainstem tissues following ligation of lumbar 5 and 6 (L5, L6) spinal nerves, which generates a model of peripheral neuropathic pain (NP). Proteins from brainstem tissue homogenates of NP and SHAM animals were fractionated by two-dimensional (2-DE) gel electrophoresis to produce a high-resolution map of the brainstem soluble proteins. Proteins showing altered expression levels between NP and SHAM were selected. Isolated proteins were in-gel trypsin-digested and the resulting peptides were analyzed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Using the mass spectrometric data, we were able to identify 17 proteins of interest through searches of the Swiss-Prot and NCBi nonredundant protein sequence database. Several of the identified proteins, including fatty acid binding protein-brain (FABP-B), major histocompatibility complex (MHC) class 1, T-cell receptor (TCR) alpha chain, and interleukin-1 (IL-1), showed significantly higher levels in the NP rat brainstem. Proteomic analysis has identified several proteins with differential expression levels in NP as compared to SHAM. However, the function of the proteins identified is postulated; therefore, further experiments are required to determine the true role of each protein in NP.
Collapse
Affiliation(s)
- Oscar Alzate
- Neuroproteomic Center, Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 2003; 4:8. [PMID: 12756057 PMCID: PMC161801 DOI: 10.1186/1471-2202-4-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 05/19/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. RESULTS To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (approximately 15%) have been demonstrated to be differentially expressed. CONCLUSIONS The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.
Collapse
Affiliation(s)
- Andreas B Schmitt
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Sebastian Breuer
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Jan Liman
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Armin Buss
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Christiane Schlangen
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Katrin Pech
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Elly M Hol
- Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands
| | - Gary A Brook
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Johannes Noth
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Franz-Werner Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Monassi CR, Bandler R, Keay KA. A subpopulation of rats show social and sleep-waking changes typical of chronic neuropathic pain following peripheral nerve injury. Eur J Neurosci 2003; 17:1907-20. [PMID: 12752790 DOI: 10.1046/j.1460-9568.2003.02627.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuropathic conditions for which treatment is sought, the so-called chronic pain syndrome, are characterized usually by complex behavioural disturbances as well as pain. In this study we evaluated whether social behavioural and sleep disruptions occurred after nerve injury. Before and after chronic constriction of the sciatic nerve, resident-intruder and sleep-wake cycles, as well as mechanical and thermal allodynia/hyperalgesia, were quantified. Sciatic nerve injury in all animals reduced withdrawal thresholds to tactile and thermal (cold) stimuli. Resident-intruder and sleep-waking behaviours were altered in some but not all animals. One group (30%, 'persistent change') had enduring reductions in dominant behaviour to an intruder and decreased slow-wave sleep and increased wakefulness during both light and dark cycles. Another group (25%, 'recovery') had a transient reduction in dominant behaviours and decreased slow-wave sleep and increased wakefulness during only the light cycle. In a third group (45%, 'no effect') resident-intruder and sleep-waking behaviours remained normal. Our finding that the degree of 'pain' as inferred from the allodynia/hyperalgesia was identical in all animals suggests that the alterations to resident-intruder and sleep-wake cycles were independent of the level of sensory disturbance. An absence of correlation between intensity of sensory disturbances and measures of disability (loss of sleep, familial/social problems) is also characteristic of human neuropathic pain. These data indicate that: (i) in a subpopulation of animals sciatic injury results in two of the major complex behavioural changes which are characteristic of neuropathic pain in humans; (ii) testing only for allodynia and hyperalgesia is not sufficient to detect this subpopulation.
Collapse
Affiliation(s)
- Claudia R Monassi
- Department of Anatomy and Histology, (F13), The University of Sydney, NSW, Australia 2006
| | | | | |
Collapse
|