1
|
Wang H, Sun XC, Zhang D, Li JH, Yin LQ, Yan YF, Ma X, Xia HF. Active bone material containing modified recombinant human bone morphogenetic protein 2 induces bone regeneration in the alveolar process cleft in rabbits. Artif Organs 2021; 45:O207-O222. [PMID: 33355401 DOI: 10.1111/aor.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
The clinical application of most materials used to fill severe bone defects is limited owing to the insufficient ability of such materials to induce bone regeneration over a long repair period. The purpose of this study was to establish a model for the alveolar process cleft in rabbits to evaluate the effect of active bone material in bone defect repair. The active bone material used in this study is a new bone repair material composed of a heterogeneous collagen membrane implanted with modified recombinant human bone morphogenetic protein 2. This proposed active bone material can specifically bind to collagen. Twenty-four young Japanese white rabbits (JWRs) were selected and randomly divided into four groups (normal, control, material, and bone morphogenetic protein groups). The alveolar process cleft model was established by removing an equal volume bone at the left maxillary position. Blood samples were collected from the JWRs 3 and 6 months after the surgery to evaluate the biocompatibility of the active bone materials. Subsequently, the skull model was established, and the appearance was observed. Imaging methods (including X-ray examination and micro-computerized tomography scanning), tissue staining, and immunohistochemistry were employed for the evaluation. The bone collagen material and active bone material exhibited high biocompatibility. In addition, the ability of the active bone material to induce bone repair and regeneration was higher than that of the bone collagen material. The active bone material exhibited satisfactory bone regeneration performance in rabbits, indicating its potential as an active material for repairing congenital alveolar process clefts in humans.
Collapse
Affiliation(s)
- Hu Wang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| | - Xue-Cheng Sun
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| | - Jian-Hui Li
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| | - Li-Qiang Yin
- Yantai Zhenghai Bio-Tech Co., Ltd., Shandong, China
| | - Yu-Fang Yan
- Yantai Zhenghai Bio-Tech Co., Ltd., Shandong, China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Graduate Schools, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Stranger Things: A Whimsical Account of a Demineralized Bone Matrix Study With Unexpected Results. J Craniofac Surg 2018; 29:1107-1109. [DOI: 10.1097/scs.0000000000004520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
3
|
Wang H, Wang Y, He J, Diao C, Sun J, Wang J. Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Mol Med Rep 2018; 18:834-840. [PMID: 29845231 PMCID: PMC6059713 DOI: 10.3892/mmr.2018.9029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the key gene network in fracture healing. The dataset GSE45156 was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using the linear models for microarray data package of Bioconductor. Subsequently, Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for DEGs in day 2 and 6 fractured samples via the Database for Annotation, Visualization and Integrated Discovery. Furthermore, protein-protein interactions (PPIs) of DEGs were analyzed and a PPI network was constructed. A total of 774 and 1,172 DEGs were identified in day 2 and 6 fractured samples, respectively, compared with unfractured controls. Of the DEGs in day 2 and 6 fractured samples, various upregulated DEGs, including protein kinase C α (Prkca) and B-cell lymphoma antagonist/killer 1 were significantly enriched in GO terms associated with cell death, and certain downregulated DEGs, including fms-related tyrosine kinase 1 (Flt1), nitric oxide synthase 3 (Nos3), bone morphogenetic protein 4 (Bmp4) and Notch1 were enriched in GO terms associated with angiogenesis. Furthermore, a series of downregulated DEGs were enriched in the Notch signaling pathway, including hes family bHLH transcription factor 1 and Notch1. Certain DEGs had a high degree and interacted with each other, including Flt1, Nos3, Bmp4 and Notch1, and Prkca and ras-related C3 botulinum toxin substrate 3. The up and downregulated DEGs may exert critical functions by interactively regulating angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopedics, The First Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Jinshan He
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Chunyu Diao
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| | - Junying Sun
- Department of Orthopedics, The First Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
4
|
Egashira K, Sumita Y, Zhong W, I T, Ohba S, Nagai K, Asahina I. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2. PLoS One 2018; 13:e0191099. [PMID: 29346436 PMCID: PMC5773187 DOI: 10.1371/journal.pone.0191099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation facilitates the clinical use of rhBMP-2 as an alternative strategy for bone engineering.
Collapse
Affiliation(s)
- Kazuhiro Egashira
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Basic and Translational Research Center for Hard Tissue Disease, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Weijian Zhong
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Takashi I
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Arzeno A, Wang T, Huddleston JI. Abundant heterotopic bone formation following use of rhBMP-2 in the treatment of acetabular bone defects during revision hip arthroplasty. Arthroplast Today 2018; 4:162-168. [PMID: 29896546 PMCID: PMC5994604 DOI: 10.1016/j.artd.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Revision hip arthroplasty in the setting of periacetabular bone loss presents a significant challenge, as options for restoring bone loss are limited. Recombinant human bone morphogenetic protein-2 may offer a solution by promoting bone growth to restore bone stock before implant reimplantation. Here we present a case of a patient with a periprosthetic acetabulum fracture, resulting in pelvic discontinuity as the result of significant periacetabular bone loss. Using a staged approach, periacetabular bone stock was nearly entirely reconstituted using recombinant BMPs and allograft, which resulted in stable fixation, but with abundant heterotopic bone formation. Recombinant BMP-2 offers a useful tool for restoring bone stock in complex hip arthroplasty revision cases with periacetabular bone loss; however, caution must be used as overabundant bone growth as heterotopic ossification may result.
Collapse
Affiliation(s)
- Alexander Arzeno
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tim Wang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James I Huddleston
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
R. R, Jeyaraman M, Chaudhari K, Dhamsania HJ, G. S. P. Mesenchymal Stem Cells—A Boon to Orthopedics. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojrm.2018.72002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Thangarajah T, Sanghani-Kerai A, Henshaw F, Lambert SM, Pendegrass CJ, Blunn GW. Application of a Demineralized Cortical Bone Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Chronic Rotator Cuff Degeneration. Am J Sports Med 2018; 46:98-108. [PMID: 28949253 DOI: 10.1177/0363546517727512] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The success of rotator cuff repair is primarily dependent on tendon-bone healing. Failure is common because weak scar tissue replaces the native enthesis, rendering it prone to reruptures. A demineralized bone matrix (DBM) consists of a network of collagen fibers that provide a sustained release of growth factors such as bone morphogenetic proteins. Previous studies have demonstrated that it can regenerate a fibrocartilaginous enthesis. HYPOTHESIS The use of a DBM and mesenchymal stem cells (MSCs) at the healing enthesis will result in a higher bone mineral density at the tendon insertion and will enhance the regeneration of a morphologically superior enthesis when compared with an acellular human dermal matrix. STUDY DESIGN Controlled laboratory study. METHODS Eighteen female Wistar rats underwent unilateral detachment of the supraspinatus tendon. Three weeks later, tendon repair was carried out in animals randomized into 3 groups: group 1 received augmentation of the repair with a cortical allogenic DBM (n = 6); group 2 received augmentation with a nonmeshed, ultrathick, acellular human dermal matrix (n = 6); and group 3 underwent tendon-bone repair without a scaffold (n = 6). All animals received 1 × 106 MSCs delivered in fibrin glue to the repair site. Specimens were retrieved at 6 weeks postoperatively for histological analysis and the evaluation of bone mineral density. RESULTS All groups demonstrated closure of the tendon-bone gap with a fibrocartilaginous enthesis. Although there were no significant differences in the enthesis maturation and modified Movin scores, repair augmented with a dermal matrix + MSCs exhibited a disorganized enthesis, abnormal collagen fiber arrangement, and greater cellularity compared with other MSC groups. Only repairs augmented with a DBM + MSCs reached a bone mineral density not significantly lower than nonoperated controls. CONCLUSION A DBM enhanced with MSCs can augment rotator cuff healing at 6 weeks and restore bone mineral density at the enthesis to its preinjury levels. CLINICAL RELEVANCE Biological augmentation of rotator cuff repair with a DBM and MSCs may reduce the incidence of retears, although further studies are required to determine its effectiveness.
