1
|
Abou Taka M, Dugbartey GJ, Richard-Mohamed M, McLeod P, Jiang J, Major S, Arp J, O’Neil C, Liu W, Gabril M, Moussa M, Luke P, Sener A. Evaluating the Effects of Kidney Preservation at 10 °C with Hemopure and Sodium Thiosulfate in a Rat Model of Syngeneic Orthotopic Kidney Transplantation. Int J Mol Sci 2024; 25:2210. [PMID: 38396887 PMCID: PMC10889495 DOI: 10.3390/ijms25042210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.
Collapse
Affiliation(s)
- Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
| | - George J. Dugbartey
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
- London Health Sciences Centre, Department of Surgery, Division of Urology, London, ON N6A 5A5, Canada
| | - Mahms Richard-Mohamed
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
| | - Sally Major
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
| | - Jacqueline Arp
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
| | - Caroline O’Neil
- The Molecular Pathology Core, Robarts Research Institute, London, ON N6A 5A5, Canada
| | - Winnie Liu
- London Health Sciences Centre, Department of Pathology and Laboratory Medicine, London, ON N6A 5A5, Canada (M.G.); (M.M.)
| | - Manal Gabril
- London Health Sciences Centre, Department of Pathology and Laboratory Medicine, London, ON N6A 5A5, Canada (M.G.); (M.M.)
| | - Madeleine Moussa
- London Health Sciences Centre, Department of Pathology and Laboratory Medicine, London, ON N6A 5A5, Canada (M.G.); (M.M.)
| | - Patrick Luke
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- London Health Sciences Centre, Department of Surgery, Division of Urology, London, ON N6A 5A5, Canada
- London Health Sciences Centre, Department of Pathology and Laboratory Medicine, London, ON N6A 5A5, Canada (M.G.); (M.M.)
| | - Alp Sener
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (G.J.D.); (M.R.-M.); (P.L.)
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- London Health Sciences Centre, Department of Surgery, Division of Urology, London, ON N6A 5A5, Canada
| |
Collapse
|
2
|
Foguenne M, MacMillan S, Kron P, Nath J, Devresse A, De Meyer M, Michel M, Hosgood S, Darius T. Current Evidence and Future Perspectives to Implement Continuous and End-Ischemic Use of Normothermic and Oxygenated Hypothermic Machine Perfusion in Clinical Practice. J Clin Med 2023; 12:3207. [PMID: 37176647 PMCID: PMC10178893 DOI: 10.3390/jcm12093207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The use of high-risk renal grafts for transplantation requires the optimization of pretransplant assessment and preservation reconditioning strategies to decrease the organ discard rate and to improve short- and long-term clinical outcomes. Active oxygenation is increasingly recognized to play a central role in dynamic preservation strategies, independent of preservation temperature, to recondition mitochondria and to restore the cellular energy profile. The oxygen-related decrease in mitochondrial succinate accumulation ameliorates the harmful effects of ischemia-reperfusion injury. The differences between normothermic and hypothermic machine perfusion with regard to organ assessment, preservation, and reconditioning, as well as the logistic and economic implications, are factors to take into consideration for implementation at a local level. Therefore, these different techniques should be considered complementary to the perfusion strategy selected depending on functional intention and resource availability. This review provides an overview of the current clinical evidence of normothermic and oxygenated hypothermic machine perfusion, either as a continuous or end-ischemic preservation strategy, and future perspectives.
Collapse
Affiliation(s)
- Maxime Foguenne
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Serena MacMillan
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Philipp Kron
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK
| | - Arnaud Devresse
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Nephrology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Martine De Meyer
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mourad Michel
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Darius
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Tchouta LN, Alghanem F, Rojas-Pena A, Bartlett RH. Prolonged (≥24 Hours) Normothermic (≥32 °C) Ex Vivo Organ Perfusion: Lessons From the Literature. Transplantation 2021; 105:986-998. [PMID: 33031222 DOI: 10.1097/tp.0000000000003475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For 2 centuries, researchers have studied ex vivo perfusion intending to preserve the physiologic function of isolated organs. If it were indeed possible to maintain ex vivo organ viability for days, transplantation could become an elective operation with clinicians methodically surveilling and reconditioning allografts before surgery. To this day, experimental reports of successfully prolonged (≥24 hours) organ perfusion are rare and have not translated into clinical practice. To identify the crucial factors necessary for successful perfusion, this review summarizes the history of prolonged normothermic ex vivo organ perfusion. By examining successful techniques and protocols used, this review outlines the essential elements of successful perfusion, limitations of current perfusion systems, and areas where further research in preservation science is required.
