1
|
Dai B, Wang ZZ, Zhang H, Han MX, Zhang GX, Chen JW. Antihypertensive properties of a traditional Chinese medicine GAO-ZI-YAO in elderly spontaneous hypertensive rats. Biomed Pharmacother 2020; 131:110739. [PMID: 32932045 DOI: 10.1016/j.biopha.2020.110739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
AIM The present study aims to investigate the antihypertensive effect and the underlying mechanism of GAO-ZI-YAO, one of the traditional Chinese medicines, in elderly spontaneous hypertensive rats (SHR). METHODS 12-month-old male SHRs were randomly divided into five groups on the basis of treatment with different doses of GAO-ZI-YAO or angiotensin II receptor-1 blocker (ARB, Irbesartan) for four weeks. Systolic blood pressure (SBP), and serum levels of nitric oxide (NO), endothelin-1 (ET-1), angiotensin II (Ang II), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-2, IL-6, and tumor necrotic factor (TNF)-α were measured. The pathological changes of ventricular muscle and thoracic aorta were observed by hematoxylin-eosin staining (H&E). RESULTS GAO-ZI-YAO treatment reduced SBP in a dose-dependent manner accompanied by the inhibition of the development of cardiovascular remodeling. Although GAO-ZI-YAO treatment markedly increased serum levels of NO and suppressed serum levels of Ang II, this medicine did not affect the serum levels of ET-1 and VEGF. In addition, GAO-ZI-YAO also inhibited inflammatory response parameters (inflammatory cell infiltration in cardiac tissues and serum levels of IL-1β, IL-2, IL-6, and TNF-α) in a dose-dependent manner. CONCLUSION GAO-ZI-YAO exerts antihypertensive and anti-cardiovascular-remodeling effects in elderly SHR, which may be through regulation of NO, Ang II production, and inflammation.
Collapse
Affiliation(s)
- Bin Dai
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Zi-Zhang Wang
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hui Zhang
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Meng-Xiao Han
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Guo-Xing Zhang
- Department of Physiology and Neuroscience, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Jing-Wei Chen
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China.
| |
Collapse
|
2
|
Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can J Physiol Pharmacol 2018; 96:977-984. [PMID: 29969572 DOI: 10.1139/cjpp-2018-0115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) proteins are voltage-dependent ion channels, conducting both Na+ and K+, blocked by millimolar concentrations of extracellular Cs+ and modulated by cyclic nucleotides (mainly cAMP) that contribute crucially to the pacemaker activity in cardiac nodal cells and subsidiary pacemakers. Over the last decades, much attention has focused on HCN current, If, in non-pacemaker cardiac cells and its potential role in triggering arrhythmias. In fact, in addition to pacemakers, HCN current is constitutively present in the human atria and has long been proposed to sustain atrial arrhythmias associated to different cardiac pathologies or triggered by various modulatory signals (catecholamines, serotonin, natriuretic peptides). An atypical If occurs in diseased ventricular cardiomyocytes, its amplitude being linearly related to the severity of cardiac hypertrophy. The properties of atrial and ventricular If and its modulation by pharmacological interventions has been object of intense study, including the synthesis and characterization of new compounds able to block preferentially HCN1, HCN2, or HCN4 isoforms. Altogether, clues emerge for opportunities of future pharmacological strategies exploiting the unique properties of this channel family: the prevalence of different HCN subtypes in organs and tissues, the possibility to target HCN gain- or loss-of-function associated with disease, the feasibility of novel isoform-selective drugs, as well as the discovery of HCN-mediated effects for old medicines.