Collapse
Affiliation(s)
- Tanujan Thangarajah
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, UK
| | - Anita Sanghani-Kerai
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, UK
| | - Frederick Henshaw
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, UK
| | - Simon M Lambert
- Department of Trauma and Orthopaedic Surgery, University College Hospital, London, UK
| | - Catherine J Pendegrass
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, UK
| |
Collapse
|
8
|
Cytoplasmic calcium increase via fusion with inactivated Sendai virus induces apoptosis in human multiple myeloma cells by downregulation of c-Myc oncogene. Oncotarget 2017; 7:36034-36048. [PMID: 27145280 PMCID: PMC5094981 DOI: 10.18632/oncotarget.9105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/16/2016] [Indexed: 12/16/2022] Open
Abstract
Because the emergence of drug resistance is a major limitation of current treatments for multiple myeloma (MM), it is necessary to continuously develop novel anticancer strategies. Here, using an inactivated Sendai virus (Hemagglutinating Virus of Japan; HVJ) envelope (HVJ-E), we discovered that increase of cytoplasmic Ca2+ by virus-cell fusion significantly induced apoptosis against human MM cells but not peripheral blood mononuclear cells from healthy donors. Interaction of F protein of HVJ-E with MM cells increased intracellular Ca2+ level of MMs by the induction of Ca2+ efflux from endoplasmic reticulum but not influx from extracellular region. The elevation of the Ca2+ cytoplasmic level induced SMAD1/5/8 phosphorylation and translocation into the nucleus, and SMAD1/5/8 and SMAD4 complex suppressed c-Myc transcription. Meanwhile, HVJ-E decreases S62 phosphorylation of c-Myc and promotes c-Myc protein degradation. Thus, HVJ-E-induced cell death of MM resulted from suppression of c-Myc by both destabilization of c-Myc protein and downregulation of c-Myc transcription. This study indicates that HVJ-E will be a promising tool for MM therapy.
Collapse
|
9
|
Li QS, Meng FY, Zhao YH, Jin CL, Tian J, Yi XJ. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017; 6:464-471. [PMID: 28784704 PMCID: PMC5579316 DOI: 10.1302/2046-3758.68.bjr-2016-0208.r2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Objectives This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464–471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2
Collapse
Affiliation(s)
- Q S Li
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - F Y Meng
- Department of Traumatology, Lanling People's Hospital, Linyi, China
| | - Y H Zhao
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - C L Jin
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - J Tian
- Operating Room, Linyi Cancer Hospital, Linyi, China
| | - X J Yi
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, No.233, Fenghuang Street, Linyi 276000, China
| |
Collapse
|
10
|
Huang HM, Li XL, Tu SQ, Chen XF, Lu CC, Jiang LH. Effects of Roughly Focused Extracorporeal Shock Waves Therapy on the Expressions of Bone Morphogenetic Protein-2 and Osteoprotegerin in Osteoporotic Fracture in Rats. Chin Med J (Engl) 2017; 129:2567-2575. [PMID: 27779163 PMCID: PMC5125335 DOI: 10.4103/0366-6999.192776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Roughly focused extracorporeal shock waves therapy (ESWT) is characterized by a wide focal area, a large therapy zone, easy positioning, and less pain during treatment. The purpose of this study was to investigate the effects of roughly focused ESWT on the expression of osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) in osteoporotic fractures in rats. METHODS Seventy-two female Sprague-Dawley (SD) rats, 3 months old, were divided into sham-operated group (n = 6) and an ovariectomized (OVX) group (n = 66). Sixty OVX SD rats were used as a model of double proximal tibial osteotomy and inner fixation. The osteotomy site in the left tibia was treated with roughly focused ESWT once at an energy density of 0.26 mJ/mm2, 60 doses/min, and 2000 pact quantities. The contralateral right tibia was left untreated and served as a control. Expression of OPG and BMP-2 in the callus of the osteoporotic fracture area was assessed using immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blotting analysis. RESULTS Bone mineral density (BMD) at the proximal tibia, femur, and L5 spine was significantly reduced after ovariectomy. BMD of proximal tibia was 12.9% less in the OVX group than that in the sham-operated group. Meanwhile, bilateral oophorectomy resulted in a lower trabecular bone volume fraction (BV/TV) in the proximal tibia of the sham-OVX animals. Three months after bilateral oophorectomy, BV/TV was 14.29% of baseline BV/TV in OVX legs versus 45.91% in the sham-OVX legs (P < 0.001). These data showed that the SD rats became a suitable model of osteoporosis, 3 months after they were OVX. Immunohistochemical analysis showed higher levels of BMP-2 and OPG expression in the treatment group than those in the control group. Compared with the contralateral controls, decreased expression of OPG and BMP-2 at 3 days after roughly focused ESWT, followed by a later increase at 7 days, was indicated by real-time PCR and Western blotting analysis. The OPG messenger RNA (mRNA) expression levels peaked at 6 weeks after the shock wave treatment, paired with a much earlier (at 4 weeks) increase of BMP-2, and declined close to normal at 8 weeks. CONCLUSIONS Roughly focused ESWT may promote the expression of OPG and BMP-2 in the osteoporotic fracture area in rats. BMP-2 and OPG may act synergistically and may lead to a significant enhancement of bone formation and remodeling.
Collapse
Affiliation(s)
- Hai-Ming Huang
- Department of Orthopedic Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xiao-Lin Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Shu-Qiang Tu
- Department of Orthopedic Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xiao-Feng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Chang-Chun Lu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Liang-Hua Jiang
- Department of Orthopedic Surgery, Kunshan First People's Hospital, Suzhou, Jiangsu 215300, China
| |
Collapse
|
11
|
Pourmollaabbassi B, Karbasi S, Hashemibeni B. Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate. Adv Biomed Res 2016; 5:156. [PMID: 27761431 PMCID: PMC5070039 DOI: 10.4103/2277-9175.188486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/29/2016] [Indexed: 11/09/2022] Open
Abstract
Background: The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Materials and Methods: In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. Results: The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. Conclusions: It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.
Collapse
Affiliation(s)
- Babak Pourmollaabbassi
- Department of Tissue Engineering, Faculty of Basic Science and Nuclear Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Xiang Gu G, Su I, Sharma S, Voros JL, Qin Z, Buehler MJ. Three-Dimensional-Printing of Bio-Inspired Composites. J Biomech Eng 2016; 138:021006. [PMID: 26747791 PMCID: PMC5101043 DOI: 10.1115/1.4032423] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/30/2015] [Indexed: 12/20/2022]
Abstract
Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields.