Collapse
Affiliation(s)
- Lise N Tchouta
- Department of Surgery, Columbia University Medical Center, New York, NY
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Fares Alghanem
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Central Michigan University College of Medicine, Mount Pleasant, MI
| | | | | |
Collapse
|
5
|
Novel therapeutic strategies for renal graft preservation and their potential impact on the future of clinical transplantation. Curr Opin Organ Transplant 2019; 24:385-390. [DOI: 10.1097/mot.0000000000000660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
|
7
|
Normothermic Ex Vivo Kidney Perfusion Reduces Warm Ischemic Injury of Porcine Kidney Grafts Retrieved After Circulatory Death. Transplantation 2019; 102:1262-1270. [PMID: 29683999 DOI: 10.1097/tp.0000000000002245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cold storage is poorly tolerated by kidney grafts retrieved after donation after circulatory death. It has been determined that normothermic ex vivo kidney perfusion (NEVKP) preservation decreases injury by minimizing cold ischemic storage. The impact of NEVKP on warm ischemic injury is unknown. METHODS We compared pig kidneys retrieved after 30 minutes warm ischemia and immediate transplantation (no-preservation) with grafts that were exposed to 30 minutes of warm ischemia plus 8-hour NEVKP or plus 8-hour static cold storage (SCS). RESULTS After transplantation, the NEVKP group demonstrated lower daily serum creatinine levels indicating better early graft function compared with no-preservation (P = 0.02) or SCS group (P < 0.001). In addition, NEVKP preserved grafts had a significantly lower grade of tubular injury and interstitial inflammation 30 minutes after reperfusion compared to grafts without any storage (injury score, NEVKP 1-2 vs no-preservation, 2-2, P = 0.029; inflammation score, NEVKP, 0-0.5 vs no-preservation, 1-2; P = 0.002), although it did not reach significance level when compared to the SCS group (injury score, 1-2, P = 0.071; inflammation score, 1-1; P = 0.071). Regeneration was assessed 30 minutes after reperfusion by Ki-67 staining. The NEVKP group demonstrated significantly higher number of Ki-67-positive cells: 9.2 ± 3.7 when compared with SCS group (3.9 ± 1.0, P = 0.015) and no-preservation group (4.2 ± 0.7, P = 0.04). CONCLUSIONS In this porcine model of donation after circulatory death kidney transplantation NEVKP reduced kidney injury and improved graft function when compared with no-preservation. The results suggest that NEVKP does not cause additional damage to grafts during the preservation period, but may reverse the negative effects of warm ischemic insult itself and promotes regeneration.
Collapse
|
8
|
Adams TD, Hosgood SA, Nicholson ML. Physiological effects of altering oxygenation during kidney normothermic machine perfusion. Am J Physiol Renal Physiol 2019; 316:F823-F829. [PMID: 30785351 DOI: 10.1152/ajprenal.00178.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney normothermic machine perfusion (NMP) has historically used a 95% O2-5% CO2 gas mixture. Using a porcine model of organ retrieval, NMP, and reperfusion, we tested the hypothesis that reducing perfusate oxygenation ( PpO2 ) would be detrimental to renal function and cause injury. In the minimal ischemic injury experiment, kidneys sustained 10 min of warm ischemia and 2 h of static cold storage before 1 h of NMP with either 95%, 25%, or 12% O2 with 5% CO2 and N2 balance. In the clinical injury experiment, kidneys with 10-min warm ischemia and 17-h static cold storage underwent 1-h NMP with the above gas combinations or 18-h static cold storage as a control. They were then reperfused with whole blood and 95% O2 for 3 h. Overall, reducing PpO2 did not significantly influence renal function in either experiment. Furthermore, there were no differences in the injury markers urinary neutrophil gelatinase-associated lipocalin or tissue high-motility group box protein 1. In the minimal ischemic injury experiment, a PpO2 of 25% significantly reduced renal blood flow and increased vascular resistance. Oxygen delivery, consumption, and extraction (oxygen extraction ratio) were significantly greater at 95% PpO2 . In the clinical injury experiment, renal blood flow was significantly increased at 25% PpO2 and Na+ excretion decreased. At 95% PpO2 , the oxygen content and oxygen extraction ratio were significantly increased. During reperfusion, renal blood flow was significantly increased in the 25% group. The control group pH was significantly decreased compared with the 25% group. Our data suggest that reducing PpO2 during NMP does not have detrimental effects on renal function or markers of injury.
