1
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
2
|
Ali Y, Dohi K, Okamoto R, Katayama K, Ito M. Novel molecular mechanisms in the inhibition of adrenal aldosterone synthesis: Action of tolvaptan via vasopressin V 2 receptor-independent pathway. Br J Pharmacol 2019; 176:1315-1327. [PMID: 30801659 DOI: 10.1111/bph.14630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the inhibitory effect and associated molecular mechanisms of tolvaptan on angiotensin II (AngII)-induced aldosterone production in vitro and in vivo. EXPERIMENTAL APPROACH In vitro, H295R human adrenocarcinoma cells were incubated with 1 μmol·L-1 arginine vasopressin (AVP) or dDAVP, or tolvaptan (0.1, 1, and 3 μmol·L-1 ) in the presence and absence of 100 nmol·L-1 of AngII. In vivo, Sprague-Dawley rats were treated with tolvaptan 0.05% in the diet for 6 days in the presence and absence of 200 pmol·min-1 AngII. KEY RESULTS Tolvaptan suppressed AngII-induced aldosterone production in a dose-dependent manner in H295R cells, whereas neither AVP nor dDAVP in the presence or absence of AngII altered aldosterone production, suggesting the vasopressin V2 receptor was not involved in the inhibitory effect of tolvaptan on aldosterone synthesis. In addition, tolvaptan inhibited the AngII-induced increase in aldosterone synthase (CYP11B2) protein levels without suppressing CYP11B2 mRNA expression. Notably, tolvaptan increased the levels of unfolded protein response (UPR) marker DDIT3 and eIF2α phosphorylation (a UPR-induced event), which could block the translation of CYP11B2 mRNA into protein and thereby inhibit aldosterone production. In vivo, tolvaptan significantly inhibited AngII-induced increases in serum and adrenal aldosterone levels and CYP11B2 protein levels. This anti-aldosterone effect was associated with a reduction in the elevated systolic and diastolic BP. CONCLUSIONS AND IMPLICATIONS Tolvaptan inhibited AngII-stimulated aldosterone production via a V2 receptor-independent pathway, which can counteract or even surpass its potential activating effect of diuresis-induced aldosterone secretion in certain aldosterone-mediated pathological conditions.
Collapse
Affiliation(s)
- Yusuf Ali
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascul Pharmacol 2019; 115:13-17. [PMID: 30707954 DOI: 10.1016/j.vph.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are oxygen derivates and play an active role in vascular biology. These compounds are generated within the vascular wall, at the level of endothelial and vascular smooth muscle cells, as well as by adventitial fibroblasts. Physiologically, ROS generation is counteracted effectively by the rate of elimination. In hypertension, a ROS excess occurs, which is not counterbalanced by the endogenous antioxidant mechanisms, leading to a state of oxidative stress. Angiotensin II, the active peptide of the renin-angiotensin-system (RAS), is a significant stimulus for ROS generation within the vasculature. It was also documented that at the level of subfornical cerebral regions an inappropriate RAS stimulation may lead to an increased vascular sympathetic activity. More recently, in conditions of fetal undernutrition, it was also proposed an increased vascular sympathetic activity secondary to inappropriate RAS activation, leading to the development of hypertension in adult life. The present review will discuss the complex interaction between RAS activation, vascular ROS generation and increased sympathetic outflow in hypertension.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Monica Uliana
- Internal Medicine 4, University Hospital of Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
4
|
Favero G, Paini A, De Ciuceis C, Rodella LF, Moretti E, Porteri E, Rossini C, Ministrini S, Solaini L, Stefano C, Coschignano MA, Brami V, Petelca A, Nardin M, Valli I, Tiberio GAM, Bonomini F, Agabiti Rosei C, Portolani N, Rizzoni D, Rezzani R. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension. Blood Press 2018; 27:231-239. [PMID: 29523048 DOI: 10.1080/08037051.2018.1448256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the development of hypertensive microvascular remodeling, a relevant role may be played by changes in extracellular matrix proteins. Aim of this study was the to evaluate some extracellular matrix components within the tunica media of subcutaneous small arteries in 9 normotensive subjects and 12 essential hypertensive patients, submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. PATIENTS AND METHODS Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. In addition, fibronectin, laminin, transforming growth factor-beta-1 (TGF-β1) and emilin-1 contents within the tunica media were evaluated by immunofluorescence and relative immunomorphometrical analysis (immunopositivity % of area). The total collagen content and collagen subtypes within the tunica media were evaluated using both Sirius red staining (under polarized light) and immunofluorescence assay. RESULTS Normotensive controls had less total and type III collagen in respect with hypertensive patients. Fibronectin and TGF-β1 tunica media content was significantly greater in essential hypertensive patients, compared with normotensive controls, while laminin and emilin-1 tunica media content was lesser in essential hypertensive patients, compared with normotensive controls. A significant correlation was observed between fibronectin tunica media content and media to lumen ratio. CONCLUSIONS Our results indicate that, in small resistance arteries of patients with essential hypertension, a relevant fibrosis may be detected; fibronectin and TGF-β1 tunica media content is increased, while laminin and emilin-1 content is decreased; these changes might be involved in the development of small resistance artery remodeling in humans.