Collapse
Affiliation(s)
- Grace Xiang Gu
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering;
Department of Mechanical Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
| | - Isabelle Su
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
| | - Shruti Sharma
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering;
Department of Materials Science and
Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
| | - Jamie L. Voros
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering;
Department of Aeronautics and Astronautics,
School of Architecture and Planning,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
| | - Zhao Qin
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular
Mechanics (LAMM),
Department of Civil and Environmental
Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail:
| |
Collapse
|
13
|
Guenther CA, Wang Z, Li E, Tran MC, Logan CY, Nusse R, Pantalena-Filho L, Yang GP, Kingsley DM. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury. Bone 2015; 77:31-41. [PMID: 25886903 PMCID: PMC4447581 DOI: 10.1016/j.bone.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals.
Collapse
Affiliation(s)
- Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Misha C Tran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Catriona Y Logan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luiz Pantalena-Filho
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - George P Yang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Chen X, Song F, Jhamb D, Li J, Bottino MC, Palakal MJ, Stocum DL. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities. PLoS One 2015; 10:e0130819. [PMID: 26098852 PMCID: PMC4476796 DOI: 10.1371/journal.pone.0130819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022] Open
Abstract
We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry, Indiana-University-Purdue University, Indianapolis, Indiana, United States of America
| | - Deepali Jhamb
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiliang Li
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Marco C. Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, School of Dentistry, Indiana-University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mathew J. Palakal
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - David L. Stocum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
TGF-β superfamily, molecular signaling and biomimetic features for bone regeneration: historical perspectives and future applications. Updates Surg 2015; 67:321-3. [DOI: 10.1007/s13304-015-0297-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
|
16
|
The use of demineralized bone matrix for anterior cruciate ligament reconstruction: a radiographic, histologic, and immunohistochemical study in rabbits. J Surg Res 2014; 187:219-24. [DOI: 10.1016/j.jss.2013.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/18/2013] [Indexed: 12/30/2022]
|
17
|
Zhao W, Lu JY, Hao YM, Cao CH, Zou DR. Maxillary sinus floor elevation with a tissue-engineered bone composite of deciduous tooth stem cells and calcium phosphate cement in goats. J Tissue Eng Regen Med 2014; 11:66-76. [PMID: 24616333 DOI: 10.1002/term.1867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023]
Abstract
The study aimed to assess the effect of maxillary sinus floor elevation with tissue-engineered bone constructed from deciduous tooth stem cells (DTSCs) and calcium phosphate cement (CPC). The stem cells from goat deciduous teeth (SGDs) were isolated and transfected by means of the adenovirus with an enhanced green fluorescent protein gene (AdEGFP). As many as 18 bilateral maxillary sinuses of nine goats were randomly allocated into three groups (n = 6/group): group A (SGDs-CPC compound), group B (CPC alone) and group C (autogenous bone obtained from an iliac crest). All the samples were evaluated by computed tomography (CT), histology and histomorphometric analysis. Furthermore, the fate of implanted SGDs was traced using an immunohistochemical staining method in the decalcified samples. SGDs might be differentiated into osteoblasts in an osteogenic medium. In the present study, three-dimensional CT analysis showed that the volume of newly formed bone in group A was greater than that in the other two groups. After a healing period of 3 months, sequential analyses of triad-colour fluorescence labelling, histology and histomorphology indicated that the SGDs-CPC compound primarily promoted bone formation and mineralization at 2 and 3 months after the operation. Moreover, the areas of new bone formation in elevated sinuses were 41.82 ± 6.24% in the SGDs-CPC group, which was significantly higher than the 30.11 ± 8.05% in the CPC-alone group or the 23.07 ± 10.21% in the autogenous bone group. Immunohistochemical staining revealed that GFP and OCN were both expressed in the new bone tissue for the samples with eGFP, which suggested that the implanted SGDs might have contributed to new bone formation on the elevated sinus floor. SGDs can promote new bone formation and maturation in the goat maxillary sinus, and the tissue-engineered bone composite of SGDs and CPC might be a potential substitute for existing maxillary sinus floor elevation methods. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Jia-Yu Lu
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Yong-Ming Hao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Chun-Hua Cao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - De-Rong Zou
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. BONEKEY REPORTS 2013; 2:300. [PMID: 24422056 DOI: 10.1038/bonekey.2013.34] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/08/2013] [Indexed: 02/06/2023]
Abstract
Cell recruitment, migration and homing to the fracture site are essential for the inflammatory process, neovascularization, chondrogenesis, osteogenesis and ultimately bone remodeling. Mesenchymal stem cells (MSCs) are required to navigate from local sources such as the periosteum and local bone marrow, and may also be recruited from the circulation and distant bone marrow. While the local recruitment process may involve matrix binding and degradation, systemic recruitment may utilize extravasation, a process used by leukocytes to exit the vasculature. CXCL12 (stromal cell-derived factor-1 (SDF-1)), a member of the CXC family of chemokines, is thought to have an important role in cell migration at the fracture site. However, there are many molecules upregulated in the hematoma and callus that have chemotactic potential not only for inflammatory cells but also for endothelial cells and MSCs. Surprisingly, there is little direct data to support their role in cell homing during bone healing. Current therapeutics for bone regeneration utilize local or systemic stem cell transplantation. More recently, a novel strategy that involves mobilization of large numbers of endogenous stem and progenitor cells from bone marrow into the circulation has been shown to have positive effects on bone healing. A more complete understanding of the molecular mechanisms underlying cell recruitment and homing subsequent to fracture will facilitate the fine-tuning of such strategies for bone.
Collapse
Affiliation(s)
- Clare Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA, USA
| |
Collapse
|
19
|
Supronowicz P, Gill E, Trujillo A, Thula T, Zhukauskas R, Perry R, Cobb RR. Multipotent adult progenitor cell-loaded demineralized bone matrix for bone tissue engineering. J Tissue Eng Regen Med 2013; 10:275-83. [PMID: 23413005 DOI: 10.1002/term.1706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 11/10/2022]
Abstract
Multipotent adult progenitor cells (MAPCs) from bone marrow have been shown to be capable of forming bone, cartilage and other connective tissues. In addition, MAPCs differentiate into lineages that are different from their germ layers of origin. Previous studies showed the ability of MAPCs to improve cardiac function and control allogenic-reactive responses associated with acute graft versus host disease. In the current study, we evaluated the ability of MAPCs to produce bone matrix on demineralized bone allograft substrates. Specifically, MAPCs expressed alkaline phosphatase, produced extracellular matrix proteins and deposited calcium-containing mineral on demineralized bone matrices. Furthermore, the addition of MAPCs on demineralized bone matrix (DBM) scaffolds enhanced osteoinductivity of the carrier in a rat ectopic pouch model. These results demonstrated the potential of MAPCs as a new approach for bone repair in tissue-engineering applications.
Collapse
Affiliation(s)
- Peter Supronowicz
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Elise Gill
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Angelica Trujillo
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | - Taili Thula
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| | | | | | - Ronald R Cobb
- Biotechnology Development Department, RTI Biologics, Alachua, FL, USA
| |
Collapse
|
20
|
Relevance of deep decortication and vascularization in a case of post-traumatic femoral non-union treated with grafts, platelet gel and bone marrow stromal cells. Knee Surg Sports Traumatol Arthrosc 2012; 20:1834-8. [PMID: 22113222 DOI: 10.1007/s00167-011-1790-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE A male patient suffering from non-union of the femoral diaphysis after a traumatic fracture was treated with deep decortication and grafted with lyophilized bone, platelet gel (PG) and autologous bone marrow stromal cells (BMSCs). After 40 days from surgery, he was re-operated, due to fracture secondary displacement, caused by inappropriate load during sports activity. In addition to radiographs, two bone biopsies were retrieved: this allowed for a histological evaluation of the early response of host bone to the graft. To our knowledge, there is no report describing such early tissue response. METHODS A clinical-radiographic evaluation of the patient and a histomorphometric analysis of the bone biopsies were performed. RESULTS An early reparative bone formation was observed adjacent to the osteointegrated graft. Non-resorbed bone chips and large islands of non-vital bone particles, surrounded by fibrous tissue, were observed in a zone of sclerotic diaphyseal bone, that is the process was delayed despite decortication. CONCLUSIONS These findings support the concept, until now evidenced only by imaging, that bone chips added with PG and BMSCs are effective in shortening the healing time in fracture non-union. The clinical relevance of deep decortication and vascularization is emphasized. LEVEL OF EVIDENCE Therapeutic studies-investigating the results of treatment, Level V.
