1
|
Vo MN, Kwon MH, Liu FY, Fridayana FR, Huang Y, Hong SS, Kang JH, Yin GN, Ryu JK. Exogenous administration of heparin-binding epidermal growth factor-like growth factor improves erectile function in mice with bilateral cavernous nerve injury. Asian J Androl 2025:00129336-990000000-00305. [PMID: 40247713 DOI: 10.4103/aja2024125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 04/19/2025] Open
Abstract
Prostate cancer is the second most common malignancy and the sixth leading cause of cancer-related death in men worldwide. Radical prostatectomy (RP) is the standard treatment for localized prostate cancer, but the procedure often results in postoperative erectile dysfunction (ED). The poor efficacy of phosphodiesterase 5 inhibitors after surgery highlights the need to develop new therapies to enhance cavernous nerve regeneration and improve the erectile function of these patients. In the present study, we aimed to examine the potential of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in preserving erectile function in cavernous nerve injury (CNI) mice. We found that HB-EGF expression was reduced significantly on the 1st day after CNI in penile tissue. Ex vivo and in vitro studies showed that HB-EGF promotes major pelvic ganglion neurite sprouting and neuro-2a (N2a) cell migration. In vivo studies showed that exogenous HB-EGF treatment significantly restored the erectile function of CNI mice to 86.9% of sham levels. Immunofluorescence staining showed that mural and neuronal cells were preserved by inducing cell proliferation and reducing apoptosis and reactive oxygen species production. Western blot analysis showed that HB-EGF upregulated protein kinase B and extracellular signal-regulated kinase activation and neurotrophic factor expression. Overall, HB-EGF is a major promising therapeutic agent for treating ED in postoperative RP.
Collapse
Affiliation(s)
- Minh Nhat Vo
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Fang-Yuan Liu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Fitri Rahma Fridayana
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Yan Huang
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 22332, Korea
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Korea
| |
Collapse
|
2
|
Luo J, Chen D, Qin B, Kong D. Molecular mechanisms for the prevention and promoting the recovery from ischemic stroke by nutraceutical laminarin: A comparative transcriptomic approach. Front Nutr 2022; 9:999426. [PMID: 36118760 PMCID: PMC9479852 DOI: 10.3389/fnut.2022.999426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide. Ischemic stroke caused by atherosclerosis accounts for approximately 87% of all stroke cases. Ischemic stroke is a preventable disease; therefore, a better understanding of the molecular mechanisms underlying its pathogenesis and recovery processes could provide therapeutic targets for drug development and reduce the associated mortality rate. Laminarin, a polysaccharide, is a nutraceutical that can be found in brown algae. Accumulating evidence suggests that laminarin could reduce the detrimental effects of neuroinflammation on brain damage after stroke. However, the molecular mechanism underlying its beneficial effects remains largely unknown. In the present study, we used a middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomics to investigate the molecular targets and pathways involved in the beneficial effects of laminarin on ischemic stroke. Our results show the involvement of laminarin targets in biological processes related to blood circulation, oxygen supply, and anti-inflammatory responses in the normal brain. More importantly, laminarin treatment attenuated brain damage and neurodeficits caused by ischemic stroke. These beneficial effects are controlled by biological processes related to blood vessel development and brain cell death through the regulation of canonical pathways. Our study, for the first time, delineated the molecular mechanisms underlying the beneficial effects of laminarin on ischemic stroke prevention and recovery and provides novel therapeutic targets for drug development against ischemic stroke.
Collapse
|
3
|
Chen M, Wu S, Shen B, Fan Q, Zhang R, Zhou Y, Zhang P, Wang L, Zhang L. Activation of the δ opioid receptor relieves cerebral ischemic injury in rats via EGFR transactivation. Life Sci 2021; 273:119292. [PMID: 33667516 DOI: 10.1016/j.lfs.2021.119292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022]
Abstract
Delta opioids are thought to relieve ischemic injury and have tissue-protective properties. However, the detailed mechanisms of delta opioids have not been well identified. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), have been shown to mediate downstream signals of δ opioid receptor (δOR) activation through the metalloproteinase (MMP)-dependent EGF-like growth factor (HB-EGF) excretion pathway, which is called transactivation. In this study, to investigate the role of EGFR in δOR-induced anti-ischemic effects in the brain, we applied the middle cerebral artery occlusion (MCAO) model followed by reperfusion to mimic ischemic stroke injury in rats. Pre-treatment with the δOR agonist [D-ala2, D-leu5] enkephalin (DADLE) improved the neurologic deficits and the decreased infarct volume caused by cerebral ischemia/reperfusion injury, which were blocked by the EGFR inhibitor AG1478 and the MMP inhibitor GM6001, respectively. Further results indicated that DADLE activated EGFR, Akt and ERK1/2 and upregulated EGFR expression in the hippocampus in a time-dependent manner, which were inhibited by AG1478 and GM6001. The enzyme-linked immunosorbent assay (ELISA) results showed that δOR activation led to an increase in HB-EGF release, but HB-EGF in tissue was downregulated at the mRNA and protein levels. Moreover, this protective action caused by δOR agonists may involve attenuated hippocampal cellular apoptosis. Overall, these results demonstrate that MMP-mediated transactivation of EGFR is essential for δOR agonist-induced MCAO/reperfusion injury relief. These findings provide a potential molecular mechanism for the neuroprotective property of δOR and may add new insight into mitigating or preventing injury.
Collapse
Affiliation(s)
- Meixuan Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuo Wu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingquan Fan
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Tu T, Peng J, Jiang Y. FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev 2020; 29:533-543. [PMID: 31914844 DOI: 10.1089/scd.2019.0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
|
6
|
Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, Chen X, Yang S, Jin K, Shao B. The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke. Aging Dis 2019; 10:544-556. [PMID: 31164999 PMCID: PMC6538221 DOI: 10.14336/ad.2018.0820] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is an unavoidable process and contributes to the destruction of cerebral tissue during the acute ischemic stroke (AIS) phase and has not been addressed fully to date. Insightful understanding of correlation of inflammatory mediators and stroke outcome may provide new biomarkers or therapeutic approaches for ischemic stroke. Here, we prospectively recruited 180 first-ever AIS patients within 72 hrs after stroke onset. We used the National Institutes of Health Stroke Scale (NIHSS) to quantify stroke severity and modified Rankin scale (mRS) to assess the 3-month outcome for AIS patients. Initially, we screened 35 cytokines, chemokines, and growth factors in sera from 75 AIS patients and control subjects. Cytokines that were of interest were further investigated in the 180 AIS patients and 14 heathy controls. We found that IL-1RA, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, EGF, G-CSF, Flt-3L, GM-CSF and Fractalkine levels were significantly decreased in severe stroke patients. In particular, IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-15, G-CSF and GM-CSF were significantly reduced in AIS patients with poor outcome, compared to those with good prognosis. IL-6 was notably higher in the poor outcome group. Only IL-9 level decreased in the large infarct volume group. After adjusting for confounders, we found that IL-5 was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.042 (P = 0.007), whereas IL-6 was an independent risk predictor for AIS patients with an adjusted OR of 1.293 (P = 0.003). Our study suggests the levels of serum cytokines are related to stroke severity, short-term prognosis and cerebral infarct volume in AIS patients.