Collapse
Affiliation(s)
- Gaia Favero
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Anna Paini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Carolina De Ciuceis
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Luigi F Rodella
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Enrico Moretti
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Claudia Rossini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Silvia Ministrini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Caletti Stefano
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Valeria Brami
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alina Petelca
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Matteo Nardin
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Ilenia Valli
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Guido A M Tiberio
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Francesca Bonomini
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Claudia Agabiti Rosei
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Nazario Portolani
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| | - Rita Rezzani
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| |
Collapse
|
5
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Bruno RM, Duranti E, Ippolito C, Segnani C, Bernardini N, Di Candio G, Chiarugi M, Taddei S, Virdis A. Different Impact of Essential Hypertension on Structural and Functional Age-Related Vascular Changes. Hypertension 2017; 69:71-78. [DOI: 10.1161/hypertensionaha.116.08041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/02/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
Abstract
We evaluated whether vascular remodeling is present in physiological aging and whether hypertension accelerates the aging process for vascular function and structure. Small arteries from 42 essential hypertensive patients (HT) and 41 normotensive individuals (NT) were dissected after subcutaneous biopsy. Endothelium-dependent vasodilation (pressurized myograph) was assessed by acetylcholine, repeated under the nitric oxide synthase inhibitor
N
-nitro-
l
-arginine methylester or the antioxidant tempol. Structure was evaluated by media–lumen ratio (M/L). Intravascular oxidative generation and collagen deposition were assessed. Inhibition by
N
-nitro-
l
-arginine methylester on ACh was inversely related to age in both groups (
P
<0.0001) and blunted in HT versus NT for each age range. In NT, tempol enhanced endothelial function in the oldest subgroup; in HT, the potentiating effect started earlier. HT showed an increased M/L (
P
<0.001) versus control. In both groups, M/L was directly related to age (
P
<0.0001). M/L was greater in HT, starting from 31 to 45 years range. A significant age–hypertension interaction occurred (
P
=0.0009). In NT, intravascular superoxide emerged in the oldest subgroup, whereas it appeared earlier among HT. Among NT, aged group displayed an increment of collagen fibers versus young group. In HT, collagen deposition was already evident in youngest, with a further enhancement in the aged group. In small arteries, ageing shows a eutrophic vascular remodeling and a reduced nitric oxide availability. Oxidative stress and fibrosis emerge in advanced age. In HT, nitric oxide availability is early reduced, but the progression rate with age is similar. Structural alterations include wide collagen deposition and intravascular reactive oxygen species, and the progression rate with age is steeper.
Collapse
Affiliation(s)
- Rosa Maria Bruno
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Emiliano Duranti
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Chiara Ippolito
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Cristina Segnani
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Nunzia Bernardini
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Giulio Di Candio
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Massimo Chiarugi
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Stefano Taddei
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Agostino Virdis
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| |
Collapse
|
7
|
Prasad AM, Ketsawatsomkron P, Nuno DW, Koval OM, Dibbern ME, Venema AN, Sigmund CD, Lamping KG, Grumbach IM. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol 2016; 87:172-179. [PMID: 27658984 DOI: 10.1016/j.vph.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/22/2016] [Accepted: 09/18/2016] [Indexed: 01/21/2023]
Abstract
Angiotensin-II (Ang-II) is a well-established mediator of vascular remodeling. The multifunctional calcium-calmodulin-dependent kinase II (CaMKII) is activated by Ang-II and regulates Erk1/2 and Akt-dependent signaling in cultured smooth muscle cells in vitro. Its role in Ang-II-dependent vascular remodeling in vivo is far less defined. Using a model of transgenic CaMKII inhibition selectively in smooth muscle cells, we found that CaMKII inhibition exaggerated remodeling after chronic Ang-II treatment and agonist-dependent vasoconstriction in second-order mesenteric arteries. These findings were associated with increased mRNA and protein expression of smooth muscle structural proteins. As a potential mechanism, CaMKII reduced serum response factor-dependent transcriptional activity. In summary, our findings identify CaMKII as an important regulator of smooth muscle function in Ang-II hypertension in vivo.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Daniel W Nuno
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Olha M Koval
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Megan E Dibbern
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Ashlee N Venema
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Curt D Sigmund
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States; Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kathryn G Lamping
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States; Iowa City VA Healthcare System, Iowa City, United States
| | - Isabella M Grumbach
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Iowa City VA Healthcare System, Iowa City, United States.
| |
Collapse
|
8
|
Virdis A, Gesi M, Taddei S. Impact of apocynin on vascular disease in hypertension. Vascul Pharmacol 2016; 87:1-5. [PMID: 27569106 DOI: 10.1016/j.vph.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 07/25/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are generated by cell metabolism of oxygen and represent signaling molecules playing an active role in vascular biology. In pathological conditions, including hypertension, a ROS excess, together with reduced endogenous antioxidant defenses, occurs, determining a state of oxidative stress. NAD(P)H oxidase (Nox) is a major ROS source within the vasculature. A large body of literature has demonstrated that hypertension-associated vascular functional and structural changes are attributable to Nox-driven intravascular ROS generation. Apocynin is a methoxy-catechol discovered as an inhibitor of superoxide. It has been utilized in several laboratories and in different models of hypertension as an inhibitor of Nox. Recent evidence proposes that apocynin predominantly acts as an antioxidant. The present review will discuss the role of ROS in vascular disease in hypertension and the impact of apocynin on these vascular changes.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
9
|
Ribeiro Júnior RF, Marques VB, Nunes DO, Ronconi KDS, de Araújo JFP, Rodrigues PL, Padilha AS, Vassallo DV, Graceli JB, Stefanon I. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats. Toxicol Appl Pharmacol 2016; 295:26-36. [PMID: 26873547 DOI: 10.1016/j.taap.2016.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 01/20/2023]
Abstract
Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Dieli Oliveira Nunes
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Paula Lopes Rodrigues
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| |
Collapse
|
10
|
Solini A, Rossi C, Duranti E, Taddei S, Natali A, Virdis A. Saxagliptin prevents vascular remodeling and oxidative stress in db/db mice. Role of endothelial nitric oxide synthase uncoupling and cyclooxygenase. Vascul Pharmacol 2016; 76:62-71. [DOI: 10.1016/j.vph.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/23/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022]
|
11
|
Bhatta A, Yao L, Toque HA, Shatanawi A, Xu Z, Caldwell RB, Caldwell RW. Angiotensin II-induced arterial thickening, fibrosis and stiffening involves elevated arginase function. PLoS One 2015; 10:e0121727. [PMID: 25807386 PMCID: PMC4373900 DOI: 10.1371/journal.pone.0121727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Arterial stiffness (AS) is an independent risk factor for cardiovascular morbidity/mortality. Smooth muscle cell (SMC) proliferation and increased collagen synthesis are key features in development of AS. Arginase (ARG), an enzyme implicated in many cardiovascular diseases, can compete with nitric oxide (NO) synthase for their common substrate, L-arginine. Increased arginase can also provide ornithine for synthesis of polyamines via ornithine decarboxylase (ODC) and proline/collagen via ornithine aminotransferase (OAT), leading to vascular cell proliferation and collagen formation, respectively. We hypothesized that elevated arginase activity is involved in Ang II-induced arterial thickening, fibrosis, and stiffness and that limiting its activity can prevent these changes. METHODS AND RESULTS We tested this by studies in mice lacking one copy of the ARG1 gene that were treated with angiotensin II (Ang II, 4 weeks). Studies were also performed in rat aortic Ang II-treated SMC. In WT mice treated with Ang II, we observed aortic stiffening (pulse wave velocity) and aortic and coronary fibrosis and thickening that were associated with increases in ARG1 and ODC expression/activity, proliferating cell nuclear antigen, hydroxyproline levels, and collagen 1 protein expression. ARG1 deletion prevented each of these alterations. Furthermore, exposure of SMC to Ang II (1 μM, 48 hrs) increased ARG1 expression, ARG activity, ODC mRNA and activity, cell proliferation, collagen 1 protein expression and hydroxyproline content. Treatment with ABH prevented these changes. CONCLUSION Arginase 1 is crucially involved in Ang II-induced SMC proliferation and arterial fibrosis and stiffness and represents a promising therapeutic target.
