1
|
Collaborative Activities of Noradrenaline and Natriuretic Peptide for Glucose Utilization in Patients with Acute Coronary Syndrome. Sci Rep 2019; 9:7822. [PMID: 31127136 PMCID: PMC6534620 DOI: 10.1038/s41598-019-44216-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Glucose is an important preferential substrate for energy metabolism during acute coronary syndrome (ACS) attack, although insulin resistance (IR) increases during ACS. Increasing evidence indicates that natriuretic peptides (NP) regulate glucose homeostasis. We investigated possible compensatory actions of NP in collaboration with other neurohumoral factors that facilitate glucose utilization during ACS. The study population consisted of 1072 consecutive cases with ischemic heart disease who underwent cardiac catheterization (ACS, n = 216; non-ACS, n = 856). Among ACS subjects, biochemical data after acute-phase treatment were available in 91 cases, defined as ACS-remission phase (ACS-rem). Path models based on covariance structure analyses were proposed to clarify the direct contribution of B-type NP (BNP) and noradrenaline to glucose and HOMA-IR levels while eliminating confounding biases. In non-ACS and ACS-rem subjects, although noradrenaline slightly increased glucose and/or HOMA-IR levels (P < 0.03), BNP did not significantly affect them. In contrast, in ACS subjects, high noradrenaline was a significant cause of increases in glucose and HOMA-IR levels (P < 0.001), whereas high BNP was a significant cause of decreases in both parameters (P < 0.005). These findings indicate that BNP and noradrenaline coordinately activate glucose metabolism during ACS, with noradrenaline increasing glucose levels, as an energy substrate, while BNP improves IR and promotes glucose utilization.
Collapse
|
2
|
He X, Zeng H, Roman RJ, Chen JX. Inhibition of prolyl hydroxylases alters cell metabolism and reverses pre-existing diastolic dysfunction in mice. Int J Cardiol 2018; 272:281-287. [PMID: 30177233 DOI: 10.1016/j.ijcard.2018.08.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Diastolic dysfunction is emerging as a leading cause of heart failure in aging population. Induction of hypoxia tolerance and reprogrammed cell metabolism have emerged as novel therapeutic strategies for the treatment of cardiovascular diseases. METHODS AND RESULTS In the present study, we showed that deletion of sirtuin 3 (SIRT3) resulted in a diastolic dysfunction together with a significant increase in the expression of prolyl hydroxylases (PHD) 1 and 2. We further investigated the involvement of PHD in the development of diastolic dysfunction by treating the 12-14 months old mice with a PHD inhibitor, dimethyloxalylglycine (DMOG) for 2 weeks. DMOG treatment increased the expression of hypoxia-inducible factor (HIF)-1α in the endothelium of coronary arteries. This was accompanied by a significant improvement of coronary flow reserve and diastolic function. Inhibition of PHD altered endothelial metabolism by increasing glycolysis and reducing oxygen consumption. Most importantly, treatment with DMOG completely reversed the pre-existing diastolic dysfunction in the endothelial-specific SIRT3 deficient mice. CONCLUSIONS Our findings demonstrate that inhibition of PHD and reprogrammed cell metabolism can reverse the pre-existed diastolic dysfunction in SIRT3 deficient mice. Our study provides a potential therapeutic strategy of induction of hypoxia tolerance for patients with diastolic dysfunction associated with coronary microvascular dysfunction, especially in the aging population with reduced SIRT3.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
3
|
Griffin TM, Humphries KM, Kinter M, Lim HY, Szweda LI. Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 2015; 124:74-83. [PMID: 26476002 DOI: 10.1016/j.biochi.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
A central feature of obesity-related cardiometabolic diseases is the impaired ability to transition between fatty acid and glucose metabolism. This impairment, referred to as "metabolic inflexibility", occurs in a number of tissues, including the heart. Although the heart normally prefers to metabolize fatty acids over glucose, the inability to upregulate glucose metabolism under energetically demanding conditions contributes to a pathological state involving energy imbalance, impaired contractility, and post-translational protein modifications. This review discusses pathophysiologic processes that contribute to cardiac metabolic inflexibility and speculates on the potential physiologic origins that lead to the current state of cardiometabolic disease in an obesogenic environment.