Collapse
Affiliation(s)
- Xianmei Li
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Siyang Lin
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoli Chen
- 1Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Wensi Huang
- 3Department of Neurology, The People's Hospital of Pingyang, Wenzhou, China
| | - Qian Li
- 4Department of Neurology, Jinhua Municipal Central Hospital, Wenzhou, China
| | - Hongxia Zhang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xudong Chen
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohua Yang
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kunlin Jin
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Bei Shao
- 2Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2446-2456. [PMID: 30142332 PMCID: PMC6207098 DOI: 10.1016/j.ajpath.2018.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family. It contains an EGF-like domain as well as a heparin-binding domain that allows for interactions with heparin and cell-surface heparan sulfate. Soluble mature HB-EGF, a ligand of human epidermal growth factor receptors 1 and 4, is cleaved from the membrane-associated pro-HB-EGF by matrix metalloproteinase or a disintegrin and metalloproteinase in a process called ectodomain shedding. Signaling through human epidermal growth factor receptors 1 and 4 results in a variety of effects, including cellular proliferation, migration, adhesion, and differentiation. HB-EGF levels increase in response to different forms of injuries as well as stimuli, such as lysophosphatidic acid, retinoic acid, and 17β-estradiol. Because it is widely expressed in many organs, HB-EGF plays a critical role in tissue repair and regeneration throughout the body. It promotes cutaneous wound healing, hepatocyte proliferation after partial hepatectomy, intestinal anastomosis strength, alveolar regeneration after pneumonectomy, neurogenesis after ischemic injury, bladder wall thickening in response to urinary tract obstruction, and protection against ischemia/reperfusion injury to many cell types. Additionally, innovative strategies to deliver HB-EGF to sites of organ injury or to increase the endogenous levels of shed HB-EGF have been attempted with promising results. Harnessing the reparatory properties of HB-EGF in the clinical setting, therefore, may produce therapies that augment the treatment of various organ injuries.
Collapse
Affiliation(s)
- Duy T Dao
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Anez-Bustillos
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Shim JW, Madsen JR. VEGF Signaling in Neurological Disorders. Int J Mol Sci 2018; 19:ijms19010275. [PMID: 29342116 PMCID: PMC5796221 DOI: 10.3390/ijms19010275] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/06/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent growth factor playing diverse roles in vasculogenesis and angiogenesis. In the brain, VEGF mediates angiogenesis, neural migration and neuroprotection. As a permeability factor, excessive VEGF disrupts intracellular barriers, increases leakage of the choroid plexus endothelia, evokes edema, and activates the inflammatory pathway. Recently, we discovered that a heparin binding epidermal growth factor like growth factor (HB-EGF)—a class of EGF receptor (EGFR) family ligands—contributes to the development of hydrocephalus with subarachnoid hemorrhage through activation of VEGF signaling. The objective of this review is to entail a recent update on causes of death due to neurological disorders involving cerebrovascular and age-related neurological conditions and to understand the mechanism by which angiogenesis-dependent pathological events can be treated with VEGF antagonisms. The Global Burden of Disease study indicates that cancer and cardiovascular disease including ischemic and hemorrhagic stroke are two leading causes of death worldwide. The literature suggests that VEGF signaling in ischemic brains highlights the importance of concentration, timing, and alternate route of modulating VEGF signaling pathway. Molecular targets distinguishing two distinct pathways of VEGF signaling may provide novel therapies for the treatment of neurological disorders and for maintaining lower mortality due to these conditions.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Yan F, Tan X, Wan W, Dixon BJ, Fan R, Enkhjargal B, Li Q, Zhang J, Chen G, Zhang JH. ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. Exp Neurol 2017; 297:92-100. [PMID: 28756200 DOI: 10.1016/j.expneurol.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Previous studies indicated that ErbB4 (EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) is essential for normal development and maintenance of the nervous system. In this study, we explored the neuroprotective effects of ErbB4 and its downstream YAP (yes-associated protein)/PIK3CB signaling pathway in early brain injury after SAH in a rat model using the endovascular perforation method. Rats were neurologically evaluated with the Modified Garcia Scale and beam balance test at 24h and 72h after SAH. An ErbB4 activator Neuregulin 1β1 (Nrg 1β1), ErbB4 siRNA and YAP siRNA were used to explore this pathway. The expression of p-ErbB4 and YAP was significantly increased after SAH. Multiple immunofluorescence labeling experiments demonstrated that ErbB4 is mainly expressed in neurons. Activation of ErbB4 and its downstream signals improved the neurological deficits after SAH and significantly reduced neuronal cell death. Inhibition of ErbB4 reduced YAP and PIK3CB expression, and aggravated cell apoptosis. YAP knockdown reduced the PIK3CB level and eliminated the anti-apoptotic effects of ErbB4 activation. These findings indicated that ErbB4 plays a neuroprotective role in early brain injury after SAH, possibly via the YAP/PIK3CB signaling pathway.
Collapse
Affiliation(s)
- Feng Yan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA; Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weifeng Wan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Ruiming Fan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Qian Li
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA.
| |
Collapse
|
10
|
Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int 2017; 107:57-65. [PMID: 28411103 DOI: 10.1016/j.neuint.2017.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Despite the efforts in developing therapeutics for stroke, recombinant tissue plasminogen activator (rtPA) remains the only FDA approved drug for ischemic stroke. Regenerative medicine targeting endogenous growth factors has drawn much interest in the clinical field as it provides potential restoration for the damaged brain tissue without being limited by a narrow therapeutic window. To date, most of the translational studies using regenerative medicines have encountered problems and failures. In this review, we discuss the effects of some trophic factors which include of erythropoietin (EPO), brain derived neurotrophic factor (BDNF), granulocyte-colony stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and heparin binding epidermal growth factor (HB-EGF) in experimental ischemic stroke models and elaborate the lost in translation of the candidate growth factors from bench to bedside. Several new methodologies have been developed to overcome the caveats in translational studies. This review highlights the latest bioengineering approaches including the controlled release and delivery of growth factors by hydrogel-based scaffolds and the enhancement of half-life and selectivity of growth factors by a novel approach facilitated by glycosaminoglycans.