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Haroldo A. Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Alia Shatanawi
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Zhimin Xu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruth B. Caldwell
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
12
|
Liangos O. Resistant hypertension and renal denervation: what do the guidelines say? A nephrologist's perspective. Interv Cardiol 2014. [DOI: 10.2217/ica.14.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Colucci R, Fornai M, Duranti E, Antonioli L, Rugani I, Aydinoglu F, Ippolito C, Segnani C, Bernardini N, Taddei S, Blandizzi C, Virdis A. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1. Br J Pharmacol 2014; 169:554-66. [PMID: 22817606 DOI: 10.1111/j.1476-5381.2012.02106.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/07/2012] [Accepted: 07/02/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. EXPERIMENTAL APPROACH Male rats received angiotensin II (120 ng·kg⁻¹ ·min⁻¹ , subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg⁻¹ ·day⁻¹ , oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. KEY RESULTS In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α , and enhanced copper/zinc-superoxide dismutase expression. CONCLUSION AND IMPLICATIONS Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defences.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Littlejohn NK, Siel RB, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 2013; 304:R818-28. [PMID: 23535460 DOI: 10.1152/ajpregu.00082.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Müller-Fielitz H, Lau M, Jöhren O, Stellmacher F, Schwaninger M, Raasch W. Blood pressure response to angiotensin II is enhanced in obese Zucker rats and is attributed to an aldosterone-dependent mechanism. Br J Pharmacol 2012; 166:2417-29. [PMID: 22452651 DOI: 10.1111/j.1476-5381.2012.01953.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Plasma aldosterone levels correlate positively with obesity, suggesting a link between the hypertension associated with obesity and increased mineralocorticoid levels. We tested the hypothesis that aldosterone is involved in the BP response to angiotensin II (AngII) in obese rats. EXPERIMENTAL APPROACH Lean (LZR) and obese (OZR) Zucker rats were treated with AngII (9 µg·h(-1) ; 4 weeks), and BP and plasma AngII and aldosterone were determined. KEY RESULTS Chronic AngII increased the BP in OZR markedly more so than in LZR. Plasma AngII levels in LZR and OZR were similar after AngII treatment. The AngII stimulated a rise in plasma aldosterone that was sixfold more in OZR than in LZR. The thickness of the zona glomerulosa of the adrenal glands was selectively increased by AngII in OZR. Adrenal mRNA levels of CYP11B2 aldosterone synthase and the AT(1B) receptor were selectively increased in AngII-treated OZR. The BP response to chronic AngII stimulation was diminished in OZR after adrenalectomy when plasma aldosterone was absent. Acute bolus injections of AngII did not increase the BP response or aldosterone release in OZR. CONCLUSIONS AND IMPLICATIONS The AngII-induced BP response is enhanced in obesity and this is associated with a specific increase in circulating aldosterone. Due to the AngII-induced growth of the zona glomerulosa in OZR, the AT(1B) receptors and aldosterone synthase may be selectively enhanced in obesity under concomitant AngII stimulation, increasing the adrenal synthesis of aldosterone. Our results confirm functionally that aldosterone plays a major role in obesity-related hypertension.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
16
|
The vascular phenotypes in hypertension: Relation with the natural history of hypertension. ACTA ACUST UNITED AC 2012; 1:56-67. [PMID: 20409833 DOI: 10.1016/j.jash.2006.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 11/23/2022]
Abstract
The different vascular phenotypes found in hypertension comprise different aspects. They may be clinical, diagnostic, structural, mechanical, functional, cellular and extracellular, signaling and molecular, proteomic, and gene expression phenotypes. In this manuscript the emphasis will be on the various structure, mechanics, dysfunction, and cell and signaling changes that can be demonstrated in hypertension, and particularly in human hypertension. The phenotype relates to the natural history of hypertension, increasingly elucidated on the basis of cohort studies. The evolution from pre-hypertension to diastolic, systolic, and systo-diastolic hypertension may have a vascular substratum that could explain, in part, the prevalence of each of these phenotypes. The potential for intervention to prevent the passage from pre-hypertension to hypertension thanks to therapies that modulate the development of vascular remodeling is highlighted.