Collapse
|
21
|
Pastor MF, Floerkemeier T, Witte F, Nellesen J, Thorey F, Windhagen H, Wellmann M. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis. Orthop Rev (Pavia) 2012; 4:e13. [PMID: 22577501 PMCID: PMC3348688 DOI: 10.4081/or.2012.e13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/11/2012] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes correlate with optimized callus stiffness. In this study a tibial distraction osteogenesis (DO) model in 12 sheep was used to determine, whether percutaneous injection of rhBMP-2 into the distraction zone influences the microarchitecture of the bone regenerate. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm/day over a period of 20 days, resulting in total lengthening of 25 mm. The operated limbs were randomly assigned to one treatment groups and one control group: (A) triple injection of rhBMP-2 (4 mg rhBMP-2/injection) and (B) no injection. The tibiae were harvested after 74 days and scanned by µCT (90 µm/voxel). In addition, we conducted a multidirectional mechanical testing of the tibiae by using a material testing system to assess the multidirectional strength. The distraction zones were tested for torsional stiffness and bending stiffness antero-posterior (AP) and medio-lateral (ML) direction, compression strength and maximum axial torsion. Statistical analysis was performed using multivariate analysis of variance (ANOVA) followed by student's t-test and Regression analysis using power functions with a significance level of P<0.05. Triple injections of rhBMP-2 induced significant changes in the trabecular architecture of the regenerate compared with the control: increased trabecular number (Tb.N.) (treatment group 1.73 mm/1 vs. control group 1.2 mm/1), increased cortical bone volume fraction (BV/TV) (treatment group 0.68 vs. control group 0.47), and decreased trabecular separation (Tb.Sp.) (treatment group 0.18 mm vs. control group 0.43 mm).The analyses of the mechanical strength of regenerated bone showed significant differences between treatment group (A) and the control group (B). The bending stiffness anterior-posterior (treatment group 17.48 Nm vs. control group 8.3 Nm), medial-lateral (treatment group 18,9 Nm vs. control group 7.92 Nm) and the torsional stiffness (treatment group 41.17N/° vs. control group 16.41N/°) are significantly higher in the treatment group than in the control group. The regression analyses revealed significant non-linear relationships between BV/TV, TB.N., Tb.Sp. and all mechanical properties. Maximal correlation coefficients were found for the Tb.Sp. vs. the bending stiffness AP and ML with R(2)=0.69 and R(2)=0.70 (P<0.0001). There was no significant relation between Connectivity and the compression strength and the maximum axial torque. This study suggests that rhBMP-2 optimizes the trabecular microarchitecture of the regenerate, which might explain the advanced mechanical integrity of newly formed bone under rhBMP-2 treatment.
Collapse
|
22
|
Zong S, Wei B, Xiong C, Zhao Y, Zeng G. The role of α-zearalanol in reversing bone loss induced by ovarian hormone deficiency in rats. J Bone Miner Metab 2012; 30:136-43. [PMID: 21773701 DOI: 10.1007/s00774-011-0302-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
To assess the ability of α-zearalanol (α-ZAL) to prevent bone loss in an ovariectomized (OVX) rat model of osteoporosis, α-ZAL was administered intragastrically to rats. After 35 days, the total body bone mineral density (BMD) was assessed in all rats. All sections were processed for immunohistochemistry and hematoxylin and eosin staining. One-way ANOVA and an LSD multiple-range test were used to determine the significant differences between groups. BMD was lower in the OVX and OVX + α-ZAL high-dose (OVX + High) groups compared to the sham-operated (Sham), OVX + 17β-ethinylestradiol (OVX + E(2)), OVX + α-ZAL medium-dose (OVX + Medium) and OVX + α-ZAL low-dose (OVX + Low) groups (P < 0.05). Clear bone trabeculae arrangements were observed in the OVX + E(2,) OVX + Medium and OVX + Low groups. The expressions of bone morphogenetic proteins and basic fibroblast growth factor were up-regulated in the OVX + E(2), OVX + Medium and OVX + Low groups compared to the OVX and OVX + High groups (P < 0.05). The OVX + E(2), OVX + Medium and OVX + Low groups showed lower levels of bone Gla protein, bone alkaline phosphatase, tartrate-resistant acid phosphatase and tumor necrosis factor α expressions than the OVX and OVX + High groups (P < 0.05). The administration of α-ZAL to ovariectomized rats reverses bone loss and prevents osteoporosis.
Collapse
Affiliation(s)
- Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Southwood LL, Kawcak CE, Hidaka C, McIlwraith CW, Werpy N, Macleay J, Frisbie DD. Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein-2 and protein-7 gene. Vet Surg 2012; 41:345-54. [PMID: 22308976 DOI: 10.1111/j.1532-950x.2011.00947.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate gene transfer in an equine metacarpal IV (MCIV) ostectomy model using adenoviral vectors encoding the human bone morphogenetic protein-2 and protein-7 gene (Ad-BMP-2/-7). STUDY DESIGN EXPERIMENTAL ANIMALS Healthy adult horses (n = 15). METHODS A plate stabilized, critical size 1.5 cm ostectomy was created in left and right MCIV. The ostectomy site was injected with either Ad-green fluorescent protein (Ad-GFP) or Ad-hBMP-2/-7 at completion of surgery; the same treatment was assigned to both the left and right forelimb of each horse (n = 5 horses/group). Bone healing was evaluated radiographically every 2 weeks for 16 weeks. Horses in a pilot study (n = 5) were used as untreated controls for radiographic evaluation to 8 weeks. After euthanasia at 16 weeks bone healing was evaluated using dual energy X-ray absorptiometry (DEXA) and histomorphometry. Data were analyzed using an ANOVA or Kruskal-Wallis test. Level of significance was P < .05. RESULTS At 4 and 6 weeks, the Ad-GFP group had a significantly lower percentage defect ossification compared with the untreated control group. There was no significant difference between untreated and Ad-hBMP-2/-7 groups at any time point and no significant difference in bone healing radiographically, histologically, or using DEXA between any groups at 16 weeks. CONCLUSIONS Ad-hBMP-2/-7 did not improve bone healing in horses at 16 weeks.
