1
|
Germanos AA, Arora S, Zheng Y, Goddard ET, Coleman IM, Ku AT, Wilkinson S, Song H, Brady NJ, Amezquita RA, Zager M, Long A, Yang YC, Bielas JH, Gottardo R, Rickman DS, Huang FW, Ghajar CM, Nelson PS, Sowalsky AG, Setty M, Hsieh AC. Defining cellular population dynamics at single-cell resolution during prostate cancer progression. eLife 2022; 11:e79076. [PMID: 36511483 PMCID: PMC9747158 DOI: 10.7554/elife.79076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.
Collapse
Affiliation(s)
- Alexandre A Germanos
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Molecular and Cellular Biology ProgramSeattleUnited States
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ye Zheng
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erica T Goddard
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Robert A Amezquita
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Michael Zager
- Center for Data Visualization, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Annalysa Long
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Yu Chi Yang
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jason H Bielas
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Raphael Gottardo
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Cyrus M Ghajar
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Manu Setty
- Translational Data Science Integrated Research Center, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| |
Collapse
|
2
|
Obesity and Androgen Receptor Signaling: Associations and Potential Crosstalk in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13092218. [PMID: 34066328 PMCID: PMC8125357 DOI: 10.3390/cancers13092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an increasing health challenge and is recognized as a breast cancer risk factor. Although obesity-related breast cancer mechanisms are not fully understood, this association has been linked to impaired hormone secretion by the dysfunctional obese adipose tissue (hyperplasic and hypertrophic adipocytes). Among these hormones, altered production of androgens and adipokines is observed, and both, are independently associated with breast cancer development. In this review, we describe and comment on the relationships reported between these factors and breast cancer, focusing on the biological associations that have helped to unveil the mechanisms by which signaling from androgens and adipokines modifies the behavior of mammary epithelial cells. Furthermore, we discuss the potential crosstalk between the two most abundant adipokines produced by the adipose tissue (adiponectin and leptin) and the androgen receptor, an emerging marker in breast cancer. The identification and understanding of interactions among adipokines and the androgen receptor in cancer cells are necessary to guide the development of new therapeutic approaches in order to prevent and cure obesity and breast cancer.
Collapse
|
3
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Thomas-Jardin SE, Dahl H, Kanchwala MS, Ha F, Jacob J, Soundharrajan R, Bautista M, Nawas AF, Robichaux D, Mistry R, Anunobi V, Xing C, Delk NA. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model. Prostate 2020; 80:133-145. [PMID: 31730277 PMCID: PMC7000272 DOI: 10.1002/pros.23925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The androgen receptor (AR) nuclear transcription factor is a therapeutic target for prostate cancer (PCa). Unfortunately, patients can develop resistance to AR-targeted therapies and progress to lethal disease, underscoring the importance of understanding the molecular mechanisms that underlie treatment resistance. Inflammation is implicated in PCa initiation and progression and we have previously reported that the inflammatory cytokine, interleukin-1 (IL-1), represses AR messenger RNA (mRNA) levels and activity in AR-positive (AR+ ) PCa cell lines concomitant with the upregulation of prosurvival biomolecules. Thus, we contend that IL-1 can select for AR-independent, treatment-resistant PCa cells. METHODS To begin to explore how IL-1 signaling leads to the repression of AR mRNA levels, we performed comprehensive pathway analysis on our RNA sequencing data from IL-1-treated LNCaP PCa cells. Our pathway analysis predicted nuclear factor kappa B (NF-κB) p65 subunit (RELA), a canonical IL-1 signal transducer, to be significantly active and potentially regulate many genes, including AR. We used small interfering RNA (siRNA) to silence the NF-κB family of transcription factor subunits, RELA, RELB, c-REL, NFKB1, or NFKB2, in IL-1-treated LNCaP, C4-2, and C4-2B PCa cell lines. C4-2 and C4-2B cell lines are castration-resistant LNCaP sublines and represent progression toward metastatic PCa disease, and we have previously shown that IL-1 represses AR mRNA levels in C4-2 and C4-2B cells. RESULTS siRNA revealed that RELA alone is sufficient to mediate IL-1 repression of AR mRNA and AR activity. Intriguingly, while LNCaP cells are more sensitive to IL-1-mediated repression of AR than C4-2 and C4-2B cells, RELA siRNA led to a more striking derepression of AR mRNA levels and AR activity in C4-2 and C4-2B cells than in LNCaP cells. CONCLUSIONS These data indicate that there are RELA-independent mechanisms that regulate IL-1-mediated AR repression in LNCaP cells and suggest that the switch to RELA-dependent IL-1 repression of AR in C4-2 and C4-2B cells reflects changes in epigenetic and transcriptional programs that evolve during PCa disease progression.