Collapse
Affiliation(s)
- Valentina Spinelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
4
|
Rodrigues Junior LF, de Azevedo Carvalho AC, Pimentel EB, Mill JG, Nascimento JHM. Chronic enalapril treatment increases transient outward potassium current in cardiomyocytes isolated from right ventricle of spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:225-234. [PMID: 27915452 DOI: 10.1007/s00210-016-1322-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023]
Abstract
It has been well established that chronic pressure overload resulting from hypertension leads to ventricular hypertrophy and electrophysiological remodeling. The transient outward potassium current (I to) reduction described in hypertensive animals delays ventricular repolarization, leading to complex ventricular arrhythmias and sudden death. Antihypertensive drugs, as angiotensin-converting enzyme inhibitors (ACEi), can restore I to and reduce the incidence of arrhythmic events. The purpose of this study was to evaluate the differential effects of long-term treatment with ACEi or direct-acting smooth muscle relaxant on the I to of left and right ventricle myocytes of spontaneously hypertensive rats (SHR). Animals were divided into four groups: normotensive Wistar-Kyoto rats (WKY), hypertensive (SHR), SHR treated for 6 weeks with enalapril 10 mg/kg/day (SHRE), or hydralazine 20 mg/kg/day (SHRH). Systolic blood pressure (SBP) and hypertrophy index (heart weight/body weight (HW/BW)) were determined at the end of treatment period. Cell membrane capacitance (C m) and I to were assessed in cardiomyocytes isolated from left and right ventricles. The SHR exhibited significantly increased SBP and HW/BW when compared to the WKY. The treated groups, SHRE and SHRH, restored normal SBP but not HW/BW. The SHR group exhibited a diminished I to in the left but not the right ventricle. Both the treated groups restored I to in the left ventricle. However, in the right ventricle, only enalapril treatment modified I to. The SHRE group exhibited a significant increase in I to compared to all the other groups. These findings suggest that enalapril may increase I to by a pressure overload independent mechanism.
Collapse
Affiliation(s)
- Luiz Fernando Rodrigues Junior
- Institute of Biophysics Carlos Chagas Filho, Laboratory of Cardiac Electrophysiology Antonio Paes de Carvalho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS Bloco G - Ilha do Fundao, 21, Rio de Janeiro, RJ, 941-902, Brazil.,Department of Physiological Sciences, Laboratory of Cardiovascular Biophysics, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina de Azevedo Carvalho
- Institute of Biophysics Carlos Chagas Filho, Laboratory of Cardiac Electrophysiology Antonio Paes de Carvalho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS Bloco G - Ilha do Fundao, 21, Rio de Janeiro, RJ, 941-902, Brazil
| | | | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - José Hamilton Matheus Nascimento
- Institute of Biophysics Carlos Chagas Filho, Laboratory of Cardiac Electrophysiology Antonio Paes de Carvalho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS Bloco G - Ilha do Fundao, 21, Rio de Janeiro, RJ, 941-902, Brazil.
| |
Collapse
|
5
|
Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X, Michalakis S, Shaltiel L, Weidinger M, Stieber J, Feil S, Feil R, Hofmann F, Wahl-Schott C, Biel M. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res 2011; 109:1015-23. [PMID: 21903939 DOI: 10.1161/circresaha.111.246173] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The hyperpolarization-activated current I(h) that is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) plays a key role in the control of pacemaker activity in sinoatrial node cells of the heart. By contrast, it is unclear whether I(h) is also relevant for normal function of cardiac ventricles. OBJECTIVE To study the role of the HCN3-mediated component of ventricular I(h) in normal ventricular function. METHODS AND RESULTS To test the hypothesis that HCN3 regulates the ventricular action potential waveform, we have generated and analyzed a HCN3-deficient mouse line. At basal heart rate, mice deficient for HCN3 displayed a profound increase in the T-wave amplitude in telemetric electrocardiographic measurements. Action potential recordings on isolated ventricular myocytes indicate that this effect was caused by an acceleration of the late repolarization phase in epicardial myocytes. Furthermore, the resting membrane potential was shifted to more hyperpolarized potentials in HCN3-deficient mice. Cardiomyocytes of HCN3-deficient mice displayed approximately 30% reduction of total I(h). At physiological ionic conditions, the HCN3-mediated current had a reversal potential of approximately -35 mV and displayed ultraslow deactivation kinetics. CONCLUSIONS We propose that HCN3 together with other members of the HCN channel family confer a depolarizing background current that regulates ventricular resting potential and counteracts the action of hyperpolarizing potassium currents in late repolarization. In conclusion, our data indicate that HCN3 plays an important role in shaping the cardiac action potential waveform.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M, Department Pharmazie, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Suffredini S, Mugelli A, Cerbai E. I(f) channels as a therapeutic target in heart disease. Future Cardiol 2009; 3:657-66. [PMID: 19804286 DOI: 10.2217/14796678.3.6.657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the normal heart, impulses are generated from the sinoatrial node. It is generally accepted that the pacemaker current, I(f), plays a major role in the spontaneous rhythmic activity. Recently, several electrophysiological and molecular data demonstrate that I(f) channels are present in embryonic and post-natal ventricular myocytes and undergo a downregulation during maturation. Interestingly, the I(f) current is re-expressed in some pathological conditions such as cardiac hypertrophy and heart failure. In these conditions, the overexpression of f-channels is a consequence of electrophysiological remodeling and may represent an arrhythmogenic mechanism in heart failure, a condition associated with high risk for sudden cardiac death. For its physiological and pathophysiological role and the availability of selective f-channel blockers, I(f) may be a suitable therapeutic target in heart failure.