Collapse
|
11
|
Cook DJ, Nguyen C, Chun HN, L Llorente I, Chiu AS, Machnicki M, Zarembinski TI, Carmichael ST. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab 2017; 37:1030-1045. [PMID: 27174996 PMCID: PMC5363479 DOI: 10.1177/0271678x16649964] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 03/20/2016] [Indexed: 11/15/2022]
Abstract
Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.
Collapse
Affiliation(s)
- Douglas J Cook
- Department of Surgery, Division of Neurosurgery, Kingston General Hospital, Kingston, Canada
| | - Cynthia Nguyen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Hyun N Chun
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Abraham S Chiu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | | | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
12
|
|
13
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
14
|
Shetty AK, Hattiangady B. Grafted Subventricular Zone Neural Stem Cells Display Robust Engraftment and Similar Differentiation Properties and Form New Neurogenic Niches in the Young and Aged Hippocampus. Stem Cells Transl Med 2016; 5:1204-15. [PMID: 27194744 PMCID: PMC4996439 DOI: 10.5966/sctm.2015-0270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/01/2016] [Indexed: 12/30/2022] Open
Abstract
The engraftment and differentiation of alkaline phosphatase-positive neural stem cells (NSCs) expanded from the postnatal subventricular zone (SVZ), 3 months after grafting into the intact young or aged rat hippocampus, were examined. Both young and aged hippocampi supported robust engraftment and similar differentiation of SVZ-NSC graft-derived cells. As clinical application of neural stem cell (NSC) grafting into the brain would also encompass aged people, critical evaluation of engraftment of NSC graft-derived cells in the aged hippocampus has significance. We examined the engraftment and differentiation of alkaline phosphatase-positive NSCs expanded from the postnatal subventricular zone (SVZ), 3 months after grafting into the intact young or aged rat hippocampus. Graft-derived cells engrafted robustly into both young and aged hippocampi. Although most graft-derived cells pervasively migrated into different hippocampal layers, the graft cores endured and contained graft-derived neurons expressing neuron-specific nuclear antigen (NeuN) and γ-amino butyric acid in both groups. A fraction of migrated graft-derived cells in the neurogenic subgranular zone-granule cell layer also expressed NeuN. Neuronal differentiation was, however, occasionally seen amid graft-derived cells that had migrated into non-neurogenic regions, where substantial fractions differentiated into S-100β+ astrocytes, NG2+ oligodendrocyte progenitors, or Olig2+ putative oligodendrocytes. In both age groups, graft cores located in non-neurogenic regions displayed many doublecortin-positive (DCX+) immature neurons at 3 months after grafting. Analyses of cells within graft cores using birth dating and putative NSC markers revealed that DCX+ neurons were newly born neurons derived from engrafted cells and that putative NSCs persisted within the graft cores. Thus, both young and aged hippocampi support robust engraftment and similar differentiation of SVZ-NSC graft-derived cells. Furthermore, some grafted NSCs retain the “stemness” feature and produce new neurons even at 3 months after grafting, implying that grafting of SVZ-NSCs into the young or aged hippocampus leads to establishment of new neurogenic niches in non-neurogenic regions. Significance The results demonstrate that advanced age of the host at the time of grafting has no major adverse effects on engraftment, migration, and differentiation of grafted subventricular zone-neural stem cells (SVZ-NSCs) in the intact hippocampus, as both young and aged hippocampi promoted excellent engraftment, migration, and differentiation of SVZ-NSC graft-derived cells in the present study. Furthermore, SVZ-NSC grafts showed ability for establishing neurogenic niches in non-neurogenic regions, generating new neurons for extended periods after grafting. This phenomenon will be beneficial if these niches can continuously generate new neurons and glia in the grafted hippocampus, as newly generated neurons and glia are expected to improve, not only the microenvironment, but also the plasticity and function of the aged hippocampus. Overall, these results have significance because the potential application of NSC grafting for treatment of neurodegenerative disorders at early stages of disease progression and age-related impairments would mostly involve aged persons as recipients.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USAResearch Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USADepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USADivision of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USAResearch and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USAResearch Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USADepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USADivision of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USAResearch and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| |
Collapse
|
15
|
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21:766-78. [PMID: 26891979 DOI: 10.1016/j.drudis.2016.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/21/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Despite low prevalence, brain tumors are one of the most lethal forms of cancer. Unfortunately the blood-brain barrier (BBB), a highly regulated, well coordinated and efficient barrier, checks the permeation of most of the drugs across it. Hence, crossing this barrier is one of the most significant challenges in the development of efficient central nervous system therapeutics. Surface-engineered dendrimers improve biocompatibility, drug-release kinetics and aptitude to target the BBB and/or tumors and facilitate transportation of anticancer bioactives across the BBB. This review sheds light on different aspects of brain tumors and dendrimers based on different approaches for treatment including recent research, opportunities and challenges encountered in development of novel and efficient dendrimer-based therapeutics for the treatment of brain tumors.
Collapse
Affiliation(s)
- Vijay Mishra
- Pharmaceutical Nanotechnology Research Laboratory, Adina Institute of Pharmaceutical Sciences, Sagar, M.P. 470002, India
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
|
17
|
Lindvall O, Kokaia Z. Neurogenesis following Stroke Affecting the Adult Brain. Cold Spring Harb Perspect Biol 2015; 7:7/11/a019034. [PMID: 26525150 DOI: 10.1101/cshperspect.a019034] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bulk of experimental evidence supports the idea that the stroke-damaged adult brain makes an attempt to repair itself by producing new neurons also in areas where neurogenesis does not normally occur (e.g., the striatum and cerebral cortex). Knowledge about mechanisms regulating the different steps of neurogenesis after stroke is rapidly increasing but still incomplete. The functional consequences of stroke-induced neurogenesis and the level of integration of the new neurons into existing neural circuitries are poorly understood. To have a substantial impact on the recovery after stroke, this potential mechanism for self-repair needs to be enhanced, primarily by increasing the survival and differentiation of the generated neuroblasts. Moreover, for efficient repair, optimization of neurogenesis most likely needs to be combined with promotion of other endogenous neuroregenerative responses (e.g., protection and sprouting of remaining mature neurons, transplantation of neural stem/progenitor cells [NSPC]-derived neurons and glia cells, and modulation of inflammation).