Collapse
|
17
|
Vascular dysfunction as target organ damage in animal models of hypertension. Int J Hypertens 2012; 2012:187526. [PMID: 22518280 PMCID: PMC3296220 DOI: 10.1155/2012/187526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/29/2011] [Indexed: 01/13/2023] Open
Abstract
Endothelial dysfunction is one of the main characteristics of chronic hypertension and it is characterized by impaired nitric oxide (NO) bioactivity determined by increased levels of reactive oxygen species. Endothelial function is usually evaluated by measuring the vasodilation induced by the local NO production stimulated by external mechanical or pharmacological agent. These vascular reactivity tests may be carried out in different models of experimental hypertension such as NO-deficient rats, spontaneously hypertensive rats, salt-sensitive rats, and many others. Wire myograph and pressurized myograph are the principal methods used for vascular studies. Usually, increasing concentrations of the vasodilator acetylcholine are added in cumulative manner to perform endothelium-dependent concentration-response curves. Analysis of vascular mechanics is relevant to identify arterial stiffness. Both endothelial dysfunction and vascular stiffness have been shown to be associated with increased cardiovascular risk.
Collapse
|
18
|
Affiliation(s)
- Ernesto L. Schiffrin
- From the Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital and Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montreal, Québec, Canada
| |
Collapse
|
19
|
Virdis A, Duranti E, Taddei S. Oxidative Stress and Vascular Damage in Hypertension: Role of Angiotensin II. Int J Hypertens 2011; 2011:916310. [PMID: 21747985 PMCID: PMC3124711 DOI: 10.4061/2011/916310] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are oxygen derivates and play an active role in vascular biology. These compounds are generated within the vascular wall, at the level of endothelial and vascular smooth muscle cells, as well as by adventitial fibroblasts. In healthy conditions, ROS are produced in a controlled manner at low concentrations and function as signaling molecules regulating vascular contraction-relaxation and cell growth. Physiologically, the rate of ROS generation is counterbalanced by the rate of elimination. In hypertension, an enhanced ROS generation occurs, which is not counterbalanced by the endogenous antioxidant mechanisms, leading to a state of oxidative stress. In the present paper, major angiotensin II-induced vascular ROS generation within the vasculature, and relative sources, will be discussed. Recent development of signalling pathways whereby angiotensin II-driven vascular ROS induce and accelerate functional and structural vascular injury will be also considered.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Internal Medicine, University of Pisa, 56100 Pisa, Italy
| | | | | |
Collapse
|
20
|
Virdis A, Colucci R, Neves MF, Rugani I, Aydinoglu F, Fornai M, Ippolito C, Antonioli L, Duranti E, Solini A, Bernardini N, Blandizzi C, Taddei S. Resistance artery mechanics and composition in angiotensin II-infused mice: effects of cyclooxygenase-1 inhibition. Eur Heart J 2011; 33:2225-34. [PMID: 21606076 DOI: 10.1093/eurheartj/ehr138] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS The aim of this study was to investigate the role of cyclooxygenase (COX)-1 on vascular alterations in structure, mechanics, and extracellular matrix (ECM) components induced by angiotensin (Ang) II in mesenteric arteries from wild-type (WT) and COX-1 knockout (COX-1(-/-)) mice. METHODS AND RESULTS Animals were infused with vehicle or Ang II (400 ng/kg/min, s.c.) ± SC-560 (COX-1 inhibitor), DFU (COX-2 inhibitor), or SQ-29548 (TP receptor antagonist). After 2 weeks, vessels were isolated and exposed to intraluminal pressures (3-140 mmHg, pressurized myograph) to determine mechanical properties. Angiotensin II-induced vascular hypertrophic remodelling in WT was reversed by SC-560 or SQ-29548, but unaffected by DFU. Angiotensin II increased vessel stiffness (P< 0.01), this effect being ameliorated by SC-560 or SQ-29548, but unmodified by DFU. Angiotensin II failed to modify vessel elasticity in COX-1(-/-) mice. In WT vessels, Ang II enhanced COX-1 immunostaining, induced collagen and fibronectin depositions and decreased elastin content (P< 0.01). These effects were reversed by SC-560 or SQ-29548, but unaffected by DFU. In COX-1(-/-) mice, Ang II did not affect ECM contents. In WT, Ang II increased COX-1 and decreased COX-2 expression, and enhanced the vascular release of 6-keto-PGF1α which was prevented by COX-1 blockade. Human coronary artery smooth muscle cells, incubated with Ang II, showed an increased expression of procollagen I, which was abrogated by SC-560 or SQ-29548. CONCLUSION Angiotensin II-induced alterations of resistance arteries in structure, mechanics, and ECM composition were prevented by COX-1 inhibition and TP receptor antagonism, indicating that Ang II-mediated vascular damage is mediated by COX-1-derived prostanoid prostacyclin, activating TP receptors.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Role of extracellular matrix in vascular remodeling of hypertension. Curr Opin Nephrol Hypertens 2010; 19:187-94. [PMID: 20040870 DOI: 10.1097/mnh.0b013e328335eec9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness due to alterations in extracellular matrix is one of the mechanisms responsible for increased peripheral resistance in hypertension. Recent evidence points to arterial stiffness as an independent predictor of cardiovascular events. This review focuses on recent advances in the biology of extracellular matrix proteins involved in hypertension-associated vascular changes. RECENT FINDINGS The vascular extracellular matrix is a complex heterogeneous tissue comprising collagens, elastin, glycoproteins, and proteoglycans. These constituents not only provide mechanical integrity to the vessel wall but also possess a repertoire of insoluble ligands that induce cell signaling to control proliferation, migration, differentiation, and survival. It is now evident that it is not only the quantity but also the quality of the new synthesized extracellular matrix that determines changes in vascular stiffness in hypertension. Also, the control of cross-linking and the interactions between the extracellular matrix and vascular cells seem to be important. SUMMARY It is now evident that some of the currently used antihypertensive therapies can correct vascular stiffness and fibrosis. A better understanding of molecular mechanisms underlying alterations in extracellular matrix in hypertension will provide insights into novel therapies to reduce arterial stiffness and will identify new roles of established antihypertensive drugs.