Collapse
Affiliation(s)
- Silvia Suffredini
- University of Florence, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA) & Department of Pharmacology, Italy.
| | | | | |
Collapse
|
7
|
Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 2009; 89:847-85. [PMID: 19584315 DOI: 10.1152/physrev.00029.2008] [Citation(s) in RCA: 757] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a small subfamily of proteins within the superfamily of pore-loop cation channels. In mammals, the HCN channel family comprises four members (HCN1-4) that are expressed in heart and nervous system. The current produced by HCN channels has been known as I(h) (or I(f) or I(q)). I(h) has also been designated as pacemaker current, because it plays a key role in controlling rhythmic activity of cardiac pacemaker cells and spontaneously firing neurons. Extensive studies over the last decade have provided convincing evidence that I(h) is also involved in a number of basic physiological processes that are not directly associated with rhythmicity. Examples for these non-pacemaking functions of I(h) are the determination of the resting membrane potential, dendritic integration, synaptic transmission, and learning. In this review we summarize recent insights into the structure, function, and cellular regulation of HCN channels. We also discuss in detail the different aspects of HCN channel physiology in the heart and nervous system. To this end, evidence on the role of individual HCN channel types arising from the analysis of HCN knockout mouse models is discussed. Finally, we provide an overview of the impact of HCN channels on the pathogenesis of several diseases and discuss recent attempts to establish HCN channels as drug targets.
Collapse
Affiliation(s)
- Martin Biel
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung, Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.
| | | | | | | |
Collapse
|
8
|
Loch D, Chan V, Hoey A, Brown L. Rosuvastatin attenuates heart failure and cardiac remodelling in the ageing spontaneously hypertensive rat. Basic Clin Pharmacol Toxicol 2009; 105:262-70. [PMID: 19583711 DOI: 10.1111/j.1742-7843.2009.00440.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-hydroxy-3-methylglutaryl(HMG)-Coenzyme(Co)A reductase inhibitors such as rosuvastatin may improve clinical status in patients with hypertension and heart failure. The ageing spontaneously hypertensive rat (SHR) closely mimics the chronic heart failure disease process observed in humans. This study examined the structural and functional changes in the cardiovascular system of 15-month-old SHR and normotensive Wistar-Kyoto (WKY) rats treated with rosuvastatin (20 mg/kg/day perorally) for 24 weeks. Cardiovascular structure and function were monitored serially by echocardiography. At 21 months, ex vivo Langendorff, electrophysiological or histological studies were performed. Chronic rosuvastatin treatment attenuated elevations of left ventricular wet weight (mg/g body weight: 21-month WKY, 2.30 ± 0.04; 15-month SHR, 3.03 ± 0.08; 21-month SHR, 4.09 ± 0.10; 21-month SHR + rosuvastatin, 3.50 ± 0.13), myocardial extracellular matrix content (% left ventricular area: 21-month WKY, 7.6 ± 0.5; 15-month SHR, 13.2 ± 0.8; 21-month SHR 19.6 ± 1.0; 21-month SHR with rosuvastatin 14.6 ± 1.2) and diastolic stiffness (κ: 21-month WKY, 24.9 ± 0.6; 15-month SHR, 26.4 ± 0.4; 21-month SHR, 33.1 ± 0.8; 21-month SHR + rosuvastatin, 27.5 ± 0.6) as well as attenuating the deterioration of systolic and diastolic function (fractional shortening %: 21-month WKY, 66 ± 2; 15-month SHR, 51 ± 3; 21-month SHR, 38 ± 3; 21-month SHR + rosuvastatin, 52 ± 4). There was no effect on the increased systolic blood pressure, plasma low-density lipoprotein concentrations or the prolonged action potential duration. Thus, chronic rosuvastatin treatment may attenuate myocardial dysfunction in heart failure by preventing fibrosis.