Collapse
Affiliation(s)
- Thomas D Adams
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital , Cambridge , United Kingdom
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital , Cambridge , United Kingdom.,Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital , Leicester , United Kingdom
| | - Michael L Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital , Cambridge , United Kingdom.,Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital , Leicester , United Kingdom
| |
Collapse
|
9
|
Kaths JM, Hamar M, Echeverri J, Linares I, Urbanellis P, Cen JY, Ganesh S, Dingwell LS, Yip P, John R, Bagli D, Mucsi I, Ghanekar A, Grant D, Robinson LA, Selzner M. Normothermic ex vivo kidney perfusion for graft quality assessment prior to transplantation. Am J Transplant 2018; 18:580-589. [PMID: 28889600 DOI: 10.1111/ajt.14491] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) represents a novel approach for graft preservation and functional improvement in kidney transplantation. We investigated whether NEVKP also allows graft quality assessment before transplantation. Kidneys from 30-kg pigs were recovered in a model of heart-beating donation (group A) after 30 minutes (group B) or 60 minutes (group C) (n = 5/group) of warm ischemia. After 8 hours of NEVKP, contralateral kidneys were resected, grafts were autotransplanted, and the pigs were followed for 3 days. After transplantation, renal function measured based on peak serum creatinine differed significantly among groups (P < .05). Throughout NEVKP, intrarenal resistance was lowest in group A and highest in group C (P < .05). intrarenal resistance at the initiation of NEVKP correlated with postoperative renal function (P < .001 at NEVKP hour 1). Markers of acid-base homeostasis (pH, HCO3- , base excess) differed among groups (P < .05) and correlated with posttransplantation renal function (P < .001 for pH at NEVKP hour 1). Similarly, lactate and aspartate aminotransferase were lowest in noninjured grafts versus donation after circulatory death kidneys (P < .05) and correlated with posttransplantation kidney function (P < .001 for lactate at NEVKP hour 1). In conclusion, assessment of perfusion characteristics and clinically available perfusate biomarkers during NEVKP allows the prediction of posttransplantation graft function. Thus, NEVKP might allow decision-making regarding whether grafts are suitable for transplantation.
Collapse
Affiliation(s)
- J Moritz Kaths
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mátyás Hamar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Juan Echeverri
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ivan Linares
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Peter Urbanellis
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jun Yu Cen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sujani Ganesh
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Luke S Dingwell
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Paul Yip
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rohan John
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Departments of Surgery (Urology) & Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Istvan Mucsi
- Multi Organ Transplant Program, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anand Ghanekar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - David Grant
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Krezdorn N, Tasigiorgos S, Wo L, Turk M, Lopdrup R, Kiwanuka H, Win TS, Bueno E, Pomahac B. Tissue conservation for transplantation. Innov Surg Sci 2017; 2:171-187. [PMID: 31579751 PMCID: PMC6754021 DOI: 10.1515/iss-2017-0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological changes that occur during ischemia and subsequent reperfusion cause damage to tissues procured for transplantation and also affect long-term allograft function and survival. The proper preservation of organs before transplantation is a must to limit these injuries as much as possible. For decades, static cold storage has been the gold standard for organ preservation, with mechanical perfusion developing as a promising alternative only recently. The current literature points to the need of developing dedicated preservation protocols for every organ, which in combination with other interventions such as ischemic preconditioning and therapeutic additives offer the possibility of improving organ preservation and extending it to multiple times its current duration. This review strives to present an overview of the current body of knowledge with regard to the preservation of organs and tissues destined for transplantation.
Collapse
Affiliation(s)
- Nicco Krezdorn
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Sotirios Tasigiorgos
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luccie Wo
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvee Turk
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Lopdrup
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Harriet Kiwanuka
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thet-Su Win
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ericka Bueno
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Machine perfusion technologies provide an opportunity for improved preservation, organ assessment, and resuscitation of damaged kidneys. This review summarizes the recent advances in hypothermic and normothermic kidney machine perfusion technologies. RECENT FINDINGS Modifications to the perfusion conditions with the addition of oxygen during hypothermic machine perfusion can support a low level of metabolism, which in experimental settings improves graft function. Normothermic machine perfusion technologies are evolving in different directions including short-duration resuscitation, more prolonged periods of perfusion, and the transition between hypothermic and normothermic conditions. Clinical trials are ongoing in both hypothermic and normothermic settings. Functional parameters can be used to assess kidney quality and although normothermic machine perfusion may hold an advantage over hypothermic machine perfusion, new metabolomic, proteomic, and genomic technologies may be applied in the future to both technologies to provide more rigorous information on kidney quality. Promoting recovery by introducing an intervention during perfusion is an attractive area of research and therapies targeting the endothelium are a particular area of interest. SUMMARY A great deal of research is still needed to optimize and logistically place hypothermic and normothermic perfusion technologies. In the future, we may progress toward organ-tailored preservation whereby high-risk kidneys can undergo assessment and repair before transplantation.