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Hansen J, Brock B, Bøtker HE, Gjedde A, Rungby J, Gejl M. Impact of glucagon-like peptide-1 on myocardial glucose metabolism revisited. Rev Endocr Metab Disord 2014; 15:219-31. [PMID: 24910203 DOI: 10.1007/s11154-014-9286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut hormone glucagon-like peptide-1 (GLP-1) is an insulinotropic incretin with significant cardiovascular impact. Two classes of medication, GLP-1 analogues and DPP-4 inhibitors, have been developed that circumvent the rapid degradation of GLP-1 by the enzyme dipeptidyl peptidase-4 (DPP-4), both enhance the incretin effect and were developed for the treatment of type 2 diabetes. Several mechanisms suggesting that DPP-4 inhibitors, GLP-1, and analogues could have a protective effect on the cardiovascular risk profile have been forwarded; e.g., reductions of blood glucose, body weight, blood pressure, improvement in left ventricular ejection fraction, myocardial perfusion, atherosclerosis development, and endothelial function. Despite this, the reasons for a decreased risk of developing cardiovascular disease and reduced post-ischaemia damage are still poorly understood. The potentially beneficial effect of GLP-1 stimulation may rely on, among others, improved myocardial glucose metabolism. This review focuses on the dogma that GLP-1 receptor stimulation may provide beneficial cardiovascular effects, possibly due to enhanced myocardial energetic efficiency, by increasing myocardial glucose uptake. The published literature was systematically reviewed and the applied models evaluated since the outcomes of varying studies differ substantially. Reports on the effect of GLP-1R stimulation on myocardial metabolism are conflicting and should be evaluated carefully. There is limited and conflicting information on the impact of these agents in real life patients and while clinical outcome studies investigating the cardiovascular effects of GLP-1 based therapies have been initiated, the first two studies, both on DPP-4 inhibitors, designed specifically to evaluate cardiac safety reported largely neutral outcomes.
Collapse
Affiliation(s)
- Jan Hansen
- Department of Biomedicine-Pharmacology, Aarhus University, University Park 1240, DK-8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Gejl M, Lerche S, Mengel A, Møller N, Bibby BM, Smidt K, Brock B, Søndergaard H, Bøtker HE, Gjedde A, Holst JJ, Hansen SB, Rungby J. Influence of GLP-1 on myocardial glucose metabolism in healthy men during normo- or hypoglycemia. PLoS One 2014; 9:e83758. [PMID: 24400077 PMCID: PMC3882300 DOI: 10.1371/journal.pone.0083758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023] Open
Abstract
Background and Aims Glucagon-like peptide-1 (GLP-1) may provide beneficial cardiovascular effects, possibly due to enhanced myocardial energetic efficiency by increasing myocardial glucose uptake (MGU). We assessed the effects of GLP-1 on MGU in healthy subjects during normo- and hypoglycemia. Materials and Methods We included eighteen healthy men in two randomized, double-blinded, placebo-controlled cross-over studies. MGU was assessed with GLP-1 or saline infusion during pituitary-pancreatic normo- (plasma glucose (PG): 4.5 mM, n = 10) and hypoglycemic clamps (PG: 3.0 mM, n = 8) by positron emission tomography with 18fluoro-deoxy-glucose (18F-FDG) as tracer. Results In the normoglycemia study mean (± SD) age was 25±3 years, and BMI was 22.6±0.6 kg/m2 and in the hypoglycemia study the mean age was 23±2 years with a mean body mass index of 23±2 kg/m2. GLP-1 did not change MGU during normoglycemia (mean (+/− SD) 0.15+/−0.04 and 0.16+/−0.03 µmol/g/min, P = 0.46) or during hypoglycemia (0.16+/−0.03 and 0.13+/−0.04 µmol/g/min, P = 0.14). However, the effect of GLP-1 on MGU was negatively correlated to baseline MGU both during normo- and hypoglycemia, (P = 0.006, r2 = 0.64 and P = 0.018, r2 = 0.64, respectively) and changes in MGU correlated positively with the level of insulin resistance (HOMA 2IR) during hypoglycemia, P = 0.04, r2 = 0.54. GLP-1 mediated an increase in circulating glucagon levels at PG levels below 3.5 mM and increased glucose infusion rates during the hypoglycemia study. No differences in other circulating hormones or metabolites were found. Conclusions While GLP-1 does not affect overall MGU, GLP-1 induces changes in MGU dependent on baseline MGU such that GLP-1 increases MGU in subjects with low baseline MGU and decreases MGU in subjects with high baseline MGU. GLP-1 preserves MGU during hypoglycemia in insulin resistant subjects. ClinicalTrials.gov registration numbers: NCT00418288: (hypoglycemia) and NCT00256256: (normoglycemia).