Collapse
|
22
|
Briones AM, Rodríguez-Criado N, Hernanz R, García-Redondo AB, Rodrigues-Díez RR, Alonso MJ, Egido J, Ruiz-Ortega M, Salaices M. Atorvastatin Prevents Angiotensin II–Induced Vascular Remodeling and Oxidative Stress. Hypertension 2009; 54:142-9. [DOI: 10.1161/hypertensionaha.109.133710] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ana M. Briones
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Natalia Rodríguez-Criado
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Raquel Hernanz
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana B. García-Redondo
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Raul R. Rodrigues-Díez
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - María J. Alonso
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Jesús Egido
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Marta Ruiz-Ortega
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| | - Mercedes Salaices
- From the Departmento de Farmacología, Facultad de Medicina (A.M.B., N.R.-C., R.H., A.B.G.-R., M.S.), and Laboratorio de Investigación Vascular y Renal (R.R.R.-D., J.E., M.R.-O.), Fundación Jiménez Díaz, Universidad Autónoma de Madrid; and the Departmento de Ciencias de la Salud III (R.H., M.J.A.), Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
23
|
Fernandes-Santos C, de Souza Mendonça L, Mandarim-de-Lacerda CA. Favorable cardiac and aortic remodeling in olmesartan-treated spontaneously hypertensive rats. Heart Vessels 2009; 24:219-27. [DOI: 10.1007/s00380-008-1104-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 08/08/2008] [Indexed: 10/20/2022]
|
24
|
Baumann M, Hermans JJR, Janssen BJA, Peutz-Kootstra C, Witzke O, Heemann U, Smits JFM, Boudier HAJS. Transient prehypertensive treatment in spontaneously hypertensive rats: a comparison of spironolactone and losartan regarding long-term blood pressure and target organ damage. J Hypertens 2008; 25:2504-11. [PMID: 17984673 DOI: 10.1097/hjh.0b013e3282ef84f8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We previously demonstrated that when the renin-angiotensin system (RAS) is transiently blocked by an angiotensin receptor blocker (ARB) in young spontaneously hypertensive rats (SHR), this results in a prolonged blood pressure decrease and protection against target organ damage. Aldosterone is an essential hormone in the RAS, and contributes to pathologic remodeling. Thus, part of the protective effects of the ARB may be due to inhibition of aldosterone-mediated effects. To test this hypothesis, in young SHR, we compared the effectiveness of transient treatment with the mineralocorticoid receptor blocker spironolactone with those obtained by the ARB losartan. METHODS SHR were transiently (i.e. between 4-8 weeks of age) treated with spironolactone (SHR-Spiro: 1 mg/kg per day), losartan (SHR-Los: 20 mg/kg per day) or saline. Rats were followed up until week 72 of age and cardiovascular parameters were repeatedly assessed by echocardiography, radiotelemetry of blood pressure and 24-h urine collection. End-point measurements included direct left ventricular contractility and relaxation, as well as cardiac and renal histomorphology. RESULTS Transient spironolactone treatment reduced blood pressure up to 36 weeks of age and cardiac and renal collagen deposition and tubular atrophy up to 72 weeks of age compared to untreated SHR. Pulse pressure was higher in SHR-Spiro compared to SHR-Los. Cardiac hypertrophy, albuminuria and glomerulosclerosis were not attenuated in SHR-Spiro compared to untreated SHR up to 72 weeks of age, whereas the effects in SHR-Los were ameliorated. CONCLUSIONS Although transient spironolactone treatment leads to prolonged blood pressure reduction and reduced collagen deposition, long-term organ protection only partially exists. Thus, transient spironolactone treatment is less effective than transient losartan treatment.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Pharmacology and Toxicology, University Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The idea of renin inhibition is not new, and evidence of attempts to block its activity can be found in the literature as early as the 1950s. Throughout the latter half of the 20th century, development of renin inhibitors encountered many problems. Only recently, after the x-ray crystallography of its active site, new and effective renin inhibitors have been developed. The purpose of this review is to describe the basic evidence to support the efficacy of these agents and to elaborate on new possibilities of their use and combination with other antihypertensive drugs.