Collapse
|
12
|
Kaths JM, Echeverri J, Linares I, Cen JY, Ganesh S, Hamar M, Urbanellis P, Yip P, John R, Bagli D, Mucsi I, Ghanekar A, Grant D, Robinson LA, Selzner M. Normothermic Ex Vivo Kidney Perfusion Following Static Cold Storage-Brief, Intermediate, or Prolonged Perfusion for Optimal Renal Graft Reconditioning? Am J Transplant 2017; 17:2580-2590. [PMID: 28375588 DOI: 10.1111/ajt.14294] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/26/2017] [Accepted: 03/26/2017] [Indexed: 01/25/2023]
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) demonstrated superior results compared to hypothermic storage in donation after circulatory death (DCD) kidney transplantation. It is unknown whether an optimal perfusion time exists following hypothermic storage to allow for the recovery of renal grafts from cold ischemic injury. In a porcine model of DCD kidney autotransplantation, the impact of initial static cold storage (SCS) (8 h) followed by various periods of NEVKP recovery was investigated: group A, 8 hSCS only (control); group B, 8 hSCS + 1 hNEVKP (brief NEVKP); group C, 8 hSCS + 8 hNEVKP (intermediate NEVKP); and group D, 8 hSCS + 16 hNEVKP (prolonged NEVKP). All grafts were preserved and transplanted successfully. One animal in group D was sacrificed and excluded by postoperative day 3 due to hind limb paralysis, but demonstrated good renal function. Postoperative graft assessment during 8 days' follow-up demonstrated lowest levels of peak serum creatinine for intermediate (C) and prolonged (D) NEVKP (p = 0.027). Histological assessment on day 8 demonstrated a significant difference in tubular injury (p = 0.001), with highest values for group B. These results suggest that longer periods of NEVKP following SCS are feasible and safe for postponing surgical transplant procedure and superior to brief NEVKP, reducing the damage caused during cold ischemic storage of renal grafts.
Collapse
Affiliation(s)
- J M Kaths
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J Echeverri
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - I Linares
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Y Cen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Ganesh
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - M Hamar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - P Urbanellis
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - P Yip
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - R John
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - D Bagli
- Departments of Surgery (Urology) & Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Mucsi
- Multi Organ Transplant Program, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A Ghanekar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - D Grant
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - L A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - M Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Continuous Normothermic Ex Vivo Kidney Perfusion Improves Graft Function in Donation After Circulatory Death Pig Kidney Transplantation. Transplantation 2017; 101:754-763. [PMID: 27467537 DOI: 10.1097/tp.0000000000001343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Donation after circulatory death (DCD) is current clinical practice to increase the donor pool. Deleterious effects on renal graft function are described for hypothermic preservation. Therefore, current research focuses on investigating alternative preservation techniques, such as normothermic perfusion. METHODS We compared continuous pressure-controlled normothermic ex vivo kidney perfusion (NEVKP) with static cold storage (SCS) in a porcine model of DCD autotransplantation. After 30 minutes of warm ischemia, right kidneys were removed from 30-kg Yorkshire pigs and preserved with 8-hour NEVKP or in 4°C histidine-tryptophan-ketoglutarate solution (SCS), followed by kidney autotransplantation. RESULTS Throughout NEVKP, electrolytes and pH values were maintained. Intrarenal resistance decreased over the course of perfusion (0 hour, 1.6 ± 0.51 mm per minute vs 7 hours, 0.34 ± 0.05 mm Hg/mL per minute, P = 0.005). Perfusate lactate concentration also decreased (0 hour, 10.5 ± 0.8 vs 7 hours, 1.4 ± 0.3 mmol/L, P < 0.001). Cellular injury markers lactate dehydrogenase and aspartate aminotransferase were persistently low (lactate dehydrogenase < 100 U/L, below analyzer range; aspartate aminotransferase 0 hour, 15.6 ± 9.3 U/L vs 7 hours, 24.8 ± 14.6 U/L, P = 0.298). After autotransplantation, renal grafts preserved with NEVKP demonstrated lower serum creatinine on days 1 to 7 (P < 0.05) and lower peak values (NEVKP, 5.5 ± 1.7 mg/dL vs SCS, 11.1 ± 2.1 mg/dL, P = 0.002). The creatinine clearance on day 4 was increased in NEVKP-preserved kidneys (NEVKP, 39 ± 6.4 vs SCS, 18 ± 10.6 mL/min; P = 0.012). Serum neutrophil gelatinase-associated lipocalin at day 3 was lower in the NEVKP group (1267 ± 372 vs 2697 ± 1145 ng/mL, P = 0.029). CONCLUSIONS Continuous pressure-controlled NEVKP improves renal function in DCD kidney transplantation. Normothermic ex vivo kidney perfusion might help to decrease posttransplant delayed graft function rates and to increase the donor pool.