Collapse
Affiliation(s)
- David Loch
- School of Biomedical Sciences, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
9
|
Sartiani L, Stillitano F, Cerbai E, Mugelli A. Electrophysiologic changes in heart failure: focus on pacemaker channels. Can J Physiol Pharmacol 2009; 87:84-90. [PMID: 19234571 DOI: 10.1139/y08-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure is a common clinical syndrome occurring as a result of cardiac overload, injury, and a complex interplay among genetic, neurohormonal, inflammatory, and biochemical factors. Occurrence of arrhythmias in heart failure is largely a consequence of disease-induced electrical remodeling of cardiac myocytes, a phenomenon consisting of alterations of ion channels and the ion-transport function that predispose patients to develop lethal arrhythmias. In most cases, the mechanism is the rapid onset of a ventricular tachyarrhythmia progressing to ventricular fibrillation and hemodynamic compromise. This paper highlights some of the important changes in ion channel expression and function that underlie electrical remodeling of the failing heart. Particular attention will be focused on the presence, features, and pharmacologic modulation of f channels expressed in ventricular cardiac myocytes.
Collapse
Affiliation(s)
- Laura Sartiani
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (C.I.M.M.B.A.), Università degli Studi di Firenze, Viale Pieraccini 6, Firenze 50139, Italy
| | | | | | | |
Collapse
|
10
|
|
11
|
Furukawa T, Kurokawa J. Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 2006; 41:753-61. [PMID: 16962130 DOI: 10.1016/j.yjmcc.2006.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is an adaptive process against increased work loads; however, hypertrophy also presents substrates for lethal ventricular arrhythmias, resulting in sudden arrhythmic deaths that account for about one third of deaths in cardiac hypertrophy. To maintain physiological cardiac function in the face of increased work loads, hypertrophied cardiomyocytes undergo K(+) channel remodeling that provides a prolongation in action potential duration and an increase in Ca(2+) entry. Increased Ca(2+) entry, in turn, activates signaling mechanisms including a calcineruin/NFAT pathway to permit remodeling of the K(+) channels. This results in a positive feedback loop between the K(+) channel remodeling and altered Ca(2+) handling; this loop may represent a potential therapeutic target against sudden arrhythmic deaths in cardiac hypertrophy. The purposes of this review are to: (1) discuss types of K(+) channels and their mRNA that undergo remodeling in cardiac hypertrophy; (2) report on recent research on molecular mechanisms of K(+) channel remodeling; and (3) address physiological events underlying new therapeutic modalities to ameliorate arrhythmias and sudden death in cardiac hypertrophy.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| | | |
Collapse
|
12
|
Abstract
Pacemaker channels play a major role in the generation of sinoatrial rhythmic activity. However, their expression is not confined to specialized myocardial cells, such as primary and subsidiary pacemakers. Electrophysiological and molecular data collected over the last ten years have demonstrated that f-channels are also present in non-pacemaker cardiomyocytes, and become upregulated in cardiac hypertrophy and failure. Mislocalized expression and/or overexpression of f-channels are a consequence of electrophysiological remodeling and, from a clinical point of view, may represent an arrhythmogenic mechanism in heart failure, a condition associated with a high risk for sudden cardiac death. The potential arrhythmogenic role of I(f) and the availability of selective f-channel blockers cause I(f) to be a suitable therapeutic target in heart disease.