Collapse
Affiliation(s)
- Louise L Southwood
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Feasibility of demineralized bone matrix for craniomaxillofacial contour restoration. J Craniofac Surg 2011; 22:1888-92. [PMID: 21959456 DOI: 10.1097/scs.0b013e31822e86a3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Demineralized bone matrix (DBM) could be a good alternative for craniomaxillofacial contour restoration, especially in perialar, malar, temporal, and frontal regions. In this study, the histologic behavior of DBM was investigated in different tissue planes to determine its proper application plane for restoration of craniomaxillofacial contour deformities and defects.Forty Wistar rats were divided into 6 groups: (1) 0.3 mL of 0.9% saline was injected into the subperiosteal plane of the cranium, (2) 0.3 mL of DBM was implanted into the subperiosteal plane of the cranium, (3) 0.3 mL of 0.9% saline was injected into the subdermal plane on the left inguinal region, (4) 0.3 mL of DBM was implanted into the subdermal plane on the right inguinal region, (5) 0.3 mL of 0.9% saline was injected between the left external and internal oblique muscles, and (6) 0.3 mL of DBM was implanted between the right external and internal oblique muscles. At the 8th week half of the rats and at 16th week the remaining rats were killed in each group, and tissue samples were harvested. Histological and immunohistochemical evaluation revealed new bone tissue and bone marrow formation in all planes that DBM was given.Demineralized bone matrix can provide satisfactory results in craniomaxillofacial contour deformities including forehead, temporal, and malar augmentations, as well as mental and perialar augmentations and saddle nose corrections, with supraperiosteal or deep subcutaneous applications. However, superficial applications must be avoided because of the possibility of palpation, because it induces hard bone tissue formation in all tissue planes.
Collapse
|
25
|
Capo JT, Marcus MS, Shamian B. Treatment of a segmental defect in open radial and ulnar shaft fractures using rhBMP-2 and iliac crest bone graft: a case report. Hand (N Y) 2011. [PMID: 23204971 PMCID: PMC3213260 DOI: 10.1007/s11552-011-9348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- John T. Capo
- Division of Hand and Microvascular Surgery, Department of Orthopaedics, UMDNJ-New Jersey Medical School, 90 Bergen Street, DOC 1200, Newark, NJ 07103 USA
| | - Matthew S. Marcus
- Division of Hand and Microvascular Surgery, Department of Orthopaedics, UMDNJ-New Jersey Medical School, 90 Bergen Street, DOC 1200, Newark, NJ 07103 USA
| | - Ben Shamian
- Division of Hand and Microvascular Surgery, Department of Orthopaedics, UMDNJ-New Jersey Medical School, 90 Bergen Street, DOC 1200, Newark, NJ 07103 USA
| |
Collapse
|
26
|
Sampson HW, Chaput CD, Brannen J, Probe RA, Guleria RS, Pan J, Baker KM, VanBuren V. Alcohol induced epigenetic perturbations during the inflammatory stage of fracture healing. Exp Biol Med (Maywood) 2011; 236:1389-401. [PMID: 22087020 DOI: 10.1258/ebm.2011.011207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is well recognized by orthopedic surgeons that fractures of alcoholics are more difficult to heal successfully and have a higher incidence of non-union, but the mechanism of alcohol's effect on fracture healing is unknown. In order to give direction for the study of the effects of alcohol on fracture healing, we propose to identify gene expression and microRNA changes during the early stages of fracture healing that might be attributable to alcohol consumption. As the inflammatory stage appears to be the most critical for successful fracture healing, this paper focuses on the events at day three following fracture or the stage of inflammation. Sprague-Dawley rats were placed on an ethanol-containing or pair-fed Lieber and DeCarli diet for four weeks prior to surgical fracture. Following insertion of a medullary pin, a closed mid-diaphyseal fracture was induced using a Bonnarens and Einhorn fracture device. At three days' post-fracture, the region of the fracture calluses was harvested from the right hind-limb. RNA was extracted and microarray analysis was conducted against the entire rat genome. There were 35 genes that demonstrated significant increased expression due to alcohol consumption and 20 that decreased due to alcohol. In addition, the expression of 20 microRNAs was increased and six decreased. In summary, while it is recognized that mRNA levels may or may not represent protein levels successfully produced by the cell, these studies reveal changes in gene expression that support the hypothesis that alcohol consumption affects events involved with inflammation. MicroRNAs are known to modulate mRNA and these findings were consistent with much of what was seen with mRNA microarray analysis, especially the involvement of smad4 which was demonstrated by mRNA microarray, microRNA and polymerase chain reaction.
Collapse
Affiliation(s)
- H Wayne Sampson
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev 2011; 22:221-9. [PMID: 21924665 DOI: 10.1016/j.cytogfr.2011.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 7 (BMP7) is a member of the transforming growth factor-β (TGF-β) superfamily of growth factors. In recent years, it has become clear that BMP7 is a very pleiotropic growth factor. As described in this review, it plays a pivotal role in the development of bone and kidney, and has only recently been demonstrated to also be crucially involved in differentiation of brown adipose tissue. Because BMP7 thus controls the development and maintenance of many physiological processes in the human body, aberrant expression of BMP7 is associated with a variety of diseases. This review gives a broad overview on the involvement of BMP7 in several pathological conditions, such as incomplete fracture healing, osteoarthritis, the development of bone metastases, renal fibrosis and obesity. Furthermore, the therapeutic potential of BMP7 in these disease states is discussed.
Collapse
|
28
|
Fujita N, Matsushita T, Ishida K, Sasaki K, Kubo S, Matsumoto T, Kurosaka M, Tabata Y, Kuroda R. An analysis of bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein 2 from a biodegradable sponge composed of gelatin and β-tricalcium phosphate. J Tissue Eng Regen Med 2011; 6:291-8. [DOI: 10.1002/term.432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 03/24/2011] [Indexed: 11/05/2022]
|
29
|
Zeng GF, Zhang ZY, Lu L, Xiao DQ, Xiong CX, Zhao YX, Zong SH. Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:224-9. [PMID: 21550389 DOI: 10.1016/j.jep.2011.04.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/10/2011] [Accepted: 04/20/2011] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To assess the ability of traditional Chinese medicine Polygonatum sibiricum polysaccharide to prevent bone loss in the ovariectomized rat. MATERIALS AND METHODS PSP was administered intragastrically to the rats. After 35 days, the total body bone mineral density (BMD) was assessed in all of the rats. All sections were processed for immunohistochemistry and hematoxylin-eosin staining (H.E.). RESULTS BMD was lower in the ovariectomized group (OVX, 0.163 g/cm(2)), the group that received a moderate dose of PSP on OVX animals (OVX+MP, 0.163 g/cm(2)) and the group that received a low dose of PSP on OVX animals (OVX+LP, 0.162 g/cm(2)) than in the sham-operated group (SHAM, 0.180 g/cm(2)), the OVX+E(2) group (OVX+E(2), 0.176 g/cm(2)) and the group that received a high dose of PSP on OVX animals (OVX+HP, 0.174 g/cm(2)) (P<0.05). Clear arrangements of bone trabeculae were observed in the OVX+E(2) and OVX+HP. The expression of bone morphogenetic proteins (BMP) and basic fibroblast growth factor (bFGF) in the OVX, OVX+MP and OVX+LP was down regulated compared to the SHAM, OVX+E(2) and OVX+HP (P<0.05). The rats in the OVX+E(2) and OVX+HP had lower levels of bone Gla protein (BGP), bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP) and tumor necrosis factor α(TNF-α) expression than the rats in the OVX, OVX+MP and OVX+LP (P<0.05). CONCLUSION This experiment demonstrates that the administration of PSP to ovariectomized rats reverses bone loss and prevents osteoporosis.