Collapse
|
14
|
Eight-Hour Continuous Normothermic Ex Vivo Kidney Perfusion Is a Safe Preservation Technique for Kidney Transplantation: A New Opportunity for the Storage, Assessment, and Repair of Kidney Grafts. Transplantation 2017; 100:1862-70. [PMID: 27479157 DOI: 10.1097/tp.0000000000001299] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypothermic kidney storage causes preservation injury and is poorly tolerated by renal grafts. We investigated whether static cold storage (SCS) can be safely replaced with a novel technique of pressure-controlled normothermic ex vivo kidney perfusion (NEVKP) in heart-beating donor kidney transplantation. METHODS Right kidneys were removed from 30 kg Yorkshire pigs in a model of heart-beating donation and either preserved in cold histidine-tryptophan-ketoglutarate solution for 8 hours (n = 5), or subjected to 8 hours of pressure-controlled NEVKP (n = 5) followed by renal heterotopic autotransplantation. RESULTS During NEVKP, physiologic perfusion conditions were maintained with low intrarenal resistance and normal electrolyte and pH parameters. Aspartate aminotransferase and lactate dehydrogenase as injury markers were below the detectable analyzer range (<4 and <100 U/L, respectively). Perfusate lactate concentration decreased from baseline until the end of perfusion (10.38 ± 0.76 mmol/L vs 1.22 ± 0.26 mmol/L; P < 0.001). Posttransplantation, animals transplanted with NEVKP versus SCS grafts demonstrated similar serum creatinine peak levels (NEVKP, 2.0 ± 0.5 vs SCS 2.7 ± 0.7 mg/dL; P = 0.11) and creatinine clearance on day 10 (NEVKP, 65.9 ± 18.8 mL/min vs SCS 61.2 ± 15.6 mL/min; P = 0.74). After 10 days of follow-up, animals transplanted with NEVKP grafts had serum creatinine and blood urea nitrogen values comparable to their basal levels (P = 0.49 and P = 0.59), whereas animals transplanted with SCS grafts had persistently elevated serum creatinine and blood urea nitrogen when compared with basal levels (P = 0.01 and P = 0.03). CONCLUSIONS Continuous pressure-controlled NEVKP is feasible and safe in good quality heart-beating donor kidney grafts. It maintains a physiologic environment and excellent graft function ex vivo during preservation without causing graft injury.
Collapse
|
15
|
Ex vivo machine perfusion for renal graft preservation. Transplant Rev (Orlando) 2017; 32:1-9. [PMID: 28483273 DOI: 10.1016/j.trre.2017.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
Kidney transplantation is the treatment of choice for end-stage renal disease. Despite its superiority over dialysis, the persisting organ shortage remains a major drawback. Additional sources to increase the donor pool are grafts recovered from extended criteria donors (ECD) and donation after circulatory death (DCD). Although transplantation of marginal grafts demonstrates promising outcomes, increased rates of primary non-function, delayed graft function, and reduced graft survival have been reported. Cold ischemic injury, caused by static cold storage is a significant risk factor for poor outcome. Machine perfusion (MP) at various temperatures bears the potential to improve organ preservation, assessment, and repair. While hypothermic machine perfusion (HMP) is well established in clinical practice, modified HMP, subnormothermic machine perfusion (SMP), and normothermic machine perfusion (NMP) are novel emerging strategies with the potential to significantly improve the outcome of marginal kidney grafts. This review summarizes findings and recent advances from pre-clinical and clinical machine perfusion studies, organized by temperature, and discusses potential future developments for graft assessment and repair.
Collapse
|
16
|
Kaths JM, Cen JY, Chun YM, Echeverri J, Linares I, Ganesh S, Yip P, John R, Bagli D, Mucsi I, Ghanekar A, Grant DR, Robinson LA, Selzner M. Continuous Normothermic Ex Vivo Kidney Perfusion Is Superior to Brief Normothermic Perfusion Following Static Cold Storage in Donation After Circulatory Death Pig Kidney Transplantation. Am J Transplant 2017; 17:957-969. [PMID: 27647696 DOI: 10.1111/ajt.14059] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023]
Abstract
Hypothermic preservation is known to cause renal graft injury, especially in donation after circulatory death (DCD) kidney transplantation. We investigated the impact of cold storage (SCS) versus short periods of normothermic ex vivo kidney perfusion (NEVKP) after SCS versus prolonged, continuous NEVKP with near avoidance of SCS on kidney function after transplantation. Following 30 min of warm ischemia, kidneys were removed from 30-kg Yorkshire pigs and preserved for 16 h with (A) 16 h SCS, (B) 15 h SCS + 1 h NEVKP, (C) 8 h SCS + 8 h NEVKP, and (D) 16 h NEVKP. After contralateral kidney resection, grafts were autotransplanted and pigs followed up for 8 days. Perfusate injury markers such as aspartate aminotransferase and lactate dehydrogenase remained low; lactate decreased significantly until end of perfusion in groups C and D (p < 0.001 and p = 0.002). Grafts in group D demonstrated significantly lower serum creatinine peak when compared to all other groups (p < 0.001) and 24-h creatinine clearance at day 3 after surgery was significantly higher (63.4 ± 19.0 mL/min) versus all other groups (p < 0.001). Histological assessment on day 8 demonstrated fewer apoptotic cells in group D (p = 0.008). In conclusion, prolonged, continuous NEVKP provides superior short-term outcomes following DCD kidney transplantation versus SCS or short additional NEVKP following SCS.