Collapse
Affiliation(s)
- Elisabetta Cerbai
- Center of Molecular Medicine CIMMBA, Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, 50139 Firenze, Italy.
| | | |
Collapse
|
13
|
Raimondi L, Lodovici M, Visioli F, Sartiani L, Cioni L, Alfarano C, Banchelli G, Pirisino R, Cecchi E, Cerbai E, Mugelli A. n–3 polyunsaturated fatty acids supplementation decreases asymmetric dimethyl arginine and arachidonate accumulation in aging spontaneously hypertensive rats. Eur J Nutr 2004; 44:327-33. [PMID: 15368071 DOI: 10.1007/s00394-004-0528-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Plasma accumulation of asymmetric dimethyl arginine (ADMA) is considered as a risk factor for endothelial dysfunction and a strong predictor for coronary heart diseases. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) increasing plasma levels have been positively associated with reduced cardiovascular mortality with a mechanism( s) yet unclear. We hypothesised that ADMA reduction might be a part of EPA and DHA beneficial effects on the cardiovascular system. AIM To verify this hypothesis we measured ADMA plasma levels in aged spontaneously hypertensive rats (SHR) supplemented for 8 weeks with EPA and DHA. METHODS 16-month-old SHR were supplemented with EPA and DHA (EPA-DHA) or with olive oil (1 g/kg/day; OLIVE). At the end of the treatments, the plasma of each animal was analysed for 1) the total fatty acid composition, by gas-cromatography, 2) ADMA levels, by high pressure liquid chromatography, 3) nitrite and homocysteine concentration by chemiluminescence and by polarisation immunoassay respectively. Moreover, the activity of dimethyl arginine dimethyl amino hydrolase, the main enzyme involved in ADMA metabolism, was measured spectrophotometrically in the kidney from each rat. RESULTS Animals supplemented with EPA and DHA showed: 1) lower ADMA and arachidonate plasma levels (587.4 +/- 113.7 nM and 0.49 +/- 0.11 mM respectively) than the values found in OLIVE rats (1365 +/- 399 nM and 1.07 +/- 0.07 mM respectively) 2) higher nitrite content (0.73 +/- 0.05 microM) than OLIVE (0.23 +/- 0.08 microM). CONCLUSIONS EPA and DHA supplementation reduced ADMA accumulation in SHR in parallel with a decrease of arachidonate availability. This finding suggests that the control of the inflammatory ground of endothelium might play an important role in EPA and DHA effect on this novel and highly predictive cardiovascular risk factor.
Collapse
Affiliation(s)
- Laura Raimondi
- Dept. of Pharmacology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Raimondi L, De Paoli P, Mannucci E, Lonardo G, Sartiani L, Banchelli G, Pirisino R, Mugelli A, Cerbai E. Restoration of cardiomyocyte functional properties by angiotensin II receptor blockade in diabetic rats. Diabetes 2004; 53:1927-33. [PMID: 15220222 DOI: 10.2337/diabetes.53.7.1927] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent evidence suggests that blockade of the renin-angiotensin system ameliorates diabetes-induced cardiac dysfunction, but the mechanisms involved in this process remain elusive. We investigated the effect of treatment with an angiotensin II receptor blocker, losartan, on the metabolic and electrophysiological properties of cardiomyocytes isolated from streptozotocin-induced diabetic (STZ) rats. Glucose uptake and electrophysiological properties were measured in ventricular cardiomyocytes from normoglycemic and STZ-induced diabetic rats given vehicle or 20 mg x kg(-1) x day(-1) losartan for 8 weeks. Insulin and beta-adrenergic stimulation failed to increase the glucose uptake rate in STZ cardiomyocytes, whereas the alpha-adrenergic effect persisted. Concurrently, a typical prolongation of action potential duration (APD) and a decrease of transient outward current (I(to)) were recorded in patch-clamped STZ myocytes. Treatment with losartan did not affect body weight or glycemia of diabetic or control animals. However, in losartan-treated STZ-induced diabetic rats, beta-adrenergic-mediated enhancement of glucose uptake was completely recovered. APD and I(to) were similar to those measured in losartan-treated control rats. A significant (P < 0.0001) correlation between metabolic and electrophysiological parameters was found in control, diabetic, and losartan-treated diabetic rats. Thus, angiotensin receptor blockade protects the heart from the development of cellular alterations typically associated with diabetes. These data suggest that angiotensin receptor blockers may represent a new therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Laura Raimondi
- Department of Preclinical and Clinical Pharmacology, Center of Molecular Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|