Collapse
MESH Headings
- Cell Line, Tumor
- Disease Progression
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-1/metabolism
- Interleukin-1alpha/pharmacology
- Male
- NF-kappa B/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
| | - Haley Dahl
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Mohammed S. Kanchwala
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Freedom Ha
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Joan Jacob
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Reshma Soundharrajan
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Monica Bautista
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Afshan F. Nawas
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Dexter Robichaux
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Ragini Mistry
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Vanessa Anunobi
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Chao Xing
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nikki A. Delk
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
5
|
Vickman RE, Yang J, Lanman NA, Cresswell GM, Zheng F, Zhang C, Doerge RW, Crist SA, Mesecar AD, Hu CD, Ratliff TL. Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNFα in Castration-Resistant Prostate Cancer. Mol Cancer Res 2019; 17:1253-1263. [PMID: 30824526 PMCID: PMC6548593 DOI: 10.1158/1541-7786.mcr-18-1054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood. In these studies, single-cell mRNA sequencing was conducted to compare the transcriptomes of SULT2B1b knockdown (KD) versus Control KD LNCaP cells. Over 2,000 differentially expressed genes were identified along with alterations in numerous canonical pathways, including the death receptor signaling pathway. The studies herein demonstrate that SULT2B1b KD increases TNFα expression in prostate cancer cells and results in NF-κB activation in a TNF-dependent manner. More importantly, SULT2B1b KD significantly enhances TNF-mediated apoptosis in both TNF-sensitive LNCaP cells and TNF-resistant C4-2 cells. Overexpression of SULT2B1b in LNCaP cells also decreases sensitivity to TNF-mediated cell death, suggesting that SULT2B1b modulates pathways dictating the TNF sensitivity capacity of prostate cancer cells. Probing human prostate cancer patient datasets further supports this work by providing evidence that SULT2B1b expression is inversely correlated with TNF-related genes, including TNF, CD40LG, FADD, and NFKB1. Together, these data provide evidence that SULT2B1b expression in prostate cancer cells enhances resistance to TNF and may provide a growth advantage. In addition, targeting SULT2B1b may induce an enhanced therapeutic response to TNF treatment in advanced prostate cancer. IMPLICATIONS: These data suggest that SULT2B1b expression enhances resistance to TNF and may promote prostate cancer.
Collapse
Affiliation(s)
- Renee E Vickman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Jiang Yang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Nadia A Lanman
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Faye Zheng
- Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Chi Zhang
- Department of Medical and Molecular Genomics, Indiana University, Indianapolis, Indiana
| | - R W Doerge
- Department of Statistics and Data Science; Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Scott A Crist
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Andrew D Mesecar
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Chang-Deng Hu
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
6
|
Lo CH, Lynch CC. Multifaceted Roles for Macrophages in Prostate Cancer Skeletal Metastasis. Front Endocrinol (Lausanne) 2018; 9:247. [PMID: 29867776 PMCID: PMC5968094 DOI: 10.3389/fendo.2018.00247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Bone-metastatic prostate cancer is common in men with recurrent castrate-resistant disease. To date, therapeutic focus has largely revolved around androgen deprivation therapy (ADT) and chemotherapy. While second-generation ADTs and combination ADT/chemotherapy approaches have been successful in extending overall survival, the disease remains incurable. It is clear that molecular and cellular components of the cancer-bone microenvironment contribute to the disease progression and potentially to the emergence of therapy resistance. In bone, metastatic prostate cancer cells manipulate bone-forming osteoblasts and bone-resorbing osteoclasts to produce growth and survival factors. While osteoclast-targeted therapies such as bisphosphonates have improved quality of life, emerging data have defined important roles for additional cells of the bone microenvironment, including macrophages and T cells. Disappointingly, early clinical trials with checkpoint blockade inhibitors geared at promoting cytotoxic T cell response have not proved as promising for prostate cancer compared to other solid malignancies. Macrophages, including bone-resident osteomacs, are a major component of the bone marrow and play key roles in coordinating normal bone remodeling and injury repair. The role for anti-inflammatory macrophages in the progression of primary prostate cancer is well established yet relatively little is known about macrophages in the context of bone-metastatic prostate cancer. The focus of the current review is to summarize our knowledge of macrophage contribution to normal bone remodeling and prostate-to-bone metastasis, while also considering the impact of standard of care and targeted therapies on macrophage behavior in the tumor-bone microenvironment.