Collapse
Affiliation(s)
- J M Kaths
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of General, Visceral, and Transplant Surgery, University Medical Center Mainz, Mainz, Germany
| | - J Y Cen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Y M Chun
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - J Echeverri
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - I Linares
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - S Ganesh
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - P Yip
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - R John
- Laboratory Medicine & Pathobiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - D Bagli
- Departments of Surgery (Urology) & Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Mucsi
- Multi Organ Transplant Program, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A Ghanekar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - D R Grant
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - L A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - M Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
|
18
|
Hameed AM, Pleass HC, Wong G, Hawthorne WJ. Maximizing kidneys for transplantation using machine perfusion: from the past to the future: A comprehensive systematic review and meta-analysis. Medicine (Baltimore) 2016; 95:e5083. [PMID: 27749583 PMCID: PMC5059086 DOI: 10.1097/md.0000000000005083] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The two main options for renal allograft preservation are static cold storage (CS) and machine perfusion (MP). There has been considerably increased interest in MP preservation of kidneys, however conflicting evidence regarding its efficacy and associated costs have impacted its scale of clinical uptake. Additionally, there is no clear consensus regarding oxygenation, and hypo- or normothermia, in conjunction with MP, and its mechanisms of action are also debated. The primary aims of this article were to elucidate the benefits of MP preservation with and without oxygenation, and/or under normothermic conditions, when compared with CS prior to deceased donor kidney transplantation. METHODS Clinical (observational studies and prospective trials) and animal (experimental) articles exploring the use of renal MP were assessed (EMBASE, Medline, and Cochrane databases). Meta-analyses were conducted for the comparisons between hypothermic MP (hypothermic machine perfusion [HMP]) and CS (human studies) and normothermic MP (warm (normothermic) perfusion [WP]) compared with CS or HMP (animal studies). The primary outcome was allograft function. Secondary outcomes included graft and patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. Subgroup analyses were conducted in expanded criteria (ECD) and donation after circulatory (DCD) death donors. RESULTS A total of 101 studies (63 human and 38 animal) were included. There was a lower rate of delayed graft function in recipients with HMP donor grafts compared with CS kidneys (RR 0.77; 95% CI 0.69-0.87). Primary nonfunction (PNF) was reduced in ECD kidneys preserved by HMP (RR 0.28; 95% CI 0.09-0.89). Renal function in animal studies was significantly better in WP kidneys compared with both HMP (standardized mean difference [SMD] of peak creatinine 1.66; 95% CI 3.19 to 0.14) and CS (SMD of peak creatinine 1.72; 95% CI 3.09 to 0.34). MP improves renal preservation through the better maintenance of tubular, glomerular, and endothelial function and integrity. CONCLUSIONS HMP improves short-term outcomes after renal transplantation, with a less clear effect in the longer-term. There is considerable room for modification of the process to assess whether superior outcomes can be achieved through oxygenation, perfusion fluid manipulation, and alteration of perfusion temperature. In particular, correlative experimental (animal) data provides strong support for more clinical trials investigating normothermic MP.