Collapse
Affiliation(s)
- Gao-Feng Zeng
- College of Public Hygiene of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, dos Santos JN. Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 2011; 98:212-21. [DOI: 10.1002/jbm.a.33107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/21/2011] [Indexed: 11/07/2022]
|
31
|
Abdelmagid SM, Barbe MF, Hadjiargyrou M, Owen TA, Razmpour R, Rehman S, Popoff SN, Safadi FF. Temporal and spatial expression of osteoactivin during fracture repair. J Cell Biochem 2011; 111:295-309. [PMID: 20506259 DOI: 10.1002/jcb.22702] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post-fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively. Using a rat fracture model, Northern blot analysis showed that expression of OA mRNA was significantly higher in day-3 and day-10 PF calluses than in intact rat femurs. Using in situ hybridization, we examined OA mRNA expression during fracture healing and found that OA was temporally regulated, with positive signals seen as early as day-3 PF, reaching a maximal intensity at day-10 PF, and finally declining at day-21 PF. At day-5 PF, which correlates with chondrogenesis, OA mRNA levels were significantly higher in the soft callus than in intact femurs. Similarly, we detected high OA protein immunoexpression throughout the reparative phase of the hard callus compared to intact femurs. Interestingly, the secreted OA protein was also detected within the newly made cartilage matrix and osteoid tissue. Taken together, these results suggest the possibility that OA plays an important role in bone formation and serves as a positive regulator of fracture healing.
Collapse
Affiliation(s)
- Samir M Abdelmagid
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L. Effects of laser photherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: A Raman spectroscopic study. J Biomed Mater Res A 2010; 95:1041-7. [DOI: 10.1002/jbm.a.32930] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 11/06/2022]
|
33
|
Quantitative assessment of the bone morphogenetic protein expression from alternate bone graft harvesting sites. J Orthop Trauma 2010; 24:564-6. [PMID: 20736795 DOI: 10.1097/bot.0b013e3181ed29a6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone morphogenetic proteins (BMPs) play important roles in the stimulation of osteogenesis and osteoinduction during bone fracture healing and their expression levels may be important for bone graft efficacy. The objective of this study was to determine if there are variations in the expression of BMPs and their receptors in various bone graft harvesting sites. We analyzed autogenous marrow aspirates obtained from three different graft sites for the mRNA levels of BMPs and their receptors. METHODS Using real-time polymerase chain reaction, we analyzed the mRNA levels of BMPs and their receptors in autogenous bone marrow aspirates obtained from three different bone graft sites of 10 different human subjects. Collection of autogenous bone marrow from the iliac crest, the proximal humerus, and the proximal tibia was performed using standard sterile techniques in the operating room as part of surgery to treat an established fracture nonunion. RESULTS The mRNA levels of BMP-2 and BMP-5 were the highest in the bone marrow aspirates from the three different sites, whereas the mRNA levels of the other osteoinductive BMPs (BMP-4, -5, -6, -7, -8, and -9) were lower. The mRNA levels of BMP-3, an inhibitor of osteogenesis, were the lowest in the bone marrow aspirates of all three different sites. There were no statistical significant differences in the mRNA levels of any of the BMPs or their receptors investigated in this study in the bone marrow of the three different sites. CONCLUSION Because no statistical significant differences in the mRNA levels of the BMPs and their receptors were detected in the bone marrow aspirates from the three different sites, our findings suggest that potential differences of various graft sites in the augmentation of bone healing does not result from different expression levels of BMPs.
Collapse
|
34
|
Song F, Li B, Stocum DL. Amphibians as research models for regenerative medicine. Organogenesis 2010; 6:141-50. [PMID: 21197215 PMCID: PMC2946045 DOI: 10.4161/org.6.3.12039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 01/23/2023] Open
Abstract
The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible.
Collapse
Affiliation(s)
- Fengyu Song
- Department of Oral Pathology, Indiana University School of Dentistry, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | | |
Collapse
|
35
|
Moore ST, Katz JM, Zhukauskas RM, Hernandez RM, Lewis CS, Supronowicz PR, Gill E, Grover SM, Long NS, Cobb RR. Osteoconductivity and Osteoinductivity of Puros® DBM Putty. J Biomater Appl 2010; 26:151-71. [DOI: 10.1177/0885328210366061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone graft substitutes have been developed due to the limited supply and morbidity associated with using autogenous graft material. Allogeneic demineralized bone matrix (DBM) has been used extensively as a clinical graft material because of its inherent osteoinductive and osteoconductive properties. Differential enhancement of these properties may optimize the performance of these products for various orthopedic and craniofacial applications. Commercially available bone paste products consist of formulations that combine DBM with a carrier to facilitate handling and containment. In the present study, we present results of a comprehensive in vitro and in vivo characterization of a 100% human DBM putty product, Puros DBM Putty. Results indicate the DBM particles are completely dispersed in the putty. Data are presented showing the porosity of and cell attachment to Puros DBM Putty, thereby demonstrating the osteoconductive properties of this DBM. Puros DBM Putty was also shown to be osteoinductive in the rat ectopic pouch model. We demonstrate here for the first time that Puros DBM Putty maintains its activity to markedly stimulate or induce bone formation over the entire period of its shelf life. Taken together, these data demonstrate that the 100% human allograft derived Puros DBM Putty could be an effective bone graft substitute.
Collapse
Affiliation(s)
- Steven T. Moore
- Orthopedics, Spine and Dental Group, RTI Biologics, Inc., Alachua, FL, USA
| | | | | | | | - Christine S. Lewis
- Orthopedics, Spine and Dental Group, RTI Biologics, Inc., Alachua, FL, USA
| | | | - Elise Gill
- Orthopedics, Spine and Dental Group, RTI Biologics, Inc., Alachua, FL, USA
| | - Susan M. Grover
- Orthopedics, Spine and Dental Group, RTI Biologics, Inc., Alachua, FL, USA
| | | | - Ronald R. Cobb
- Orthopedics, Spine and Dental Group, RTI Biologics, Inc., Alachua, FL, USA,
| |
Collapse
|
36
|
Cervelló López S, Mut Oltra T, Colado Domínguez J. Experiencia con BMP-7 en el tratamiento de las seudoartrosis infectadas. Rev Esp Cir Ortop Traumatol (Engl Ed) 2010. [DOI: 10.1016/s1888-4415(10)70005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
37
|
Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez-Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 2010; 285:21037-48. [PMID: 20385559 DOI: 10.1074/jbc.m110.114959] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu(79) effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways.
Collapse
|
38
|
Abstract
BACKGROUND Non-unions of long bone fractures are a therapeutic and economic problem of increasing frequency. Aside from conservative treatment options such as ultrasound, impulse waves, and casts, the basic surgical options are autogenous cancellous bone grafting, rod dynamization, reamed nailing, plate fixation, and bone transport techniques. If these methods fail to work, there is a need for alternative treatment options. METHODS Since May 2001, treatment with recombinant human bone morphogenic protein 7 (BMP 7 or osteogenic protein 1) in combination with a type-one collagen carrier has been the subject of increasing interest. BMP 7 induces the formation of new bone by stem cell differentiation, thereby initiating the reaction cascade of osteogenesis. Non-unions over 9 months and unsuccessful bone grafting constitute the indication for this treatment. RESULTS We report our experience with 54 patients who had atrophic non-union of long bone fractures. Between May 2002 and May 2006, 57 units of BMP 7 were used. The localization of the non-unions included 21 in the femur, 26 in the tibia, 3 in the humerus and 7 in the forearm. In 36 cases, BMP 7 was used in combination with osteosynthesis revision and bone grafting; in 9 additional patients, BMP 7 was used with bone grafting alone. In 12 patients, BMP 7 was applied as a single procedure without any bone grafting or any change in osteosynthesis. CONCLUSIONS There were no perioperative or postoperative complications. Follow-up was obtained for a minimum of 6 months. 47 of the 57 (82%) implantations were successful, with bony healing confirmed by clinical and radiological evaluation. In summary, our results support BMP 7 as an additional innovative therapy for long bone non-unions.