Collapse
Affiliation(s)
- Chen Hao Lo
- Cancer Biology Program, University of South Florida, Tampa, FL, United States
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Conor C. Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
7
|
Dhingra P, Martinez-Fundichely A, Berger A, Huang FW, Forbes AN, Liu EM, Liu D, Sboner A, Tamayo P, Rickman DS, Rubin MA, Khurana E. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol 2017; 18:141. [PMID: 28750683 PMCID: PMC5530464 DOI: 10.1186/s13059-017-1266-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
We report a novel computational method, RegNetDriver, to identify tumorigenic drivers using the combined effects of coding and non-coding single nucleotide variants, structural variants, and DNA methylation changes in the DNase I hypersensitivity based regulatory network. Integration of multi-omics data from 521 prostate tumor samples indicated a stronger regulatory impact of structural variants, as they affect more transcription factor hubs in the tissue-specific network. Moreover, crosstalk between transcription factor hub expression modulated by structural variants and methylation levels likely leads to the differential expression of target genes. We report known prostate tumor regulatory drivers and nominate novel transcription factors (ERF, CREB3L1, and POU2F2), which are supported by functional validation.
Collapse
Affiliation(s)
- Priyanka Dhingra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Alexander Martinez-Fundichely
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Adeline Berger
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Franklin W Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Cancer Program, The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
| | - Andre Neil Forbes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Eric Minwei Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Deli Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Department of Urology, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Andrea Sboner
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
| | - Pablo Tamayo
- Cancer Program, The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA.
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Ekta Khurana
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA.
| |
Collapse
|
8
|
Mizokami A, Izumi K, Konaka H, Kitagawa Y, Kadono Y, Narimoto K, Nohara T, Bahl AK, Namiki M. Understanding prostate-specific antigen dynamics in monitoring metastatic castration-resistant prostate cancer: implications for clinical practice. Asian J Androl 2017; 19:143-148. [PMID: 27270339 PMCID: PMC5312209 DOI: 10.4103/1008-682x.179159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Availability of novel hormonal therapies as well as docetaxel and cabazitaxel treatment for metastatic castration-resistant prostate cancer (CRPC) has changed the outlook for this group of patients with improvements in progression-free survival and overall survival. Physicians often diagnose the progression of prostate cancer using serum prostate-specific antigen (PSA). However, serum PSA is not always correlated with the clinical status in CRPC. To evaluate the PSA dynamics with greater precision, understanding of the control of PSA and of the mechanisms of development of CRPC is needed. Moreover, it is necessary to use new hormonal therapies with an appropriate timing to optimally improve the prognosis and the QOL of the patients. In the present review, we ascertain the PSA dynamics and the mechanisms of the development of CRPC to assist in optimal utilization of the new treatments for mCRPC.
Collapse
Affiliation(s)
- Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Hiroyuki Konaka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Yasuhide Kitagawa
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Kazutaka Narimoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Takahiro Nohara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| | - Amit K Bahl
- Bristol Haematology and Oncology Centre, University Hospitals Bristol, Bristol, BS2 8ED, UK
| | - Mikio Namiki
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi Kanazawa, 920-8640 Japan
| |
Collapse
|
9
|
Identification of Filamin-A and -B as potential biomarkers for prostate cancer. Future Sci OA 2016; 3:FSO161. [PMID: 28344825 PMCID: PMC5351499 DOI: 10.4155/fsoa-2016-0065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Aim: A novel strategy for prostate cancer (PrCa) biomarker discovery is described. Materials & methods: In vitro perturbation biology, proteomics and Bayesian causal analysis identified biomarkers that were validated in in vitro models and clinical specimens. Results: Filamin-B (FLNB) and Keratin-19 were identified as biomarkers. Filamin-A (FLNA) was found to be causally linked to FLNB. Characterization of the biomarkers in a panel of cells revealed differential mRNA expression and regulation. Moreover, FLNA and FLNB were detected in the conditioned media of cells. Last, in patients without PrCa, FLNA and FLNB blood levels were positively correlated, while in patients with adenocarcinoma the relationship is dysregulated. Conclusion: These data support the strategy and the potential use of the biomarkers for PrCa. The goal of this study was to use a novel strategy that combines biological outputs with Bayesian network learning to identify potential biomarkers for prostate cancer (PrCa). This methodology identified two proteins, filamin B and keratin-19, as potential biomarkers for PrCa. The network map also identified a direct linkage between filamin B and filamin A, which is a protein that has previously been identified as playing a role in PrCa etiology. The identified proteins were then validated by examining their levels in a panel of PrCa cell lines and in human plasma samples.