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susanne Lerche
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Annette Mengel
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Martin Bibby
- Department of Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kamille Smidt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Birgitte Brock
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Albert Gjedde
- PET Centre, Aarhus University Hospital, Aarhus, Denmark ; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Rungby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark ; Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Progression in attenuating myocardial reperfusion injury: An overview. Int J Cardiol 2014; 170:261-9. [DOI: 10.1016/j.ijcard.2013.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 09/21/2013] [Accepted: 11/02/2013] [Indexed: 12/16/2022]
|
7
|
Kasama S, Furuya M, Toyama T, Ichikawa S, Kurabayashi M. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction. Eur Heart J 2008; 29:1485-94. [PMID: 18490430 DOI: 10.1093/eurheartj/ehn206] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a member of the natriuretic peptide family that exerts various biological effects via acting on the receptor-guanylyl cyclase system, increasing the content of intracellular cyclic guanosine monophosphate (cGMP). ANP was first identified as a diuretic/natriuretic and vasodilating hormone, but subsequent studies revealed that ANP has a very important function in the inhibition of the renin-angiotensin-aldosterone system (RAAS), endothelin synthesis, and sympathetic nerve activity. Evidence is also accumulating from recent work that ANP exerts its cardioprotective functions not only as a circulating hormone but also as a local autocrine and/or paracrine factor. ANP inhibits apoptosis and hypertrophy of cardiac myocytes, and inhibits proliferation and fibrosis of cardiac fibroblasts. Reperfusion of the ischaemic myocardium by percutaneous coronary intervention (PCI) reduces the infarct size and improves left ventricular (LV) function in patients with acute myocardial infarction (AMI). However, the benefits of PCI in AMI are limited by reperfusion injury. Animal studies have shown that ANP inhibits ischaemia/reperfusion injury, and reduces infarct size. We and others have recently shown that the intravenous administration of ANP inhibits RAAS, sympathetic nerve activity and reperfusion injury, prevents LV remodelling, and improves LV function in patients with AMI. ANP has a variety of cardioprotective effects and is considered to be a very promising adjunct drug for the reperfusion therapy in patients with AMI.
Collapse
Affiliation(s)
- Shu Kasama
- Department of Cardiovascular Medicine, Gunma University School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-0034, Japan.
| | | | | | | | | |
Collapse
|
8
|
Sosa V, Carbó R, Guarner V. Participation of glucose transporters on atrial natriuretic peptide-induced glucose uptake by adult and neonatal cardiomyocytes under oxygenation and hypoxia. Eur J Pharmacol 2007; 568:83-8. [PMID: 17537429 DOI: 10.1016/j.ejphar.2007.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/18/2007] [Accepted: 04/20/2007] [Indexed: 11/22/2022]
Abstract
Natriuretic peptides, beside their endocrine actions, have paracrine functions which include regulating glucose uptake and metabolism. Atrial natriuretic peptide (ANP) actions are mediated by cGMP which is implicated in the metabolic adaptation of glucose metabolism to oxygen deprivation in the heart. Although, it has been reported that ANP increases glucose uptake, cGMP decreases it. The aim of the present paper was to evaluate the role of the glucose transporters 1 and 4 (GLUTS), in glucose uptake produced by ANP in fatty acid-dependent adult cardiomyocytes and glucose-dependent neonatal cardiomyocytes under oxygenation and hypoxia, which reverts adult metabolism to glucose-dependent. We also explored if the calcium-calmodulin complex participates in ANP-induced increase in glucose uptake. Neonatal cells had a higher glucose uptake than adult cells and GLUT 1 participated in basal uptake in both cell types. Hypoxia increased glucose uptake in adult cardiomyocytes but not in neonatal cells and this increase in glucose uptake was mediated by GLUT4. ANP increased glucose uptake in both adult and neonatal myocytes, under oxygenation and hypoxia, and GLUT4 favored this increase. Neonatal cells were less sensitive to ANP. Trifluoperazine, a calcium-calmodulin blocker, inhibited the ANP-induced increase in glucose uptake. This suggests that ANP promotes GLUT 4 calcium-mediated recruitment to the cell membrane. In conclusion, glucose uptake regulation is one of the paracrine metabolic effects of ANP in adult and neonatal cardiomyocytes under oxygenation and hypoxia. This effect of this peptide could explain the beneficial effects found in the internal medicine and surgical fields.
Collapse
Affiliation(s)
- Verónica Sosa
- Physiology Department National Institute of Cardiology Ignacio Chávez, Mexico D.F
| | | | | |
Collapse
|