Collapse
Affiliation(s)
- Eyal Leibovitz
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
26
|
BAUMANN M, MEGENS R, BARTHOLOME R, DOLFF S, van ZANDVOORT MA, SMITS JF, STRUIJKER-BOUDIER HA, De MEY JG. Prehypertensive Renin-Angiotensin-Aldosterone System Blockade in Spontaneously Hypertensive Rats Ameliorates the Loss of Long-Term Vascular Function. Hypertens Res 2007; 30:853-61. [DOI: 10.1291/hypres.30.853] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Rizzoni D, Paiardi S, Rodella L, Porteri E, De Ciuceis C, Rezzani R, Boari GEM, Zani F, Miclini M, Tiberio GAM, Giulini SM, Rosei CA, Bianchi R, Rosei EA. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with primary aldosteronism. J Clin Endocrinol Metab 2006; 91:2638-2642. [PMID: 16608890 DOI: 10.1210/jc.2006-0101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT AND OBJECTIVE It has been previously demonstrated that aldosterone may possess a strong profibrotic action in vitro and in animal models of genetic or experimental hypertension. Our aim was to evaluate whether such a profibrotic action is present also in the human microcirculation. DESIGN AND PATIENTS We investigated 13 patients with primary aldosteronism, seven patients with essential hypertension, and 10 normotensive controls. All subjects were submitted to a biopsy of gluteal sc fat tissue. Small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. MAIN OUTCOME MEASURES The total collagen content within the tunica media was detected (Sirius red staining and image analysis), and collagen subtypes were evaluated using polarized light microscopy; under this condition thicker type I collagen fibers appear orange or red, whereas thinner type III collagen fibers are yellow or green. RESULTS Tunica media to internal lumen ratio was significantly increased in primary aldosteronism and in essential hypertension compared with normotensive controls. Clinic blood pressure values were similar in primary aldosteronism and in essential hypertension, and greater than in normotensive controls. Normotensive controls had less total and type III collagen (3.23 +/- 0.58 and 1.60 +/- 0.22%, respectively) in respect to the two hypertensive groups (P < 0.001). Total collagen and type III vascular collagen were significantly greater in primary aldosteronism (total collagen, 8.17 +/- 1.38%; type III collagen, 6.06 +/- 0.74%; P < 0.05) than in essential hypertension (total collagen, 6.84 +/- 1.15%; type III collagen, 5.25 +/- 0.80%). CONCLUSIONS Our results indicate that, in small resistance arteries of patients with primary aldosteronism, a pronounced fibrosis may be detected, even more evident than in blood-pressure-matched patients with essential hypertension.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Chair of Internal Medicine, Department of Medical and Surgical Sciences, University of Brescia, c/o 2 Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100 Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Burla AK, Neves MF, Oigman W, Mandarim-de-Lacerda CA. Eplerenone offsets cardiac and aortic adverse remodeling in spontaneously hypertensive rats. Int J Cardiol 2006; 114:64-70. [PMID: 16650491 DOI: 10.1016/j.ijcard.2006.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/27/2005] [Accepted: 01/08/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several studies have shown beneficial effects of eplerenone in hypertension and left ventricular dysfunction, but its action on cardiac and vascular changes secondary to blood pressure elevation are not clear yet. METHODS Twenty-five male spontaneously hypertensive rats (SHR) were assigned into five groups: young SHR (16 weeks), control SHR (22 weeks), and SHR treated by eplerenone (50 mg/kg/day), enalapril (10 mg/kg/day) or eplerenone+enalapril during 6 weeks. Five Wistar male rats were used as reference group. Cardiac structure and aorta were analyzed by stereology and image analysis. RESULTS The raise of blood pressure (202+/-3 mm Hg in control SHR) was significantly attenuated by eplerenone (169+/-2 mm Hg) or enalapril (170+/-2 mm Hg, P<0.001 versus control SHR), and more intensely by combined therapy (160+/-2 mm Hg, P<0.01 versus eplerenone or enalapril). The number of cardiomyocytes in left ventricle was preserved in enalapril group (35,660+/-910 versus 16,220+/-730x10(3) in control SHR, P<0.01) but more significantly in eplerenone, alone or combined, groups (38,380+/-439 and 38,660+/-374x10(3), respectively, P<0.001 versus control). The increased connective tissue volume density (35.8+/-1.2%) noted in the left ventricle of control SHR was significantly attenuated by eplerenone (7.4+/-0.8%), enalapril (8.0+/-0.6%) or eplerenone+enalapril (6.0+/-1.1%, P<0.01 treated versus control SHR). Media-to-lumen ratio of intramyocardial arteries was reduced by enalapril, but more significantly by eplerenone alone or combined with enalapril. The increase of media cross-sectional area of aorta in control SHR was attenuated by eplerenone and/or enalapril. CONCLUSIONS Eplerenone is effective in attenuating cardiovascular remodeling in SHR, confirming the important role of aldosterone in this process.
Collapse
Affiliation(s)
- Adriana K Burla
- Laboratory of Morphometry and Cardiovascular Morphology, Biomedical Centre, State University of Rio de Janeiro, Av 28 de Setembro 87 fds 20551-030 Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
29
|
Neves MF, Amiri F, Virdis A, Diep QN, Schiffrin EL. Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy. Can J Physiol Pharmacol 2005; 83:999-1006. [PMID: 16391708 DOI: 10.1139/y05-068] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is associated with increased extracellular matrix and inflammatory markers in the cardiovascular system. We evaluated the effects of aldosterone antagonism on cardiovascular structure, collagen deposition, and expression of inflammatory markers in 2-week angiotensin (Ang) II-infused rats (120 ng.kg-1.min-1, s.c.)+/-spironolactone or hydralazine (25 mg.kg-1.d-1). Aortic and cardiac collagen density was evaluated with Sirius red staining. NFkappaB and AP-1 were measured by a electrophoretic mobility shift assay, and ED-1 (macrophage marker) and vascular cell adhesion molecule-1 (VCAM-1) were measured by immunohistochemistry. Ang II increased blood pressure (176+/-2 mmHg vs. 115+/-1 mmHg in controls, p<0.01), which was attenuated by spironolactone (147+/-4 mmHg, p<0.01) and prevented by hydralazine (124+/-2 mmHg, p<0.01). Ang II enhanced left ventricular interstitial collagen type I/III deposition (4.1%+/-0.1% vs. 3.1%+/-0.2%, p<0.05), and this was attenuated by spironolactone but not hydralazine. Ang II-induced cardiac perivascular fibrosis was prevented by spironolactone and hydralazine. Ang II significantly increased cardiac AP-1 activity and ED-1 expression, which was prevented by spironolactone only. Ang II-enhanced NFkappaB activity, and VCAM-1 expression was reduced by spironolactone and hydralazine, whereas aortic hypertrophy was prevented by spironolactone and slightly reduced by hydralazine. In conclusion, blockade of mineralocorticoid receptors with spironolactone inhibited Ang II-induced aortic hypertrophy, cardiac transcription factor activation, upregulation of downstream inflammatory markers, and collagen deposition, thus preventing Ang II-induced cardiovascular damage.