Collapse
|
10
|
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res 2016; 45:619-630. [PMID: 27672034 PMCID: PMC5314794 DOI: 10.1093/nar/gkw855] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC.
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Miao L, Holley AK, Zhao Y, St Clair WH, St Clair DK. Redox-mediated and ionizing-radiation-induced inflammatory mediators in prostate cancer development and treatment. Antioxid Redox Signal 2014; 20:1481-500. [PMID: 24093432 PMCID: PMC3936609 DOI: 10.1089/ars.2013.5637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. RECENT ADVANCES Ionizing radiation (IR)-generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. CRITICAL ISSUES Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. FUTURE DIRECTIONS Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues.
Collapse
Affiliation(s)
- Lu Miao
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | |
Collapse
|
12
|
Diabetes protects from prostate cancer by downregulating androgen receptor: new insights from LNCaP cells and PAC120 mouse model. PLoS One 2013; 8:e74179. [PMID: 24058525 PMCID: PMC3769234 DOI: 10.1371/journal.pone.0074179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
Type 2 diabetes has been associated with decreased risk of prostate cancer in observational studies, and this inverse association has been recently confirmed in several large cohort studies. However the mechanisms involved in this protective effect remain to be elucidated. The aim of the present study was to explore whether different features of type 2 diabetes (hyperinsulinemia, hyperglycemia and tumor necrosis factor alpha [TNF-α]) protect against the development of prostate cancer. For this purpose LNCaP cells were used for in vitro experiments and nude mice in which PAC120 (hormone-dependent human prostate cancer) xenografts had been implanted were used for in vivo examinations. We provide evidence that increasing glucose concentrations downregulate androgen receptor (AR) mRNA and protein levels through NF-κB activation in LNCaP cells. Moreover, there was a synergic effect of glucose and TNFα in downregulating the AR in LNCaP cells. By contrast, insulin had no effect on AR regulation. In vivo experiments showed that streptozotocin-induced diabetes (STZ-DM) produces tumor growth retardation and a significant reduction in AR expression in PAC120 prostate cancer mice. In conclusion, our results suggest that hyperglycemia and TNF-α play an important role in protecting against prostate cancer by reducing androgen receptor levels via NF-κB.
Collapse
|
13
|
Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer 2012; 2012:128965. [PMID: 23326670 PMCID: PMC3543804 DOI: 10.1155/2012/128965] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023] Open
Abstract
Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate antitumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This paper will address some of these issues and also discuss the therapeutic implications.
Collapse
|
14
|
Ribeiro R, Monteiro C, Cunha V, Oliveira MJ, Freitas M, Fraga A, Príncipe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Pina F, Mota-Pinto A, Lopes C, Medeiros R. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:32. [PMID: 22469146 PMCID: PMC3379940 DOI: 10.1186/1756-9966-31-32] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our findings suggest that the PP depot has the potential to modulate extra-prostatic tumor cells' microenvironment through increased MMPs activity and to promote prostate cancer cell survival and migration. Adipocyte-derived factors likely have a relevant proliferative and motile role.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang QX, Zhang XY, Zhang ZM, Lu W, Liu L, Li G, Cai ZM, Gui YT, Chang C. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells. Asian J Androl 2011; 14:294-300. [PMID: 22002438 DOI: 10.1038/aja.2011.94] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR(-/y)) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR(-/y) mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/AR-regulated genes, including 164 upregulated and 439 downregulated, were found in both S-AR(-/y) mice testis and TM4/AR cells. Using informatics analysis, the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis. Together, using gene analysis in both S-AR(-/y) mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.