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| |
Collapse
|
18
|
Lake EMR, Chaudhuri J, Thomason L, Janik R, Ganguly M, Brown M, McLaurin J, Corbett D, Stanisz GJ, Stefanovic B. The effects of delayed reduction of tonic inhibition on ischemic lesion and sensorimotor function. J Cereb Blood Flow Metab 2015; 35:1601-9. [PMID: 25966952 PMCID: PMC4640317 DOI: 10.1038/jcbfm.2015.86] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 02/02/2023]
Abstract
To aid in development of chronic stage treatments for sensorimotor deficits induced by ischemic stroke, we investigated the effects of GABA antagonism on brain structure and fine skilled reaching in a rat model of focal ischemia induced via cortical microinjections of endothelin-1 (ET-1). Beginning 7 days after stroke, animals were administered a gamma-aminobutyric acid (GABAA) inverse agonist, L-655,708, at a dose low enough to afford α5-GABAA receptor specificity. A week after stroke, the ischemic lesion comprised a small hypointense necrotic core (6±1 mm(3)) surrounded by a large (62±11 mm(3)) hyperintense perilesional region; the skilled reaching ability on the Montoya staircase test was decreased to 34%±2% of the animals' prestroke performance level. On L-655,708 treatment, animals showed a progressive decrease in total stroke volume (13±4 mm(3) per week), with no change in animals receiving placebo. Concomitantly, treated animals' skilled reaching progressively improved by 9%±1% per week, so that after 2 weeks of treatment, these animals performed at 65%±6% of their baseline ability, which was 25%±11% better than animals given placebo. These data indicate beneficial effects of delayed, sustained low-dose GABAA antagonism on neuroanatomic injury and skilled reaching in the chronic stage of stroke recovery in an ET-1 rat model of focal ischemia.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joydeep Chaudhuri
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lynsie Thomason
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rafal Janik
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Milan Ganguly
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mary Brown
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dale Corbett
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University Lublin, Lublin, Poland
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University Lublin, Lublin, Poland
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Lebkuechner I, Wilhelmsson U, Möllerström E, Pekna M, Pekny M. Heterogeneity of Notch signaling in astrocytes and the effects of GFAP and vimentin deficiency. J Neurochem 2015; 135:234-48. [DOI: 10.1111/jnc.13213] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Isabell Lebkuechner
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Elin Möllerström
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
- University of Newcastle; New South Wales Australia
| |
Collapse
|
20
|
Shaikh H, Boudes E, Khoja Z, Shevell M, Wintermark P. Angiogenesis dysregulation in term asphyxiated newborns treated with hypothermia. PLoS One 2015; 10:e0128028. [PMID: 25996847 PMCID: PMC4440713 DOI: 10.1371/journal.pone.0128028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. OBJECTIVE This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. DESIGN/METHODS Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. RESULTS Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. CONCLUSIONS These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery.
Collapse
Affiliation(s)
- Henna Shaikh
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Elodie Boudes
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Zehra Khoja
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Michael Shevell
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
21
|
Larpthaveesarp A, Ferriero DM, Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci 2015; 5:165-77. [PMID: 25942688 PMCID: PMC4493462 DOI: 10.3390/brainsci5020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA 94158, USA.
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase. Cell Death Dis 2014; 5:e1410. [PMID: 25210793 PMCID: PMC4540201 DOI: 10.1038/cddis.2014.373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
Platelet activation is a frontline response to injury, not only essential for clot formation but also important for tissue repair. Indeed, the reparative influence of platelets has long been exploited therapeutically where application of platelet concentrates expedites wound recovery. Despite this, the mechanisms of platelet-triggered cytoprotection are poorly understood. Here, we show that activated platelets accumulate in the brain to exceptionally high levels following injury and release factors that potently protect neurons from apoptosis. Kinomic microarray and subsequent kinase inhibitor studies showed that platelet-based neuroprotection relies upon paracrine activation of the epidermal growth factor receptor (EGFR) and downstream DNA-dependent protein kinase (DNA-PK). This same anti-apoptotic cascade stimulated by activated platelets also provided chemo-resistance to several cancer cell types. Surprisingly, deep proteomic profiling of the platelet releasate failed to identify any known EGFR ligand, indicating that activated platelets release an atypical activator of the EGFR. This study is the first to formally associate platelet activation to EGFR/DNA-PK – an endogenous cytoprotective cascade.
Collapse
|
23
|
Xiang Y, Liu H, Yan T, Zhuang Z, Jin D, Peng Y. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction. Neural Regen Res 2014; 9:243-51. [PMID: 25206808 PMCID: PMC4146152 DOI: 10.4103/1673-5374.128215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 11/05/2022] Open
Abstract
Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats.
Collapse
Affiliation(s)
- Yun Xiang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China ; Department of Rehabilitation Medicine, Shenzhen Sixth People's Hospital, Shenzhen, Guangdong Province, China
| | - Huihua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dongmei Jin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Abstract
Quantitative measurement of blood-brain barrier (BBB) permeability using MRI and its application to cerebral ischemia are reviewed. Measurement of BBB permeability using MRI has been employed to evaluate ischemic damage during acute and subacute phases of stroke and to predict hemorrhagic transformation. There is also an emerging interest on the development and use of MRI to monitor vascular structural changes and angiogenesis during stroke recovery. In this review, we describe MRI BBB permeability and susceptibility-weighted MRI measurements and its applications to evaluate ischemic damage during the acute and subacute phases of stroke and vascular remodeling during stroke recovery.
Collapse
|
25
|
Ruan L, Lau BWM, Wang J, Huang L, Zhuge Q, Wang B, Jin K, So KF. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol 2013; 115:116-37. [PMID: 24384539 DOI: 10.1016/j.pneurobio.2013.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 02/08/2023]
Abstract
Researchers who have uncovered the presence of stem cells in an adult's central nervous system have not only challenged the dogma that new neurons cannot be generated during adulthood, but also shed light on the etiology and disease mechanisms underlying many neurological and psychiatric disorders. Brain trauma, neurodegenerative diseases, and psychiatric disorders pose enormous burdens at both personal and societal levels. Although medications for these disorders are widely used, the treatment mechanisms underlying the illnesses remain largely elusive. In the past decade, an increasing amount of evidence indicate that adult neurogenesis (i.e. generating new CNS neurons during adulthood) may be involved in the pathology of different CNS disorders, and thus neurogenesis may be a potential target area for treatments. Although new neurons were shown to be a major player in mediating treatment efficacy of neurological and psychotropic drugs on cognitive functions, it is still debatable if the altered production of new neurons can cause the disorders. This review hence seeks to discuss pre and current clinical studies that demonstrate the functional impact adult neurogenesis have on neurological and psychiatric illnesses while examining the related underlying disease mechanisms.