Collapse
Affiliation(s)
- Ahmer M. Hameed
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research
- Department of Surgery, Westmead Hospital, Westmead
- Sydney Medical School, University of Sydney, Sydney
| | - Henry C. Pleass
- Department of Surgery, Westmead Hospital, Westmead
- Sydney Medical School, University of Sydney, Sydney
- Department of Surgery, Royal Prince Alfred Hospital, Camperdown
| | - Germaine Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research
- Sydney School of Public Health, University of Sydney
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research
- Department of Surgery, Westmead Hospital, Westmead
- Sydney Medical School, University of Sydney, Sydney
| |
Collapse
|
19
|
|
20
|
Kaths JM, Spetzler VN, Goldaracena N, Echeverri J, Louis KS, Foltys DB, Strempel M, Yip P, John R, Mucsi I, Ghanekar A, Bagli D, Robinson L, Selzner M. Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation. J Vis Exp 2015:e52909. [PMID: 26275014 PMCID: PMC4544894 DOI: 10.3791/52909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Kidney transplantation has become a well-established treatment option for patients with end-stage renal failure. The persisting organ shortage remains a serious problem. Therefore, the acceptance criteria for organ donors have been extended leading to the usage of marginal kidney grafts. These marginal organs tolerate cold storage poorly resulting in increased preservation injury and higher rates of delayed graft function. To overcome the limitations of cold storage, extensive research is focused on alternative normothermic preservation methods. Ex vivo normothermic organ perfusion is an innovative preservation technique. The first experimental and clinical trials for ex vivo lung, liver, and kidney perfusions demonstrated favorable outcomes. In addition to the reduction of cold ischemic injury, the method of normothermic kidney storage offers the opportunity for organ assessment and repair. This manuscript provides information about kidney retrieval, organ preservation techniques, and isolated ex vivo normothermic kidney perfusion (NEVKP) in a porcine model. Surgical techniques, set up for the perfusion solution and the circuit, potential assessment options, and representative results are demonstrated.
Collapse
Affiliation(s)
- J Moritz Kaths
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital; Division of Nephrology, The Hospital for Sick Children, Toronto;
| | - Vinzent N Spetzler
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Nicolas Goldaracena
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Juan Echeverri
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Kristine S Louis
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Daniel B Foltys
- Department of General, Visceral & Transplant Surgery, University Medical Center Mainz
| | - Mari Strempel
- Department of Abdominal, Vascular & Transplant Surgery, Merheim Medical Center Cologne
| | - Paul Yip
- Laboratory Medicine & Pathobiology, Toronto General Hospital
| | - Rohan John
- Laboratory Medicine & Pathobiology, Toronto General Hospital
| | - Istvan Mucsi
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Anand Ghanekar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| | - Darius Bagli
- Departments of Surgery (Urology) & Physiology, The Hospital for Sick Children, Toronto; Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto
| | - Lisa Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto
| | - Markus Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital
| |
Collapse
|
21
|
Patel M, Hosgood S, Nicholson ML. The effects of arterial pressure during normothermic kidney perfusion. J Surg Res 2014; 191:463-8. [DOI: 10.1016/j.jss.2014.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
|
22
|
Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int 2014; 28:657-64. [PMID: 24629095 DOI: 10.1111/tri.12319] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Kidney transplantation is limited by hypothermic preservation techniques. Prolonged periods of cold ischaemia increase the risk of early graft dysfunction and reduce long-term survival. To extend the boundaries of transplantation and utilize kidneys from more marginal donors, improved methods of preservation are required. Normothermic perfusion restores energy levels in the kidney allowing renal function to be restored ex vivo. This has several advantages: cold ischaemic injury can be avoided or minimized, the kidney can be maintained in a stable state allowing close observation and assessment of viability and lastly, it provides the ideal opportunity to add therapies to directly manipulate and improve the condition of the kidney. This review explores the experimental and clinical evidence for ex vivo normothermic perfusion in kidney transplantation and its role in conditioning and repair.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Infection Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester, UK
| | - Ernest van Heurn
- Department of General Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michael L Nicholson
- Department of Infection Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester, UK
| |
Collapse
|
23
|
Bruinsma BG, Yarmush ML, Uygun K. Organomatics and organometrics: Novel platforms for long-term whole-organ culture. TECHNOLOGY 2014; 2:13. [PMID: 25035864 PMCID: PMC4097862 DOI: 10.1142/s2339547814300029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organ culture systems are instrumental as experimental whole-organ models of physiology and disease, as well as preservation modalities facilitating organ replacement therapies such as transplantation. Nevertheless, a coordinated system of machine perfusion components and integrated regulatory control has yet to be fully developed to achieve long-term maintenance of organ function ex vivo. Here we outline current strategies for organ culture, or organomatics, and how these systems can be regulated by means of computational algorithms, or organometrics, to achieve the organ culture platforms anticipated in modern-day biomedicine.