Collapse
Affiliation(s)
- Qiao-Xia Zhang
- The Guangdong and Shenzhen Key Lab of Male Reproductive Medicine and Genetics, Sex Hormone Research Center, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang GX, Wu L, Li J, Hu M, Gong Y, Cheng H, Laxman B, Vellaichamy A, Shankar S, Li Y, Dhanasekaran SM, Morey R, Barrette T, Lonigro RJ, Tomlins SA, Varambally S, Qin ZS, Chinnaiyan AM. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 2010; 17:443-54. [PMID: 20478527 PMCID: PMC2874722 DOI: 10.1016/j.ccr.2010.03.018] [Citation(s) in RCA: 658] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/22/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.
Collapse
Affiliation(s)
- Jindan Yu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg Medical School, Chicago, Illinois 60611
| | - Jianjun Yu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ram-Shankar Mani
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Qi Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Chad J. Brenner
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - George X. Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Longtao Wu
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg Medical School, Chicago, Illinois 60611
| | - James Li
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ming Hu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Yusong Gong
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Hong Cheng
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bharathi Laxman
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Adaikkalam Vellaichamy
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Yong Li
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Saravana M. Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Roger Morey
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Terrence Barrette
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Robert J. Lonigro
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Scott A. Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sooryanarayana Varambally
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Zhaohui S. Qin
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
17
|
Wang D, Montgomery RB, Schmidt LJ, Mostaghel EA, Huang H, Nelson PS, Tindall DJ. Reduced tumor necrosis factor receptor-associated death domain expression is associated with prostate cancer progression. Cancer Res 2010; 69:9448-56. [PMID: 19934328 DOI: 10.1158/0008-5472.can-09-1903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By using LNCaP and its derivative cell lines, we first observed an association between tumor necrosis factor-alpha (TNF-alpha) resistance and hormone independence. Moreover, we found that the expression of tumor necrosis factor receptor-associated death domain (TRADD) was reduced in androgen deprivation-independent cells compared with that in androgen deprivation-dependent cells. TRADD is a crucial transducer for TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation. Knocking down TRADD expression in LNCaP cells impaired TNF-alpha-induced NF-kappaB activation and androgen receptor repression, whereas overexpression of TRADD in C4-2B cells restored their sensitivity to TNF-alpha. Finally, we found that androgen deprivation reduces TRADD expression in vitro and in vivo, suggesting that androgen deprivation therapy may promote the development of TNF-alpha resistance by reducing TRADD expression during prostate cancer progression.
Collapse
Affiliation(s)
- Diping Wang
- Department of Urology Research/Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Shiota M, Yokomizo A, Tada Y, Inokuchi J, Tatsugami K, Kuroiwa K, Uchiumi T, Fujimoto N, Seki N, Naito S. Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol Endocrinol 2009; 24:114-27. [PMID: 19884383 DOI: 10.1210/me.2009-0302] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are currently few successful therapies for castration-resistant prostate cancer (CRPC). CRPC is thought to result from augmented activation of the androgen/androgen receptor (AR) signaling pathway, which could be enhanced by AR cofactors. In this study, peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) was found to be an AR cofactor. PGC-1alpha interacted with the N-terminal domain of AR, was involved in the N- and C-terminal interaction of AR, and enhanced the DNA-binding ability of AR to androgen-responsive elements in the prostate-specific antigen enhancer and promoter regions to increase the transcription of AR target genes. Silencing of PGC-1alpha suppressed cell growth of AR-expressing prostate cancer (PCa) cells by inducing cell-cycle arrest at the G(1) phase, similar to inhibition of androgen/AR signaling. Furthermore, PGC-1alpha knock-down also suppressed cell growth in the castration-resistant LNCaP-derivatives. These findings indicate that PGC-1alpha is involved in the proliferation of AR-expressing PCa cells by acting as an AR coactivator. Modulation of PGC-1alpha expression or function may offer a useful strategy for developing novel therapeutics for PCa, including CRPC, which depends on AR signaling by overexpressing AR and its coactivators.