Collapse
Affiliation(s)
- Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Benson Wui-Man Lau
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; GMH Institute of CNS Regeneration, Jinan University, Guangzhou, PR China.
| |
Collapse
|
26
|
Yang J, Su Y, Zhou Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) therapy for intestinal injury: Application and future prospects. ACTA ACUST UNITED AC 2013; 21:95-104. [PMID: 24345808 DOI: 10.1016/j.pathophys.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC.
Collapse
Affiliation(s)
- Jixin Yang
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yanwei Su
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Yu Zhou
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Gail E Besner
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
27
|
Puschmann TB, Zandén C, Lebkuechner I, Philippot C, de Pablo Y, Liu J, Pekny M. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. J Neurochem 2013; 128:878-89. [DOI: 10.1111/jnc.12519] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Till B. Puschmann
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Carl Zandén
- SMIT Center and Bionano Systems Laboratory; Department of Microtechnology and Nanoscience (MC2); Chalmers University of Technology; Gothenburg Sweden
| | - Isabell Lebkuechner
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Camille Philippot
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Yolanda de Pablo
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Johan Liu
- SMIT Center and Bionano Systems Laboratory; Department of Microtechnology and Nanoscience (MC2); Chalmers University of Technology; Gothenburg Sweden
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| |
Collapse
|
28
|
Fargen KM, Mocco J, Hoh BL. Can We Rebuild the Human Brain? The Exciting Promise and Early Evidence That Stem Cells May Provide a Real Clinical Cure for Stroke in Humans. World Neurosurg 2013; 80:e69-72. [DOI: 10.1016/j.wneu.2012.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023]
|
29
|
Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opin Investig Drugs 2013; 22:843-51. [PMID: 23597052 DOI: 10.1517/13543784.2013.793672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Stroke remains the leading cause of adult disability. Thus, it is imperative to develop restorative therapies for ischemic stroke designed specifically to treat the intact brain tissue to stimulate functional benefit. Therapies targeting amplification of brain repair processes with nitric oxide (NO) donors and phosphodiesterase type 5 (PDE5) inhibitors in preclinical studies are emerging and showing improvement of functional recovery after stroke. AREAS COVERED This review will mainly cover the effect of NO donors, which produce NO, and PDE5 inhibitors, which elevate cyclic guanosine 3',5'-monophosphate (cGMP), on neural restorative events in ischemic brain and highlight mechanisms underlying their restorative therapeutic activity. EXPERT OPINION During stroke recovery, interwoven restorative events occur in ischemic brain, which include angiogenesis, neurogenesis, oligodendrogenesis, astrogliosis and neurite outgrowth. Emerging preclinical data indicate that restorative therapies targeting multiple parenchymal cells including neural stem cells, cerebral endothelial cells, astrocytes, oligodendrocytes, neurons would be more effective than agents with a single cell target. Preclinical data suggest that elevated cGMP levels induced by NO donors and PDE5 inhibitors act on cerebral endothelial cells, neural stem cells and oligodendrocyte progenitor cells to enhance stroke-induced angiogenesis, neurogenesis and oligodendrogenesis, respectively. These interacting remodeling events collectively improve neurological function after stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Henry Ford Hospital, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
30
|
Oyagi A, Hara H. Essential roles of heparin-binding epidermal growth factor-like growth factor in the brain. CNS Neurosci Ther 2013; 18:803-10. [PMID: 23006514 DOI: 10.1111/j.1755-5949.2012.00371.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interacts with the EGF receptor to exert mitogenic activity for various types of cells. Through its interactions with various molecules, it is involved in diverse biological processes, including wound healing, blast implantation, and tumor formation. At the same time, HB-EGF is widely expressed in the central nervous system, including the hippocampus and cerebral cortex, and is considered to play pivotal roles in the developing and adult nervous system. Because HB-EGF protein levels in the brain are much higher than those of TGF-α and EGF, it is possible that HB-EGF serves as a major physiologic ligand for the EGF receptor (ErbB1) within the central nervous system. Recent studies indicate that HB-EGF contributes to the neuronal survival and proliferation of glial/stem cells. HB-EGF also promotes the survival of dopaminergic neurons, an action mediated by mitogen-activated protein kinase (MAPK) as well as by the Akt signaling pathway. In this review, we discuss recent findings on the implications of HB-EGF in higher brain functions of the central nervous system.
Collapse
Affiliation(s)
- Atsushi Oyagi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | |
Collapse
|
31
|
Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin 2013; 34:78-90. [PMID: 23064725 PMCID: PMC4086492 DOI: 10.1038/aps.2012.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.
Collapse
Affiliation(s)
- Pooya Dibajnia
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
32
|
Lhx8 promote differentiation of hippocampal neural stem/progenitor cells into cholinergic neurons in vitro. In Vitro Cell Dev Biol Anim 2012; 48:603-9. [PMID: 23150137 DOI: 10.1007/s11626-012-9562-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
Lhx8, also named L3, is a recently identified member of the LIM homeobox gene family. Previously, we found acetylcholinesterase (AChE)-positive cells in fimbria-fornix (FF) transected rat hippocampal subgranular zone (SGZ). In the present study, we detected choline acetyltransferase (ChAT)-positive cholinergic cells in hippocampal SGZ after FF transaction, and these ChAT-positive cells were double labeled by Lhx8. Then we overexpressed Lhx8 during neural differentiation of hippocampal neural stem/progenitor cells on adherent conditions using lentivirus Lenti6.3-Lhx8. The result indicated that overexpression of Lhx8 did not affect the proportion of MAP2-positive neurons, but increased the proportion of ChAT-positive cells in vitro. These results suggested that FF-transected hippocampal niche promoted the ChAT/Lhx8-positive cholinergic neurons generation in rodent hippocampus, and Lhx8 was not associated with the MAP2-positive neurons differentiation on adherent conditions, but played a role in the specification of cholinergic neurons derived from hippocampal neural stem/progenitor cells in vitro.
