1
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
2
|
Ohno Y, Koyama H, Lee HY, Miura S, Yoshikawa T, Sugimura K. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications. Diagn Interv Radiol 2017; 22:407-21. [PMID: 27523813 DOI: 10.5152/dir.2016.16123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research, Department of Radiology and Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Hansch A, Kohlmann P, Hinneburg U, Boettcher J, Malich A, Wolf G, Laue H, Pfeil A. Quantitative evaluation of MR perfusion imaging using blood pool contrast agent in subjects without pulmonary diseases and in patients with pulmonary embolism. Eur Radiol 2012; 22:1748-56. [DOI: 10.1007/s00330-012-2428-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/20/2012] [Accepted: 01/27/2012] [Indexed: 11/30/2022]
|
4
|
YILMAZ Ö, SAVAŞ R, SOGUT A, ÖZKOL M, YÜKSEL H. Effectiveness of magnetic resonance angiography in the evaluation of lung perfusion in constrictive bronchiolitis obliterans. Respirology 2009; 14:295-8. [DOI: 10.1111/j.1440-1843.2008.01456.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Nicol ED, Kafka H, Stirrup J, Padley SPG, Rubens MB, Kilner PJ, Gatzoulis MA. A single, comprehensive non-invasive cardiovascular assessment in pulmonary arterial hypertension: combined computed tomography pulmonary and coronary angiography. Int J Cardiol 2008; 136:278-88. [PMID: 18687494 DOI: 10.1016/j.ijcard.2008.05.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/03/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Comprehensive assessment of pulmonary arterial hypertension (PAH) should identify structural causes and subsequent cardiopulmonary consequences of PAH. This currently requires the use of several imaging modalities. Computed tomography (CT) is routinely used for pulmonary angiography (CTPA). Our aim was to assess whether combined pulmonary and coronary angiography (CTPCA) using ECG-gated, multi-detector CT (MDCT) would allow satisfactory pulmonary angiography, coronary angiography and ventriculography to be combined into a single acquisition using a single imaging modality. METHODS We assessed CTPCA in 30 consecutive adult patients (mean age 41+/-11 years) with a diagnosis of PAH. In addition to the standard assessment of lung parenchyma and pulmonary vasculature, we assessed the ability of CT to satisfactorily visualise coronary vessels and biventricular function. Functional analysis included: end-diastolic volume (EDV), end-systolic volume (EDV), stroke volume (SV) and ejection fraction (EF) and mass and these parameters were correlated with same day cardiovascular magnetic resonance (CMR). RESULTS Lung parenchyma, pulmonary and coronary vessels were fully visualised in all cases. Ventriculography correlated well with same day CMR (RVEDV r=0.94, +19.5+/-49.2 ml, RVESV r=0.93, +11.1+/-46.4 ml, RVSV r=0.60, +8.5+/-41.6 ml, RVEF r=0.77, -0.5+/-21.3% and RV mass r=0.73, -17.3+/-60.4 g, LVEDV r=0.68, +12.2+/-110 ml, LVESV r=0.69, +7.5+/-59.7 ml, LVSV r=0.54, +2.5+/-40.6 ml, LVEF r=0.73, -1.9+/-20.8% and LV mass r=0.87, -20.5+/-22.5 g (all p<0.001)). Associated congenital cardiovascular malformations were characterised in 22/30 cases. CONCLUSIONS A CTPCA protocol allows safe, fast, comprehensive, non-invasive assessment of the possible anatomical causes and cardiopulmonary sequelae of PAH in adult patients, demonstrating congenital heart abnormalities, coronary artery disease and cardiac function.
Collapse
Affiliation(s)
- Edward D Nicol
- Department of Cardiology, Royal Brompton Hospital and Harefield NHS Trust, London, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Petersson J, Sánchez-Crespo A, Larsson SA, Mure M. Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol (1985) 2007; 102:468-76. [PMID: 16990505 DOI: 10.1152/japplphysiol.00732.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emission tomography provides three-dimensional, quantitative images of the distribution of radiotracers used to mark physiological, metabolic, or pathological processes. Quantitative single photon emission computed tomography (SPECT) requires correction for the image-degrading effects due to photon attenuation and scatter. Phantom experiments have shown that radioactive concentrations can be assessed within some percentage of the true value when relevant corrections are applied. SPECT is widely spread, and radiotracers are available that are easy to use and comparably inexpensive. Compared with other methods, SPECT suffers from a lower spatial resolution, and the time required for image acquisition is longer than for some alternative methods. In contrast to some other methods, SPECT allows simultaneous imaging of more than one process, e.g., both regional blood flow and ventilation, for the whole lung. SPECT has been used to explore the influence of posture and clinical interventions on the spatial distribution of lung blood flow and ventilation. Lung blood flow is typically imaged using macroaggregates of albumin. Both radioactive gases and particulate aerosols labeled with radioactivity have been used for imaging of regional ventilation. However, all radiotracers are not equally suited for quantitative measurements; all have specific advantages and limitations. With SPECT, both blood flow and ventilation can be marked with radiotracers that remain fixed in the lung tissue, which allows tracer administration during conditions different from those at image registration. All SPECT methods have specific features that result from the used radiotracer, the manner in which it is administered, and how images are registered and analyzed.
Collapse
Affiliation(s)
- Johan Petersson
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
7
|
Månsson S, Johansson E, Magnusson P, Chai CM, Hansson G, Petersson JS, Ståhlberg F, Golman K. 13C imaging—a new diagnostic platform. Eur Radiol 2005; 16:57-67. [PMID: 16402256 DOI: 10.1007/s00330-005-2806-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/14/2005] [Accepted: 05/03/2005] [Indexed: 11/29/2022]
Abstract
The evolution of magnetic resonance imaging (MRI) has been astounding since the early 1980s, and a broad range of applications has emerged. To date, clinical imaging of nuclei other than protons has been precluded for reasons of sensitivity. However, with the recent development of hyperpolarization techniques, the signal from a given number of nuclei can be increased as much as 100,000 times, sufficient to enable imaging of nonproton nuclei. Technically, imaging of hyperpolarized nuclei offers several unique properties, such as complete lack of background signal and possibility for local and permanent destruction of the signal by means of radio frequency (RF) pulses. These properties allow for improved as well as new techniques within several application areas. Diagnostically, the injected compounds can visualize information about flow, perfusion, excretory function, and metabolic status. In this review article, we explain the concept of hyperpolarization and the techniques to hyperpolarize 13C. An overview of results obtained within angiography, perfusion, and catheter tracking is given, together with a discussion of the particular advantages and limitations. Finally, possible future directions of hyperpolarized 13C MRI are pointed out.
Collapse
Affiliation(s)
- Sven Månsson
- Department of Experimental Research, Malmö University Hospital, 205 02, Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Arterial spin labeling is a magnetic resonance method for the measurement of cerebral blood flow. In its simplest form, the perfusion contrast in the images gathered by this technique comes from the subtraction of two successively acquired images: one with, and one without, proximal labeling of arterial water spins after a small delay time. Over the last decade, the method has moved from the experimental laboratory to the clinical environment. Furthermore, numerous improvements, ranging from new pulse sequence implementations to extensive theoretical studies, have broadened its reach and extended its potential applications. In this review, the multiple facets of this powerful yet difficult technique are discussed. Different implementations are compared, the theoretical background is summarized, and potential applications of various implementations in research as well as in the daily clinical routine are proposed. Finally, a summary of the new developments and emerging techniques in this field is provided.
Collapse
Affiliation(s)
- Xavier Golay
- Department of Neuroradiology, National Neuroscience Institute, Singapore.
| | | | | |
Collapse
|