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu HC, Chang CH, Chen HY, Tsai FJ, Tsai JJP, Chen WC. p53 Gene Codon 72 Polymorphism but Not Tumor Necrosis Factor-α Gene Is Associated with Prostate Cancer. Urol Int 2008; 73:41-6. [PMID: 15263792 DOI: 10.1159/000078803] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 08/27/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE A polymorphism of gene p53 codon 72 is associated with various cancer formations. Tumor necrosis factor-alpha (TNF-alpha) one of the cytokines secreted by macrophages in response to inflammation and is also related to cancer formation. We aimed to evaluate the association between prostate cancer and the polymorphisms of the TNF-alpha gene promoter -308 and p53 gene codon 72. PATIENTS AND METHODS In our study, a normal control group of 126 healthy people and 96 patients with prostate cancer were examined. The polymorphism (G/A) of TNF-alpha gene was detected by polymerase chain reaction (PCR)-based restriction analysis (Nco I endonuclease) and the polymorphism of p53 gene was detected by two PCRs (one for proline and one for arginine form). RESULTS There was a significant difference in the distribution of codon 72 polymorphism the p53 gene between prostate cancer patients and the normal controls (p < 0.001). The proline form of p53 gene codon 72 was significantly higher than the arginine form, with an odds ratio of 2.606 (95% CI = 1.052-6.455). This difference was also revealed in the tumor staging (p = 0.035) as the proline form was significantly higher in the metastasis group of prostate cancer. There were no statistical differences in the distribution of -308 polymorphism of the TNF-alpha gene between cancer patients and the control subjects (p = 1.0). CONCLUSION Prostate cancer appears to be associated with the p53 gene codon 72 polymorphisms, but not with the TNF-alpha gene. The proline form of p53 gene codon 72 might be a more significant risk factor for the development of metastasis than the arginine form.
Collapse
Affiliation(s)
- Hsi-Chin Wu
- Department of Urology, China Medical College Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Ko S, Shi L, Kim S, Song CS, Chatterjee B. Interplay of nuclear factor-kappaB and B-myb in the negative regulation of androgen receptor expression by tumor necrosis factor alpha. Mol Endocrinol 2007; 22:273-86. [PMID: 17975021 DOI: 10.1210/me.2007-0332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased androgen receptor (AR) levels are associated with prostate cancer progression to androgen independence and therapy resistance. Evidence has suggested that chronic inflammation is closely linked to various cancers including prostate cancer. Herein we show that the proinflammatory cytokine TNFalpha negatively regulates AR mRNA and protein expression and reduces androgen sensitivity in androgen-dependent LNCaP human prostate cancer cells. Decreased AR expression results from transcription repression involving essential in cis interaction of nuclear factor-kappaB (NF-kappaB) with the B-myb transcription factor at a composite genomic element in the 5'-untranslated region of AR. The negative regulation was abrogated when NF-kappaB activity was inhibited by a superrepressor of the inhibitory kappaB protein. In contrast, androgen-independent C4-2 (LNCaP-derived) cells fail to show AR down-regulation by TNFalpha, despite expression of B-myb and TNFalpha-induced NF-kappaB activity similar to that in LNCaP cells. The negatively regulated AR gene chromatin region showed TNFalpha-dependent enrichment of B-myb and the NF-kappaB proteins p65 and p50. In parallel, the histone deacetylase 1, corepressor silencing mediator of retinoid and thyroid hormone receptor and the corepressor-associated scaffold protein mSin3A were recruited to the inhibitory site. In C4-2 cells, neither NF-kappaB and B-myb, nor any of the corepressor components, were detected at the negative site in response to TNFalpha. Apoptosis was induced in TNFalpha-treated LNCaP cells, likely in part due to the down-regulation of AR. The androgen-independent, AR-expressing C4-2 and C4-2B (derived from C4-2) cells were resistant to TNFalpha-induced apoptosis. The results linking androgen dependence to the NF-kappaB and AR pathways may be insightful in identifying novel treatment targets for prostate cancer.