Collapse
|
33
|
Veena J, Rao BSS, Srikumar BN. Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2012; 2:26-37. [PMID: 22470231 PMCID: PMC3312696 DOI: 10.4103/0976-9668.82312] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- J Veena
- Laboratoire Psynugen, Université Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
34
|
Kang SS, Keasey MP, Arnold SA, Reid R, Geralds J, Hagg T. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol Dis 2012; 49:68-78. [PMID: 22960105 DOI: 10.1016/j.nbd.2012.08.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in adult male C57BL/6 mice robustly enhances neurogenesis in the SVZ only under very specific conditions, i.e., 14days after a 30min occlusion. CNTF expression paralleled changes in the number of proliferated, BrdU-positive, SVZ cells. Stroke-induced proliferation was absent in CNTF-/- mice, suggesting that it is mediated by CNTF. MCAO-increased CNTF appears to act on C cell proliferation and by inducing FGF2 expression but not via EGF expression or Notch1 signaling of neural stem cells in the SVZ. CNTF is unique, as expression of other gp130 ligands, IL-6 and LIF, did not predict SVZ proliferation or showed no or only small compensatory increases in CNTF-/- mice. Expression of tumor necrosis factor-α, which can inhibit neurogenesis, and the presence of leukocytes in the SVZ were inversely correlated with neurogenesis, but pro-inflammatory cytokines did not affect CNTF expression in cultured astrocytes. These results suggest that slowly up-regulated CNTF in the SVZ mediates stroke-induced neurogenesis and is counteracted by inflammation. Further pharmacological stimulation of endogenous CNTF might be a good therapeutic strategy for cell replacement after stroke as CNTF regulates normal patterns of neurogenesis and is expressed almost exclusively in the nervous system.
Collapse
Affiliation(s)
- Seong Su Kang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Matthew P Keasey
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Sheila A Arnold
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40292, USA
| | - Rollie Reid
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Justin Geralds
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Theo Hagg
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40292, USA.
| |
Collapse
|
35
|
Jiang Q, Thiffault C, Kramer BC, Ding GL, Zhang L, Nejad-Davarani SP, Li L, Arbab AS, Lu M, Navia B, Victor SJ, Hong K, Li QJ, Wang SY, Li Y, Chopp M. MRI detects brain reorganization after human umbilical tissue-derived cells (hUTC) treatment of stroke in rat. PLoS One 2012; 7:e42845. [PMID: 22900057 PMCID: PMC3416784 DOI: 10.1371/journal.pone.0042845] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022] Open
Abstract
Human umbilical tissue-derived cells (hUTC) represent an attractive cell source and a potential technology for neurorestoration and improvement of functional outcomes following stroke. Male Wistar rats were subjected to a transient middle cerebral artery occlusion (tMCAo) and were intravenously administered hUTC (N = 11) or vehicle (N = 10) 48 hrs after stroke. White matter and vascular reorganization was monitored over a 12-week period using MRI and histopathology. MRI results were correlated with neurological functional and histology outcomes to demonstrate that MRI can be a useful tool to measure structural recovery after stroke. MRI revealed a significant reduction in the ventricular volume expansion and improvement in cerebral blood flow (CBF) in the hUTC treated group compared to vehicle treated group. Treatment with hUTC resulted in histological and functional improvements as evidenced by enhanced expression of vWF and synaptophysin, and improved outcomes on behavioral tests. Significant correlations were detected between MRI ventricular volumes and histological lesion volume as well as number of apoptotic cells. A positive correlation was also observed between MRI CBF or cerebral blood volume (CBV) and histological synaptic density. Neurological functional tests were also significantly correlated with MRI ventricular volume and CBV. Our data demonstrated that MRI measurements can detect the effect of hUTC therapy on the brain reorganization and exhibited positive correlation with histological measurements of brain structural changes and functional behavioral tests after stroke. MRI ventricular volumes provided the most sensitive index in monitoring brain remodeling and treatment effects and highly correlated with histological and functional measurements.
Collapse
Affiliation(s)
- Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:640-65. [PMID: 22154620 DOI: 10.1016/j.addr.2011.11.010] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
37
|
Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 2012; 3:238-47. [PMID: 22860191 DOI: 10.1021/cn200126p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
38
|
Wang ZF, Fessler EB, Chuang DM. Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacol Sin 2011; 32:1433-45. [PMID: 22056617 PMCID: PMC4010202 DOI: 10.1038/aps.2011.140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/22/2011] [Indexed: 12/12/2022]
Abstract
The mood stabilizers lithium, valproate and lamotrigine are traditionally used to treat bipolar disorder. However, accumulating evidence suggests that these drugs have broad neuroprotective properties and may therefore be promising therapeutic agents for the treatment of neurodegenerative diseases, including stroke. Lithium, valproate and lamotrigine exert protective effects in diverse experimental stroke models by acting on their respective primary targets, ie, glycogen synthase kinase-3, histone deacetylases and voltage-gated sodium channels, respectively. This article reviews the most recent findings regarding the underlying mechanisms of these phenomena, which will pave the way for clinical investigations that use mood stabilizers to treat stroke. We also propose several future research avenues that may extend our understanding of the benefits of lithium, valproate and lamotrigine in improving stroke outcomes.
Collapse
Affiliation(s)
- Zhi-fei Wang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - Emily Bame Fessler
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| |
Collapse
|
39
|
|
40
|
Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S. Cypermethrin Induces Astrocyte Apoptosis by the Disruption of the Autocrine/Paracrine Mode of Epidermal Growth Factor Receptor Signaling. Toxicol Sci 2011; 125:473-87. [DOI: 10.1093/toxsci/kfr303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Oyagi A, Moriguchi S, Nitta A, Murata K, Oida Y, Tsuruma K, Shimazawa M, Fukunaga K, Hara H. Heparin-binding EGF-like growth factor is required for synaptic plasticity and memory formation. Brain Res 2011; 1419:97-104. [DOI: 10.1016/j.brainres.2011.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
42
|
Ohira K. Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 2011; 68:1645-56. [PMID: 21042833 PMCID: PMC11115059 DOI: 10.1007/s00018-010-0552-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
It has been accepted that new neurons are added to the olfactory bulb and the hippocampal dentate gyrus throughout life in the healthy adult mammalian brain. Recent studies have clarified that brain insult raises the proliferation of neural stem cells/neural progenitor cells existing in the subventricular zone and the subgranular zone, which become sources of new neurons for the olfactory bulb and the dentate gyrus, respectively. Interestingly, convincing data has shown that brain insult invokes neurogenesis in various brain regions, such as the hippocampal cornu ammonis region, striatum, and cortex. These reports suggest that neural stem cells/neural progenitor cells, which can be activated by brain injury, might be broadly located in the adult brain or that new neurons may migrate widely from the neurogenic regions. This review focuses on brain insult-induced neurogenesis in the mammalian forebrain, especially in the neocortex.