Collapse
|
30
|
Ishizawa K, Izawa Y, Ito H, Miki C, Miyata K, Fujita Y, Kanematsu Y, Tsuchiya K, Tamaki T, Nishiyama A, Yoshizumi M. Aldosterone stimulates vascular smooth muscle cell proliferation via big mitogen-activated protein kinase 1 activation. Hypertension 2005; 46:1046-52. [PMID: 16087789 DOI: 10.1161/01.hyp.0000172622.51973.f5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nongenomic effects of aldosterone have been implicated in the pathogenesis of various cardiovascular diseases. Aldosterone-induced nongenomic effects are attributable in part to the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), a classical mitogen-activated protein (MAP) kinase. Big MAP kinase 1 (BMK1), a newly identified MAP kinase, has been shown to be involved in cell proliferation, differentiation, and survival. We examined whether aldosterone stimulates BMK1-mediated proliferation of cultured rat aortic smooth muscle cells (RASMCs). Mineralocorticoid receptor (MR) expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. ERK1/2 and BMK1 activities were measured by Western blotting analysis with the respective phosphospecific antibodies. Cell proliferation was determined by Alamar Blue colorimetric assay. Aldosterone (0.1 to 100 nmol/L) dose-dependently activated BMK1 in RASMCs, with a peak at 30 minutes. To clarify whether aldosterone-induced BMK1 activation is an MR-mediated phenomenon, we examined the effect of eplerenone, a selective MR antagonist, on aldosterone-induced BMK1 activation. Eplerenone (0.1 to 10 micromol/L) dose-dependently inhibited aldosterone-induced BMK1 activation in RASMCs. Aldosterone also stimulated RASMC proliferation, which was inhibited by eplerenone. Aldosterone-mediated phenomena were concluded to be attributable to a nongenomic effect because cycloheximide failed to inhibit aldosterone-induced BMK1 activation. Transfection of dominant-negative MAP kinase/ERK kinase 5 (MEK5), which is an upstream regulator of BMK1, partially inhibited aldosterone-induced RASMC proliferation, which was almost completely inhibited by MEK inhibitor PD98059. In addition to the classical steroid activity, rapid nongenomic effects induced by aldosterone may represent an alternative etiology for vascular diseases such as hypertension.
Collapse
MESH Headings
- 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology
- Aldosterone/pharmacology
- Animals
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Cell Proliferation/drug effects
- Cells, Cultured
- Cycloheximide/pharmacology
- Enzyme Activation/drug effects
- Eplerenone
- Flavonoids/pharmacology
- Genes, Dominant
- MAP Kinase Kinase 5/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase 7/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptors, Mineralocorticoid/metabolism
- Spironolactone/analogs & derivatives
- Spironolactone/pharmacology
- Transfection
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pharmacology, University of Tokushima Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brassard P, Amiri F, Schiffrin EL. Combined angiotensin II type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension 2005; 46:598-606. [PMID: 16043661 DOI: 10.1161/01.hyp.0000176744.15592.7d] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of angiotensin II type 1 (AT1) and AT2 receptors, matrix metalloproteinases (MMPs), and extracellular matrix (ECM) components involved in vascular remodeling of resistance arteries induced by angiotensin II (Ang II). Sprague-Dawley rats received Ang II (120 ng/kg per minute SC) +/- the AT1 antagonist losartan (10 mg/kg per day PO), the AT1/AT2 antagonist Sar1-Ile8-Ang II (Sar-Ile; 10 microg/kg per minute SC), or hydralazine (25 mg/kg per day PO) for 7 days. Structure and mechanical properties of small mesenteric arteries were evaluated on a pressurized myograph. Ang II increased growth index (+21%), which was partially decreased by losartan (-11%) and abrogated by Sar-Ile. Hydralazine markedly increased growth index (+32%) despite systolic blood pressure (BP) lowering, suggesting a BP-independent effect of Ang II on vascular growth. Elastic modulus was increased by Sar-Ile compared with Ang II and control. Vascular type I collagen was reduced (P<0.05), whereas fibronectin increased significantly with Sar-Ile. Vascular tissue inhibitor of metalloproteinase-2 binding to MMP-2 was abrogated by Sar-Ile, but MMP-2 activity was significantly increased compared with losartan, Ang II, and controls. Thus, AT1 blockade exerted antigrowth effects and reduced stiffness of small resistance arteries by decreasing nonelastic fibrillar components (collagen and fibronectin). Concomitant AT1/AT2 blockade prevented growth, reduced collagen type I and elastin deposition but increased vascular stiffness, fibronectin, and MMP-2 activity. These results demonstrate opposing roles of AT1 receptors that increase fibronectin and vascular stiffness and AT2 receptors that decrease MMP-2 and increase elastin. Changes in vascular wall mechanics, ECM deposition, and MMP activity are thus modulated differentially by Ang II receptors.