Collapse
|
39
|
Valdes MA, Thakur NA, Namdari S, Ciombor DM, Palumbo M. Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Arch Orthop Trauma Surg 2009; 129:1651-7. [PMID: 19280204 DOI: 10.1007/s00402-009-0850-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 01/20/2023]
Abstract
Bone morphogenic proteins (BMPs) are pleiotropic regulators of bone volume, skeletal organogenesis and bone regeneration after a fracture. They function as signaling agents to affect cellular events like proliferation, differentiation and extracellular matrix synthesis. Clinically utilized rhBMP-2 combines rhBMP-2 with an osteoconductive carrier to induce bone growth and acts as a bone graft substitute. rhBMP-2, initially released in 2002, has been used primarily in spinal fusions in the lumbar and cervical regions. Recently, the application of rhBMP-2 has extended into the orthopedic trauma setting with increased application in open tibia fractures. This review outlines the history of development, molecular characteristics, toxicity and clinical applications.
Collapse
Affiliation(s)
- Mauricio A Valdes
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | | | | | | | | |
Collapse
|
40
|
Brick KE, Chen X, Lohr J, Schmidt AH, Kidder LS, Lew WD. rhBMP-2 modulation of gene expression in infected segmental bone defects. Clin Orthop Relat Res 2009; 467:3096-103. [PMID: 19018606 PMCID: PMC2772904 DOI: 10.1007/s11999-008-0599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 10/15/2008] [Indexed: 01/31/2023]
Abstract
The osteoinductive capability of BMPs appears diminished in the setting of acute infection. We applied rhBMP-2 to a segmental defect in a rat femur and measured the expression of key bone formation genes in the presence of acute infection. Types I and II collagen, osteocalcin, and BMP Type II receptor mRNA expression were characterized in 72 Sprague-Dawley rats, which received either bovine collagen carrier with 200 mug rhBMP-2 plus Staphylococcus aureus, carrier with bacteria only, carrier with rhBMP-2 only, or carrier alone. Six animals from each group were euthanized at 1, 2, and 4 weeks. Total RNA was isolated and extracted, and mRNA was determined by real-time comparative quantitative PCR. Infected defects had little expression of collagen I and II and osteocalcin mRNAs, while BMP receptor II expression with infection was greater than carrier-only controls at weeks 2 and 4. Notably, all four genes were upregulated in infected defects in the presence of rhBMP-2. Thus, in a clinical setting with a high risk of infection and nonunion, such as a compound fracture with bone loss, rhBMP-2 may increase the rate and extent of bone formation. Even if infection does occur, rhBMP-2 may allow a quicker overall recovery time.
Collapse
Affiliation(s)
| | - Xinqian Chen
- Midwest Orthopaedic Research Foundation, Minneapolis, MN
USA
| | - Jamie Lohr
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN USA
| | - Andrew H. Schmidt
- Orthopaedic Surgery Department, Hennepin County Medical Center, Minneapolis, MN USA
| | - Louis S. Kidder
- Midwest Orthopaedic Research Foundation, Minneapolis, MN
USA ,Department of Radiology, University of Minnesota School of Medicine, B292 Mayo, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - William D. Lew
- Midwest Orthopaedic Research Foundation, Minneapolis, MN
USA
| |
Collapse
|
41
|
Dodds RA, York-Ely AM, Zhukauskas R, Arola T, Howell J, Hartill C, Cobb RR, Fox C. Biomechanical and Radiographic Comparison of Demineralized Bone Matrix, and a Coralline Hydroxyapatite in a Rabbit Spinal Fusion Model. J Biomater Appl 2009; 25:195-215. [DOI: 10.1177/0885328209345552] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of bone grafts is an essential component in spinal fusion. Autologous bone has been shown to result in long-term stable arthrodesis between spinal motion segments. However, autograft can be associated with significant morbidity and a limited supply. Alternatives, such as allogeneic demineralized bone matrix (DBM), are a potential source and supplement to autograft bone. The current study compares the ability of a DBM product (BioSet® RT) and a coralline hydroxyapatite (Pro Osteon® 500R), for inducing spinal fusion in a rabbit model. BioSet® RT, alone or in combination with autograft, and Pro Osteon® 500R were implanted in the posterior lateral inter-transverse process region of the rabbit spine. The spines were evaluated at 18 weeks for fusion of the L4—L5 transverse processes using a total of 33 skeletally mature male rabbits; 4 naïve animals were also included in the study. Samples were evaluated radiographically, histologically, by palpation, and through mechanical strength testing. Radiographical, histological, and palpation measurements demonstrated the ability of BioSet® RT to induce new bone formation and bridging fusion comparable to autograft. This material performed well alone or in combination with autograft material. Despite significantly higher biomechanical testing results, minimal bone formation and fusion was recorded for the Pro Osteon® 500R-treated group. This in vivo study demonstrates the ability of BioSet®RT to induce new bone formation, and there was a clear relationship between bridging bone and mechanical strength.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Casey Fox
- BioMedical Enterprises, San Antonio, TX, USA
| |
Collapse
|
42
|
|
43
|
He H, Huang J, Shi J, Ping F, Chen G, Dong Y. Haversian Remodeling in Guided Bone Regeneration with Calcium Alginate Film in Circular Bone Defect Model of Rabbit. ACTA ACUST UNITED AC 2009; 35:533-42. [DOI: 10.1080/10731190701586285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Zhang WV, Stott NS. BMP-2-Modulated Chondrogenic Differentiation In Vitro Involves Down-Regulation of Membrane-Bound Beta-Catenin. ACTA ACUST UNITED AC 2009; 11:89-102. [PMID: 16194878 DOI: 10.1080/15419060490951790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone morphogenetic proteins (BMPs) are important regulators of cellular differentiation and embryonic development. Beta catenin mediated nuclear signaling has been implicated in BMP-2-modulated chondrogenic differentiation in the pluripotential stem cell line C3H10T1/2. However, there is little information on the functional role of beta catenin in BMP-2-modulated differentiation of primary nontransformed mesenchymal cells. Here, we present evidence to show that BMP-2-induced chondrogenic differentiation in high-density primary mesenchymal culture is associated with a significant decrease in membrane-bound beta catenin by 72 hours compared to controls. Nuclear localization of beta catenin is not detectable by immunofluorescence and the TCF-responsive reporter vector TOPFLASH shows only background activity during chondrogenic differentiation. BMP-2-treated cultures show reduced cell-cell adhesion by 72 hours, which correlates with the changes in levels of membrane-bound beta catenin. Up-regulation of membrane-bound beta catenin blocks the effect of BMP-2 on both chondrogenic differentiation and cell-cell adhesiveness. These findings suggest that BMP-2 can modulate the adhesivity of adherens junctions through regulation of membrane bound beta catenin.