Collapse
Affiliation(s)
- Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
43
|
Oyagi A, Morimoto N, Hamanaka J, Ishiguro M, Tsuruma K, Shimazawa M, Hara H. Forebrain specific heparin-binding epidermal growth factor-like growth factor knockout mice show exacerbated ischemia and reperfusion injury. Neuroscience 2011; 185:116-24. [PMID: 21524692 DOI: 10.1016/j.neuroscience.2011.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 01/28/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a hypoxia-inducible neuroprotective protein that also stimulates proliferation of neuronal precursor cells. In this study, we investigated the possible role of HB-EGF in ischemia and reperfusion injury by measuring the changes in its mRNA expression following focal cerebral ischemia. We also examined neural damage after a middle cerebral artery occlusion (MCAO) and reperfusion in ventral forebrain specific HB-EGF knockout (KO) mice. The levels of HB-EGF mRNA in the cerebral cortex of wild-type (WT) mice were significantly increased 3-24 h after MCAO and reperfusion. Cerebral infraction in HB-EGF KO mice was aggravated at 1 day and 6 days after MCAO and reperfusion compared with WT mice. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) and an oxidative stress marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG) positive cells, were higher in HB-EGF KO mice than in WT mice. On the other hand, fewer bromodeoxyuridine (BrdU) positive cells were found in the subventricular zone in HB-EGF KO mice compared with WT mice. These results indicate that HB-EGF may play a pivotal role in ischemia and reperfusion injury and that endogenously synthesized HB-EGF is necessary for both the neuroprotective effect and for regulation of cell proliferation in the subventricular zone.
Collapse
Affiliation(s)
- A Oyagi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 2011; 169:259-68. [PMID: 20610036 DOI: 10.1016/j.neuroscience.2010.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 04/03/2010] [Accepted: 04/19/2010] [Indexed: 11/24/2022]
Abstract
While intraventricular administration of epidermal growth factor (EGF) expands the proliferation of neural stem/progenitor cells in the subventricular zone (SVZ), overexpression of brain-derived neurotrophic factor (BDNF) is particularly effective in enhancing striatal neurogenesis. We assessed the induction of striatal neurogenesis and consequent functional recovery after chronic infusion of BDNF and EGF in an adult animal model of neonatal hypoxic-ischemic (HI) brain injury. Permanent brain damage was induced in CD-1 (ICR) mice (P7) by applying the ligation of unilateral carotid artery and hypoxic condition. At 6 weeks of age, the mice were randomly assigned to groups receiving a continuous 2-week infusion of one of the following treatments into the ventricle: BDNF, EGF, BDNF/EGF, or phosphate buffered saline (PBS). Two weeks after treatment, immunohistochemical analysis revealed an increase in the number of BrdU(+) cells in the SVZ and striata of BDNF/EGF-treated mice. The number of new neurons co-stained with BrdU and betaIII-tubulin was also significantly increased in the neostriata of BDNF/EGF-treated mice, compared with PBS group. In addition, the newly generated cells were expressed as migrating neuroblasts labeled with PSA-NCAM or doublecortin in the SVZ and the ventricular side of neostriata. The new striatal neurons were also differentiated as mature neurons co-labeled with BrdU(+)/NeuN(+). When evaluated post-surgical 8 weeks, BDNF/EGF-treated mice exhibited significantly longer rotarod latencies at constant speed (48 rpm) and under accelerating condition (4-80 rpm), relative to PBS and untreated controls. In the forelimb-use asymmetry test, BDNF/EGF-treated mice showed significant improvement in the use of the contralateral forelimb. In contrast, this BDNF/EGF-associated functional recovery was abolished in mice receiving a co-infusion of 2% cytosine-b-d-arabinofuranoside (Ara-C), a mitotic inhibitor. Induction of striatal neurogenesis by the intraventricular administration of BDNF and EGF promoted functional recovery in an adult animal model of neonatal HI brain injury. The effect of Ara-C to completely block functional recovery indicates that the effect may be the result of newly generated neurons. Therefore, this treatment may offer a promising strategy for the restoration of motor function for adults with cerebral palsy (CP).
Collapse
|
45
|
Chopp M, Zhang ZG. Enhancing Brain Reorganization and Recovery of Function after Stroke. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Yoshikawa G, Momiyama T, Oya S, Takai K, Tanaka JI, Higashiyama S, Saito N, Kirino T, Kawahara N. Induction of striatal neurogenesis and generation of region-specific functional mature neurons after ischemia by growth factors. J Neurosurg 2010; 113:835-50. [DOI: 10.3171/2010.2.jns09989] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The capacity to replace lost neurons after insults is retained by several regions of adult mammalian brains. However, it is unknown how many neurons actually replace and mature into region-specific functional neurons to restore lost brain function. In this paper, the authors asked whether neuronal regeneration could be achieved efficaciously by growth factor treatment using a global ischemia model in rats, and they analyzed neuronal long-term maturation processes.
Methods
Rat global ischemia using a modified 4-vessel occlusion model was used to induce consistent ischemic neuronal injury in the dorsolateral striatum. To potentiate the proliferative response of neural progenitors, epidermal growth factor and fibroblast growth factor–2 were infused intraventricularly for 7 days from Day 2 after ischemia. Six weeks after ischemia, the number of neurons was counted in the defined dorsolateral striatum. To label the proliferating neural progenitors for tracing studies, 5-bromo-2′-deoxyuridine (BrdU; 150 mg/kg, twice a day) was injected intraperitoneally from Days 5 to 7, and immunohistochemical studies were conducted to explore the maturation of these progenitors. Migration of the progenitors was further studied by enhanced green fluorescent protein retrovirus injection. The effect of an antimitotic drug (cytosine arabinoside) on the neuronal count was also evaluated for contribution to regeneration. To see electrophysiological changes, treated rats were subjected to slice studies by whole-cell recordings. Finally, the effect of neural regeneration was assessed by motor performance by using the staircase test.