Collapse
MESH Headings
- 1-Sarcosine-8-Isoleucine Angiotensin II/pharmacology
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers
- Animals
- Blotting, Western
- Collagen Type I/metabolism
- Elasticity
- Elastin/metabolism
- Fibronectins/metabolism
- Hydralazine/pharmacology
- Losartan/pharmacology
- Male
- Matrix Metalloproteinase 2/metabolism
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/growth & development
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Vascular Resistance
Collapse
Affiliation(s)
- Pascal Brassard
- Canadian Institutes of Health Research, Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | |
Collapse
|
32
|
Abstract
Our recent efforts have been focused on the mechanisms responsible for the progression of aldosterone-induced renal injury. We have demonstrated in rats that chronic treatment with aldosterone (0.75 micro g/H, SC) and 1% NaCl (in drinking solution) results in severe proteinuria and glomerular injury, characterized by cell proliferation and mesangial matrix expansion. Increased renal cortical NAD(P)H oxidase expression, reactive oxygen species (ROS) generation, and mitogen-activated protein kinase (MAPK) activation were also observed. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone(0.125% in chow), or an antioxidant, tempol (3 mM in drinking solution), prevented elevations of ROS levels and MAPK activity, as well as ameliorating glomerular injury, indicating that aldosterone-induced glomerular injury is associated with redox-sensitive MAPK activation. In vitro studies showed that mineralocorticoid receptors are highly expressed in rats mesangial cells, particularly in the cytoplasm. Aldosterone (100 nM) application activates MAPK and causes cellular proliferation and deformation. These data suggest that aldosterone contributes to the progression of glomerular injury through its direct actions.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | |
Collapse
|
33
|
Rachmani R, Slavachevsky I, Amit M, Levi Z, Kedar Y, Berla M, Ravid M. The effect of spironolactone, cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction: a randomized controlled study. Diabet Med 2004; 21:471-5. [PMID: 15089793 DOI: 10.1111/j.1464-5491.2004.01194.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The effect of spironolactone, cilazapril and their combination on albuminuria was examined in a randomized prospective study in female patients with diabetes and hypertension. PATIENTS AND METHODS Sixty female diabetic patients aged 45-70 years with blood pressure (BP) 140-180/90-110 mmHg, serum creatinine (sCr) < or = 160 micro mol/l, HbA(1c) < or = 10%, and albuminuria were treated by atenolol 12.5-75 mg/d and hydrochlorothiazide 6.25-25 mg/d. Titration-to-target helped to reach BP values < or = 135/85 mmHg in 46 patients after 12 weeks. These patients were randomized to spironolactone 100 mg/d or cilazapril 5 mg/d for 24 weeks. Then both groups received spironolactone 50 mg/d and cilazapril 2.5 mg/d for 24 weeks. BP was stabilized by tapering the dose of the initial agents. Urinary albumin/creatinine ratio (ACR), BP, K(+). sCr and HbA(1c) were assessed at baseline and at weeks 12, 16, 36 and 60. RESULTS The average BP at week 12 was 128 +/- 4/81 +/- 3 mmHg and remained constant, in both groups, throughout the study. ACR declined on spironolactone from a median value (range) of 452 (124-1571) to 216 (64-875) mg/g (P = 0.001), and on cilazapril to 302 (90-975) mg/g (P = 0.001). The difference between spironolactone and cilazapril was significant (P = 0.002). Combined treatment resulted in a further modest decline in ACR. Serum creatinine was unaltered by spironolactone and rose slightly (121 to 126 micro mol/l, P = 0.02) on cilazapril. CONCLUSION At the doses tested, spironolactone was superior to cilazapril in reducing albuminuria. Combined administration was more effective than either drug alone. These effects were independent of BP values. Hyperkalaemia was the main side-effect.
Collapse
Affiliation(s)
- R Rachmani
- Department of Medicine, Meir-Hospital Kfar-Sava and the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 2004; 22:535-42. [PMID: 15076159 DOI: 10.1097/00004872-200403000-00016] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Angiotensin (Ang) II stimulates vascular reactive oxygen species generation via NAD(P)H oxidase activation. We investigated whether vascular NAD(P)H oxidase influences structure and function of resistance arteries from Ang II-infused mice. METHODS Mice received Ang II alone (400 ng/kg per min, subcutaneously), Ang II + apocynin (NAD(P)H oxidase inhibitor, 2.5 mg/day, in the food), apocynin alone or Ang II + hydralazine (50 mg/kg per day) for 14 days. Systolic blood pressure (SBP) was measured by tail-cuff methodology and function and structure of small mesenteric arteries were studied in pressurized vessels. Vascular collagen type I/III content was evaluated by confocal immunofluorescence microscopy and by immunoblotting. RESULTS The rise in SBP induced by Ang II (P < 0.001) was prevented by apocynin and hydralazine. Media/lumen ratio increase in Ang II-infused mice (P < 0.01) was prevented by apocynin. Acetylcholine-mediated relaxation, which was impaired in Ang II-infused mice (P < 0.001), was improved by apocynin. Confocal microscopy and immunoblotting demonstrated increased collagen type I/III content in mesenteric arteries from Ang II-infused mice. Apocynin, but not hydralazine, prevented the increase in collagen abundance in Ang II-infused mice. The increase in vascular NAD(P)H oxidase activity by Ang II (P < 0.001) was prevented by apocynin. CONCLUSIONS The NAD(P)H oxidase inhibitor apocynin reduced blood pressure elevation and prevented structural alterations, endothelial dysfunction, and collagen deposition in the media of small arteries in Ang II-infused mice. Although hydralazine also decreased blood pressure, it had no effects on vascular collagen content. Our findings suggest that NAD(P)H oxidase activity plays an important role in vascular functional and structural changes and in the composition of the vascular wall in Ang II-dependent hypertension.
Collapse
Affiliation(s)
- Agostino Virdis
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Lakkis J, Lu WX, Weir MR. RAAS escape: a real clinical entity that may be important in the progression of cardiovascular and renal disease. Curr Hypertens Rep 2003; 5:408-17. [PMID: 12948434 DOI: 10.1007/s11906-003-0087-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interruption of the renin-angiotensin-aldosterone system (RAAS) at different levels is target-organ protective in several disease states; however, complete blockade is unlikely to be achieved due to escape mechanisms whenever blockade is attempted, incomplete knowledge of the role of all elements of the RAAS, and lack of pharmacotherapy against some elements that have been shown to contribute to disease states. Aldosterone has been overlooked as a mediator of RAAS escape and a key factor in target-organ injury despite the use of available RAAS blockers. Aldosterone is thought to play a role in the development of hypertension, alteration in vascular structure, vascular smooth muscle hypertrophy, endothelial dysfunction, structural renal injury, proteinuria, left ventricular remodeling, collagen synthesis, and myocardial fibrosis. Aldosterone receptor antagonists have been shown to antagonize all these effects in experimental models. Clinical trials with aldosterone antagonists showed an improvement in survival and left ventricular mass index in patients with congestive heart failure, and a reduction in urinary protein excretion and left ventricular mass index in patients with type 2 diabetes and early nephropathy who developed aldosterone synthesis escape. Consequently, aldosterone receptor antagonists may have specific benefits for reducing target-organ injury, particularly if there is evidence of RAAS escape.
Collapse
Affiliation(s)
- Jay Lakkis
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, Suite N3W143, Baltimore, MD 21201, USA
| | | | | |
Collapse
|