Collapse
Affiliation(s)
- Soyoung Ko
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
21
|
Cheng J, Bawa T, Lee P, Gong L, Yeh ETH. Role of desumoylation in the development of prostate cancer. Neoplasia 2006; 8:667-76. [PMID: 16925949 PMCID: PMC1601940 DOI: 10.1593/neo.06445] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMO is a novel ubiquitin-like protein that can covalently modify a large number of nuclear proteins. SUMO modification has emerged as an important regulatory mechanism for protein function and localization. Sumoylation is a dynamic process that is mediated by activating (E1), conjugating (E2), and ligating (E3) enzymes and is readily reversed by a family of SUMO-specific proteases (SENPs). Since SUMO was discovered 10 years ago, the biologic contribution of this posttranslational modification has remained unclear. In this review, we report that SENP1, a member of the SENP family, is overexpressed in human prostate cancer specimens. The induction of SENP1 is observed with the chronic exposure of prostate cancer cells to androgen and/or interleukin (IL) 6. SENP1 upregulation modulates the transcriptional activity of androgen receptors (ARs) and c-Jun, as well as cyclin D1 expression. Initial in vivo data from transgenic mice indicate that overexpression of SENP1 in the prostate leads to the development of prostatic intraepithelial neoplasia at an early age. Collectively, these studies indicate that overexpression of SENP1 is associated with prostate cancer development.
Collapse
Affiliation(s)
- Jinke Cheng
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 2004; 90:2312-6. [PMID: 15150588 PMCID: PMC2409519 DOI: 10.1038/sj.bjc.6601814] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are important multifunctional cytokines involved in tumour growth and metastasis. In this study, we have measured serial levels of serum IL-6 and TNF-α in prostate cancer patients. A total of 80 patients with carcinoma of the prostate and 38 controls were studied. Three patient groups, with small bulk localised, large volume localised and metastatic prostate cancer, were assessed. Serum IL-6 and TNF-α levels were measured and correlated with clinicopathological variables and patient survival. Serial changes in these cytokines were also assessed and related to disease progression in 40 patients with recurrent prostate cancer. Serum IL-6 levels in patients with metastatic disease (9.3±7.8 pg ml−1) were higher than those in patients with localised disease (1.3±0.8 pg ml−1, P<0.001). Significantly elevated levels of TNF-α were found in metastatic disease (6.3±3.6 pg ml−1) compared with localised disease (1.1±0.5 pg ml−1, P<0.001). The levels of both cytokines were directly correlated with the extent of the disease. Serial analysis in 40 patients with recurrent tumours showed that both cytokines became elevated at the point of prostate-specific antigen progression. In conclusion, these results suggest that IL-6 and TNF-α correlate with the extent of disease in patients with prostate cancer and may be monitored in conjunction with other disease markers.
Collapse
Affiliation(s)
- V Michalaki
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK
| | - K Syrigos
- Third Department of Medicine, University of Athens, 40 Kifisias and Arkadias, 115 25 Athens, Greece
| | - P Charles
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology & Medicine, London, UK
| | - J Waxman
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK. E-mail:
| |
Collapse
|
23
|
Mizokami A, Koh E, Fujita H, Maeda Y, Egawa M, Koshida K, Honma S, Keller ET, Namiki M. The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res 2004; 64:765-71. [PMID: 14744796 DOI: 10.1158/0008-5472.can-03-0130] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite an initial response to androgen deprivation therapy, prostate cancer (PCa) progresses eventually from an androgen-dependent to an androgen-independent phenotype. One of the mechanisms of relapse is antiandrogen withdrawal phenomenon caused by mutation of 877th amino acid of androgen receptor (AR). In the present study, we established a method to measure the concentration of androstenediol (adiol) in prostate tissue. We found that adiol maintains a high concentration in PCa tissue even after androgen deprivation therapy. Furthermore, adiol is a stronger activator of mutant AR in LNCaP PCa cells and induces more cell proliferation, prostate-specific antigen (PSA) mRNA expression, and PSA promoter than dihydrotestosterone (DHT). Because antiandrogen, bicalutamide, blocked adiol activity in LNCaP cells, it was suggested that adiol effect was mediated through AR. However, high concentration of bicalutamide was necessary to block completely adiol activity. These effects were specific to LNCaP cells because adiol had less effect in PC-3 PCa cells transfected with wild-type AR than DHT and had similar effect in PC-3 cells transfected with mutant AR. The mechanism that adiol activates mutant AR in LNCaP cells did not result from the increased affinity to mutant AR or from AR's association with coactivator ARA70. However, low concentration of adiol induced more AR nuclear translocation than DHT in LNCaP cells and not PC-3 cells transfected with AR. These results indicate that adiol may cause the progression of PCa even after hormone therapy.