Results
Following epidermal growth factor and fibroblast growth factor–2 infusion into the lateral ventricles for 7 days beginning on Day 2, when severe neuronal loss in the adult striatum was confirmed (2.3% of normal controls), a significant increase of striatal neurons was observed at 6 weeks (~ 15% of normal controls) compared with vehicle controls (~ 5% of normal controls). Immunohistochemical studies by BrdU and enhanced green fluorescent protein retrovirus injection disclosed proliferation of neural progenitors in the subventricular zone and their migration to the ischemic striatum. By BrdU tracing study, NeuN- and BrdU-positive new neurons significantly increased at 6 and 12 weeks following the treatment. These accounted for 4.6 and 11.0% of the total neurons present, respectively. Antimitotic treatment demonstrated an approximately 66% reduction in neurons at 6 weeks. Further long-term studies showed dynamic changes of site-specific maturation among various neuronal subtypes even after 6 weeks. Electrophysiological properties of these newly appeared neurons underwent changes that conform to neonatal development. These regenerative changes were accompanied by a functional improvement of overall behavioral performance.
Conclusions
Treatment by growth factors significantly contributed to regeneration of mature striatal neurons after ischemia by endogenous neural progenitors, which was accompanied by electrophysiological maturation and improved motor performance. Recognition and improved understanding of these underlying dynamic processes will contribute to the development of novel and efficient regenerative therapies for brain injuries.
Collapse
Affiliation(s)
- Gakushi Yoshikawa
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Toshihiko Momiyama
- 2Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki
- 6CREST, Japan Science and Technology Corporation (JST), Saitama; and
| | - Soichi Oya
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Keisuke Takai
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Jun-ichi Tanaka
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Shigeki Higashiyama
- 3Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime
| | - Nobuhito Saito
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
| | - Takaaki Kirino
- 4Research Institute, International Medical Center of Japan, Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Nobutaka Kawahara
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
- 7Department of Neurosurgery, Graduate School of Medical Sciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
47
|
Zhou Y, Besner GE. Heparin-binding epidermal growth factor-like growth factor is a potent neurotrophic factor for PC12 cells. Neurosignals 2010; 18:141-51. [PMID: 20847549 DOI: 10.1159/000319823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/30/2010] [Indexed: 01/04/2023] Open
Abstract
Heparin-binding epidermal growth factor EGF-like growth factor (HB-EGF) is a member of the epidermal growth factor family that is expressed in many cell types. We have previously reported the effects of HB-EGF on intestinal epithelial cells and endothelial cells after exposure to ischemia/reperfusion in vivo or anoxia/reoxygenation injury in vitro. However, the effect of HB-EGF on neuronal cells is largely unexplored. In this study, we examined the effect of HB-EGF on neurite outgrowth in pheochromocytoma (PC12) cells as well as the neuroprotective effect of HB-EGF on injured PC12 cells exposed to oxygen and glucose deprivation (OGD), which mimics ischemic conditions. We found that HB-EGF significantly promotes PC12 cell neurite outgrowth and that this effect was blocked by EGF receptor (EGFR) inhibition or mitogen-activated protein kinase (MAPK) inhibition, but not by tyrosine kinase inhibition. In the face of OGD injury, HB-EGF preserves cell viability and decreases apoptosis and LDH release in PC12 cells. HB-EGF-mediated cytoprotection was abolished by EGFR inhibition and MAPK inhibition. We conclude that HB-EGF, through its interaction with the EGF receptor, activates the MAPK signaling pathway in PC12 cells under basal or injury conditions, leading to enhanced neurite outgrowth and neuroprotection against ischemic injury.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Surgery, Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | |
Collapse
|
48
|
Abstract
Neurological complications of therapeutic procedures for brain tumors are increasingly being recognized. These encompass the classic types of central and peripheral neurotoxicity, such as radiotherapy-induced leukoencephalopathy and platinum-induced neuropathy. However, the advent of novel protocols and targeted therapeutics has expanded the spectrum of neurological complications. A problem of considerable importance is pseudoprogression after radiochemotherapy with temozolomide. Among the new targeted drugs complications of therapy with bevacizumab are the subject of intense discussion. In this review article the neurotoxic potential of intrathecal chemotherapy, kinase inhibitors, immunological strategies and local therapies are summarized. Knowledge about neurological complications of brain tumor therapy procedures is important for risk assessment and patient information.
Collapse
|
49
|
De-routing neuronal precursors in the adult brain to sites of injury: Role of the vasculature. Neuropharmacology 2010; 58:877-83. [DOI: 10.1016/j.neuropharm.2009.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 01/18/2023]
|
50
|
Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, Birnbaum Y. Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 299:H153-64. [PMID: 20435846 DOI: 10.1152/ajpheart.01057.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to assess whether resolvin E1 (RvE1), an anti-inflammatory mediator derived from eicosapentaenoic acid, would limit myocardial infarct size in the rat. The H9c2 cell line was used to assess whether RvE1 has direct protective effects on cardiomyocytes. In in vivo experiments, Male Sprague-Dawley rats underwent 30 min of ischemia/4 h of reperfusion. Before reperfusion, rats received intravenous RvE1 (0, 0.03, 0.1, or 0.3mg/kg). In in vitro experiments, H9c2 cells were incubated with RvE1 (0, 1, 10, 100, or 1000 nM). Cells were subjected to 18 h of incubation under normoxic conditions, 16 h of hypoxia, or 16 h of hypoxia and 2 h of reoxygenation. In vivo, RvE1 dose dependently reduced infarct size (30.7 +/- 1.7% of the area at risk in the control group and 29.1 +/- 1.6%, 14.7 +/- 1.3%, and 9.0 +/- 0.6% in the 0.03, 0.1, and 0.3 mg/kg groups, respectively, P < 0.001). In vitro, RvE1 increased viability and decreased apoptosis in a dose-dependent fashion in cells exposed to hypoxia or hypoxia/reoxygenation. A maximal effect was achieved at a concentration of 100 nM. RvE1 augmented phosphoinositide 3-kinase activity, attenuated caspase-3 activity, and augmented calcium-dependent nitric oxide synthase activity in cells exposed to hypoxia or hypoxia/reoxygenation. RvE1 increased Akt, ERK1/2, and endothelial nitric oxide synthase phosphorylation and attenuated the levels of activated caspase-3 and phosphorylated p38 levels. AG-1478, an EGF receptor tyrosine kinase inhibitor, blocked the protective effect of RvE1 both in vivo and in vitro and attenuated the RvE1-induced increase in Akt and ERK1/2 phosphorylation. In conclusion, RvE1, an anti-inflammatory mediator derived from eicosapentaenoic acid, has a direct protective effect on cardiomyocytes against ischemia-reperfusion injury and limits infarct size when administered intravenously before reperfusion.
Collapse
Affiliation(s)
- K T Keyes
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | |
Collapse
|