Collapse
Affiliation(s)
- Wei V Zhang
- Department of Surgery, Faculty of Medicine and Health Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
45
|
Megas P, Syggelos SA, Kontakis G, Giannakopoulos A, Skouteris G, Lambiris E, Panagiotopoulos E. Intramedullary nailing for the treatment of aseptic femoral shaft non-unions after plating failure: effectiveness and timing. Injury 2009; 40:732-7. [PMID: 19371870 DOI: 10.1016/j.injury.2008.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/11/2008] [Indexed: 02/02/2023]
Abstract
This retrospective, multicentre study aimed to evaluate reamed intramedullary nailing (IMN) for the treatment of 30 cases of aseptic femoral shaft non-union after plating failure. Following nailing, 29 non-unions had healed by a mean 7.93 months. In one case a hypertrophic non-union required renailing after 8 months, using a nail of greater diameter, and united within five further months. Healing times were not related to whether the fracture was open or closed, the type non-union or the type of fracture. The delay from the initial plating to intramedullary nailing had a statistically significant effect on healing time and final outcome. This treatment is cost effective and should be implemented as soon as the non-union is diagnosed.
Collapse
|
46
|
Release kinetics of polymer-bound bone morphogenetic protein-2 and its effects on the osteogenic expression of MC3T3-E1 osteoprecursor cells. Plast Reconstr Surg 2009; 123:1169-1177. [PMID: 19337085 DOI: 10.1097/prs.0b013e31819f2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In an effort to augment scaffold performance, additives such as growth factors are under investigation for their ability to optimize the "osteopotential" of synthetic polymer scaffolds. In parallel research, bone morphogenetic protein-2 (BMP-2), a growth factor that initiates bone formation, has been locally delivered to augment fracture healing and spinal fusion. The authors hypothesize that BMP-2 can be covalently bound to a polymer substrate, increasing its concentration and bioavailability over longer periods, thus improving the efficacy of the growth factor and subsequently the bony matrix production. It would remain bound longer when compared with published controls. This prolonged binding would then increase the bioavailability of the growth factor and thus increase bony matrix production over a longer interval. METHODS Mouse preosteoblast MC3T3-E1 cells were cultured on poly(lactic-co-glycolic acid) and polycaprolactone polymer disks covalently bound with BMP-2 to assess the progression and quality of osteogenesis. Covalent binding of BMP-2 to each polymer was visualized by immunohistochemical analysis of polymer-coated microscope slides. The quantity of covalently bound BMP-2 was determined using enzyme-linked immunosorbent assay. RESULTS Polymerase chain reaction results showed elevated expression levels for alkaline phosphatase and osteocalcin genes. BMP-2 was released from polycaprolactone over 2 weeks, with 86 percent remaining covalently bound, in contrast to 93 percent retained by poly(lactic-co-glycolic acid). CONCLUSIONS BMP-2, proven to alter polymer osteogenicity, remained bound to poly(lactic-co-glycolic acid), which may render poly(lactic-co-glycolic acid) an ideal choice as a polymer for scaffold-based bone tissue engineering using growth factor delivery.
Collapse
|
47
|
|
48
|
Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, Tian W. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 2008; 32:1150-1157. [PMID: 18638562 DOI: 10.1016/j.cellbi.2008.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/10/2008] [Accepted: 06/22/2008] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to develop a feasible approach to promote bone healing in osteoporotic rats using autogenous bone tissue-engineering and gene transfection of human bone morphogenetic protein 2 (hBMP-2). METHODS Bone marrow stromal cells (BMSCs) from the left tibia of osteoporotic rats were transfected with the hBMP-2 gene in vitro which was confirmed by immunohistochemistry, in situ hybridization and Western blotting. Autogenous transfected or untransfected BMSCs were seeded on macroporous coral hydroxyapatite (CHA) scaffolds. Each cell-scaffold construct was implanted into a defect site which was created in the ramus of the mandible of osteoporotic rats. Four or eight weeks after implantation in situ hybridization was performed in BMSCs transfected with hBMP-2, X-ray examinations, histological and histomorphological analyses were used to evaluate the effect of tissue-engineered bone on osseous defect repair. RESULTS Newly formed bone was observed at the margin of the defect 4 weeks after implantation with BMSCs transfected with BMP-2. Mature bone was observed 8 weeks after treatment. In the control group there was considerably less new bone and some adipose tissue was observed at the defect margins 8 weeks after implantation. CONCLUSIONS Autogenous cells transfected with hBMP-2 promote bone formation in osteoporotic rats. BMSC-mediated BMP-2 gene therapy used in conjunction with bone tissue engineering may be used to successfully treat bone defects in osteoporotic rats. This method provides a powerful tool for bone regeneration and other tissue engineering.
Collapse
Affiliation(s)
- Youchao Tang
- Department of Oral & Maxillofacial Surgery, Huizhou Hospital of Stomatology, Guangdong 516001, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Jones NF, Brown EE, Vögelin E, Urist MR. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock's disease by vascular pedicle implantation. J Hand Surg Eur Vol 2008; 33:317-21. [PMID: 18562364 DOI: 10.1177/1753193408090394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This case report documents the first use of bone morphogenetic protein (BMP) as an adjuvant to revascularisation with a first dorsal metacarpal arterio-venous pedicle in the treatment of a patient with Stage III Kienbock's disease. The patient had complete relief of her symptoms of wrist pain by 8 months postoperatively, when X-rays showed no further evidence of lunate collapse and an MRI scan demonstrated islands of revascularisation. It is impossible to prove unequivocably that BMP contributed to the result seen in this one patient, but this adjuvant concept is based on experimental evidence demonstrating that optimal bioengineering of vascularised bone is dependent on four factors - a structural matrix, progenitor cells, BMP and a vascular supply, and BMP may play a future role in promoting new bone formation in Kienbock's disease.
Collapse
Affiliation(s)
- N F Jones
- UCLA Hand Center, Department of Orthopaedic Surgery and Division of Plastic and Reconstructive Surgery, University of California Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
50
|
Silfverswärd CJ, Sisask G, Larsson S, Ohlsson C, Frost A, Ljunggren O, Nilsson O. Bone formation in interleukin-4 and interleukin-13 depleted mice. Acta Orthop 2008; 79:410-20. [PMID: 18622847 DOI: 10.1080/17453670710015337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Cytokines play an important role in the complex process of bone formation. We have previously found an altered skeletal phenotype with reduction of cortical bone mass in mice depleted of the 2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL 13). The present study was performed to investigate a potential role of IL-4 and IL-13 in fracture healing and bone induction by demineralized xenogenic bone matrix (DXBM). METHODS Callus formation in IL-4-(/)-IL-13-(/)- (IL-4/13 knockout) and wild-type (WT) male mice was compared using a standardized fracture model. The capacity of IL-4(-/-)IL-13(-/-) and WT male and female mice to form heterotopic bone was compared using intramuscular implants of DXBM. Bone formation and mechanical properties were evaluated by pQCT, ash weight, 3-point bending, radiology, and immunohistology. RESULTS In the fracture investigation substantial amounts of new bone formation by 5 weeks were found, but no differences in radiographical healing, callus volume, BMD, BMC, or mechanical properties were detected between IL-4(-/-)IL-13(-/-) and WT mice. In the DXBM investigation radiographic analysis confirmed mineralization of implants in both groups, but no difference in the amount of mineral deposition (net bone formation) between IL-4(-/-)IL-13(-/-) and WT mice was found. Immunohistology showed inhibition of autonomic nerves in the capsule of the IL-4(-/-)IL-13(-/-) group along with a lack of vascularization within the implants. INTERPRETATION Depletion of IL-4 and IL-13 does not cause any major alteration in fracture healing or heterotopic bone formation in mice. The pattern of autonomous nerve expression and expression of markers of neovascularization is, however, altered to some extent by the absence of IL-4 and IL-13.
Collapse
|