1
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
2
|
van Griensven M, Ricklin D, Denk S, Halbgebauer R, Braun CK, Schultze A, Hönes F, Koutsogiannaki S, Primikyri A, Reis E, Messerer D, Hafner S, Radermacher P, Biglarnia AR, Resuello RR, Tuplano JV, Mayer B, Nilsson K, Nilsson B, Lambris JD, Huber-Lang M. Protective Effects of the Complement Inhibitor Compstatin CP40 in Hemorrhagic Shock. Shock 2019; 51:78-87. [PMID: 29461464 PMCID: PMC6092248 DOI: 10.1097/shk.0000000000001127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trauma-induced hemorrhagic shock (HS) plays a decisive role in the development of immune, coagulation, and organ dysfunction often resulting in a poor clinical outcome. Imbalanced complement activation is intricately associated with the molecular danger response and organ damage after HS. Thus, inhibition of the central complement component C3 as turnstile of both inflammation and coagulation is hypothesized as a rational strategy to improve the clinical course after HS.Applying intensive care conditions, anaesthetized, monitored, and protectively ventilated nonhuman primates (NHP; cynomolgus monkeys) received a pressure-controlled severe HS (60 min at mean arterial pressure 30 mmHg) with subsequent volume resuscitation. Thirty minutes after HS, animals were randomly treated with either an analog of the C3 inhibitor compstatin (i.e., Cp40) in saline (n = 4) or with saline alone (n = 4). The observation period lasted 300 min after induction of HS.We observed improved kidney function in compstatin Cp40-treated animals after HS as determined by improved urine output, reduced damage markers and a tendency of less histopathological signs of acute kidney injury. Sham-treated animals revealed classical signs of mucosal edema, especially in the ileum and colon reflected by worsened microscopic intestinal injury scores. In contrast, Cp40-treated HS animals exhibited only minor signs of organ edema and significantly less intestinal damage. Furthermore, early systemic inflammation and coagulation dysfunction were both ameliorated by Cp40.The data suggest that therapeutic inhibition of C3 is capable to significantly improve immune, coagulation, and organ function and to preserve organ-barrier integrity early after traumatic HS. C3-targeted complement inhibition may therefore reflect a promising therapeutic strategy in fighting fatal consequences of HS.
Collapse
Affiliation(s)
- Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Stephanie Denk
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Christian K. Braun
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Felix Hönes
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Sofia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Primikyri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edimara Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| | - Sebastian Hafner
- Institute for Anaesthesiological Pathophysiology and Process Development, University of Ulm, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anaesthesiological Pathophysiology and Process Development, University of Ulm, 89081 Ulm, Germany
| | - Ali-Reza Biglarnia
- Department of Transplantation, Malmö University Hospital, Lund University, Sweden
| | - Ranillo R.G. Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V. Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Germany
| | - Kristina Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
3
|
Morales-Ortíz J, Rondina MT, Brown SM, Grissom C, Washington AV. High Levels of Soluble Triggering Receptor Expressed on Myeloid Cells-Like Transcript (TLT)-1 Are Associated With Acute Respiratory Distress Syndrome. Clin Appl Thromb Hemost 2018; 24:1122-1127. [PMID: 29758998 PMCID: PMC6219757 DOI: 10.1177/1076029618774149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously demonstrated that elevated levels of soluble triggering receptor expressed on myeloid cells-like transcript 1 (sTLT-1) modulate sepsis-induced inflammation and positively correlate with disseminated intravascular coagulation (DIC). Here, we evaluate the clinical implications of plasma sTLT-1 in acute respiratory distress syndrome (ARDS), which is common in sepsis patients. Soluble TLT-1 levels in the plasma of ARDS patients (n = 20) were determined by slot blot analysis and were compared with clinical parameters to identify significant associations. For comparisons to ARDS, we also measured sTLT-1 levels in matched healthy controls (n = 20). Of the 20 plasma samples evaluated from patients with ARDS, 60% were diagnosed with sepsis and 40% were diagnosed with septic shock. The white blood cells (WBCs) of patients with ARDS were found to be significantly elevated over healthy controls with a mean of 13 k/µL over 6.2 k/µL, respectively. The mean plasma levels of sTLT-1 were 148.4 pg/mL ± 16.52 in the patient cohort and 92.45 pg/mL ± 17.12 in the control group ( P = .02). No statistically significant correlations were found between plasma levels of sTLT-1 and WBCs, sepsis, septic shock or acute physiologic, and chronic health evaluation II scores. A statistically significant inverse correlation (r2 = .25, P < .05) was found between plasma sTLT-1 and peripheral platelet counts in patients with ARDS. Increased levels of sTLT-1 in ARDS patients suggest that TLT-1 may mediate the pathobiology of ARDS. Moreover, our data are the first to demonstrate a specific platelet marker in the development of ARDS due to sepsis.
Collapse
Affiliation(s)
- Jessica Morales-Ortíz
- 1 Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - Matthew T Rondina
- 2 Laboratory of Anatomy and Cell Biology, Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,3 Department of Medicine and the Molecular Medicine Program, the University of Utah Health Sciences Center, Salt Lake City, UT, USA.,4 George E. Wahlen VAMC GRECC, Salt Lake City, UT, USA
| | - Samuel M Brown
- 5 Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA.,6 Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - Colin Grissom
- 5 Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA.,6 Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - A Valance Washington
- 1 Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| |
Collapse
|
4
|
Cichon G, Boeckh-Herwig S, Schmidt HH, Wehnes E, Müller T, Pring-Akerblom P, Burger R. Complement activation by recombinant adenoviruses. Gene Ther 2001; 8:1794-800. [PMID: 11803399 PMCID: PMC7091591 DOI: 10.1038/sj.gt.3301611] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Accepted: 10/29/2001] [Indexed: 11/08/2022]
Abstract
Recombinant adenoviruses are currently the most important vector system in gene therapy. Adenoviruses frequently cause upper respiratory tract infections in humans and anti-adenoviral antibodies are found in 35-70% of the population. Therefore in the majority of potential patients receiving adenoviral gene therapy, the contact of virus particles and blood will lead to the formation of antigen-antibody complexes. These complexes have the ability to induce inflammatory reactions via an activation of the complement system. We have determined the level of C3a (the most reactive complement component) generated in isolated citrate plasma of healthy individuals after challenge with recombinant and wild-type adenoviruses in amounts corresponding to virus blood levels to be expected in patients during adenoviral gene therapy. All plasma samples containing anti-adenoviral antibodies showed a substantial, dose-dependent generation of C3a. A virus plasma level of about 7.5 x 10(9) particles/ml (which was calculated to be the highest blood level reached during clinical trials in the past) induced an average release of about 3000 ng/ml C3a (baseline levels <140 ng/ml). Analyzing the nature of anti-adenoviral antibodies showed, that not only antibodies with neutralizing properties (anti-Ad5), but also non-neutralizing anti-adenoviral antibodies are capable of complement activation. This study suggests that complement activation can be ignored in local low-dose applications of recombinant adenoviruses, but warrants attention after systemic application of large viral quantities. In clinical protocols aiming at systemic virus application, measures for monitoring and controlling the complement system should be included on a regular basis.
Collapse
Affiliation(s)
- G Cichon
- Institute for Biology, Department of Molecular Cell Biology, Humboldt-University Berlin at the Max Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|