Collapse
|
24
|
Zheng X, Chang RL, Cui XX, Avila GE, Lee S, Lu YP, Lou YR, Shih WJ, Lin Y, Reuhl K, Newmark H, Rabson A, Conney AH. Inhibitory Effect of 12-O-Tetradecanoylphorbol-13-acetate Alone or in Combination with All-trans-Retinoic Acid on the Growth of LNCaP Prostate Tumors in Immunodeficient Mice. Cancer Res 2004; 64:1811-20. [PMID: 14996744 DOI: 10.1158/0008-5472.can-03-2848] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinically achievable concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA; 0.16-0.32 nM) and all-trans-retinoic acid (ATRA; 0.5-1 micro M) had a synergistic inhibitory effect on the growth of cultured LNCaP prostate cancer cells, and apoptosis was markedly stimulated. In additional studies, NCr immunodeficient mice received s.c. injection with LNCaP cells in Matrigel. After 4-6 weeks, mice with well-established tumors received i.p. injection with vehicle, TPA (0.16 nmol/g body weight), ATRA (0.5 nmol/g body weight), or TPA+ATRA in vehicle once a day for 46 days. Tumor growth occurred in all of the vehicle-treated control mice. The percentage of animals with some tumor regression after 21 days of treatment was 0% for the control group, 31% for the ATRA group, 62% for the TPA group, and 100% for the TPA+ATRA group (13 mice/group). Although treatment of the mice with TPA or TPA+ATRA continued to inhibit tumor growth for the duration of the 46-day study, treatment of the mice with ATRA alone did not inhibit tumor growth beyond 28 days of daily injections (6 mice/group). Mechanistic studies indicated that treatment of the mice with TPA or TPA+ATRA for 46 days increased apoptosis in the tumors, and treatment with TPA+ATRA also decreased the mitotic index. Because the dose of TPA used in this study was effective and resulted in clinically achievable blood levels, clinical trials with TPA alone or in combination with ATRA in patients with prostate cancer may be warranted.
Collapse
Affiliation(s)
- Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tsai M, Chen W, Tsai F. Correlation of p21 gene codon 31 polymorphism and TNF-alpha gene polymorphism with nasopharyngeal carcinoma. J Clin Lab Anal 2002; 16:146-50. [PMID: 11968052 PMCID: PMC6808169 DOI: 10.1002/jcla.10032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background p21 (WAF1/CIP1) is a downstream protein from p53 and can arrest the cell cycle at the G1/S phase in response to signal from p53. The most frequently seen polymorphic site is at codon 31, where a base change from AGC to AGA causes an amino acid change from serine to arginine. Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that is secreted from macrophages, and is related to a sequence of events in the response to inflammation and cancer formation. The TNF-alpha gene promoter -308 G/A polymorphism has been reported to be associated with some cancers. In this study, these polymorphisms were proposed to be a candidate genetic marker of nasopharyngeal carcinoma (NPC). The distribution was analyzed in 47 NPC patients and a control group of 119 healthy people. The association of the p21 codon 31 polymorphism with NPC was detected by polymerase chain reaction (PCR) and restriction analysis by Blp I endonuclease, and calculated by the chi-square test. The TNF-alpha gene promoter -308 G/A polymorphism was identified by Nco I endonuclease. The distribution of the gene p21 codon 31 polymorphisms showed no significant difference between the two groups. The serine form of p21 codon 31 was more prominent in smokers than nonsmokers among the NPC patients (P < 0.05). There was no significant difference in the distribution of TNF-alpha gene promoter -308 G/A polymorphism between control and cancer patients. The results indicate that the gene p21 codon 31 polymorphism and TNF-alpha promoter -308 polymorphism are not correlated with NPC. However, the difference between smokers and nonsmokers suggests that an environmental factor may be involved in association with the p21 gene in the formation of NPC.
Collapse
Affiliation(s)
- Ming‐Hsui Tsai
- Department of Otolaryngology, China Medical College Hospital, Taichung, Taiwan
| | - Wen‐Chi Chen
- Department of Medical Genetics, China Medical College Hospital, Taichung, Taiwan
- Department of Urology, China Medical College Hospital, Taichung, Taiwan
| | - Fuu‐Jen Tsai
- Department of Medical Genetics, China Medical College Hospital, Taichung, Taiwan
- Department of Pediatrics, China Medical College Hospital, Taichung, Taiwan
| |
Collapse
|