Collapse
|
24
|
Hosgood SA, Barlow AD, Yates PJ, Snoeijs MG, van Heurn EL, Nicholson ML. A Pilot Study Assessing the Feasibility of a Short Period of Normothermic Preservation in an Experimental Model of Non Heart Beating Donor Kidneys. J Surg Res 2011; 171:283-90. [DOI: 10.1016/j.jss.2010.01.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 12/30/2022]
|
25
|
Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation 2011; 90:1294-8. [PMID: 21076377 DOI: 10.1097/tp.0b013e3181ffba97] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite significant side effects, chronic systemic immunosuppression remains the backbone of clinical transplantation. We investigated the feasibility of preventing early allorecognition in canine renal allografts using a nonsystemic pretreatment. METHODS The renal vasculature was treated with a bioengineered interface consisting of a nano-barrier membrane during 3 hr of ex vivo warm perfusion. RESULTS Preliminary feasibility of the immunocloaking technology was established by the following criteria: it is possible to achieve approximately 90% coverage of the vasculature with nano-barrier membrane after 3 hr of ex vivo warm perfusion; covering the luminal surfaces prevents allorecognition as determined by mixed lymphocyte-vascular endothelial reaction; covering the luminal surfaces does not negatively affect renal function as determined by autotransplant outcomes; and graft rejection is significantly postponed in canine kidneys treated with the immunocloaking technology. In the absence of systemic immunosuppression, untreated control dogs experienced a mean onset of rejection on day 6, whereas in the treated dogs with modified renal vascular luminal surfaces, the mean onset of rejection was significantly delayed until day 30. CONCLUSIONS The ability to postpone, or eventually eliminate, the allorecognition that occurs immediately on reperfusion could provide a new window of opportunity to introduce adjunct therapies to support tolerance induction. To our knowledge, this is the first time significantly prolonged canine renal allograft survival has been achieved in the absence of systemic immunosuppression or immunologic manipulation of the recipient.
Collapse
|
26
|
Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:27. [PMID: 20509932 PMCID: PMC2894818 DOI: 10.1186/1476-9255-7-27] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Inflammatory reactions in the graft have a pivotal influence on acute as well as long-term graft function. The main reasons for an inflammatory reaction of the graft tissue are rejection episodes, infections as well as ischemia/reperfusion (I/R) injury. The latter is of particular interest as it affects every solid organ during the process of transplantation. I/R injury impairs acute as well as long-term graft function and is associated with an increased number of acute rejection episodes that again affect long-term graft outcome. I/R injury is the result of ATP depletion during prolonged hypoxia. Further tissue damage results from the reperfusion of the tissue after the ischemic insult. Adaptive cellular responses activate the innate immune system with its Toll-like receptors and the complement system as well as the adaptive immune system. This results in a profound inflammatory tissue reaction with immune cells infiltrating the tissue. The damage is mediated by various cytokines, chemokines, adhesion molecules, and compounds of the extracellular matrix. The expression of these factors is regulated by specific transcription factors with NF-κB being one of the key modulators of inflammation. Strategies to prevent or treat I/R injury include blockade of cytokines/chemokines, adhesion molecules, NF-κB, specific MAP kinases, metalloproteinases, induction of protective genes, and modulation of the innate immune system. Furthermore, preconditioning of the donor is an area of intense research. Here pharmacological treatment as well as new additives to conventional cold storage solutions have been analyzed together with new techniques for the perfusion of grafts, or methods of normothermic storage that would avoid the problem of cold damage and graft ischemia. However, the number of clinical trials in the field of I/R injury is limited as compared to the large body of experimental knowledge that accumulated during recent years in the field of I/R injury. Future activities in the treatment of I/R injury should focus on the translation of experimental protocols into clinical trials in order to reduce I/R injury and, thus, improve short- as well as long-term graft outcome.
Collapse
Affiliation(s)
- Jens Lutz
- Department of Nephrology, II, Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | |
Collapse
|
27
|
Hosgood SA, Bagul A, Kaushik M, Rimoldi J, Gadepalli RS, Nicholson ML. Application of nitric oxide and carbon monoxide in a model of renal preservation. Br J Surg 2008; 95:1060-7. [DOI: 10.1002/bjs.6174] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Background
Nitric oxide and carbon monoxide exert vasodilatory effects that minimize ischaemia–reperfusion injury. An isolated porcine kidney model was used to assess the effects of administering the nitric oxide donor sodium nitroprusside (SNP) and carbon monoxide-releasing molecule (CORM) 3 during a period of warm preservation followed by reperfusion.
Methods
Kidneys were perfused under warm preservation conditions after 10 min of warm ischaemia and 16 h of cold storage in four groups: SNP, control, CORM-3 and inactive CORM-3 (inactive control). Renal function and viability were assessed.
Results
SNP and CORM-3 increased renal blood flow (RBF) during warm preservation (P = 0·014). After reperfusion, RBF was significantly improved in the CORM-3 group compared with the control group (P = 0·019). The reduction in creatinine clearance was significantly less in the CORM-3 group than in the inactive CORM-3 group (P = 0·021), and serum creatinine levels were significantly lower (P = 0·029). There was a negative correlation between RBF during warm preservation and functional parameters during reperfusion (creatinine concentration: rs = − 0·722, P < 0·001; sodium excretion: rs = − 0·912, P < 0·001).
Conclusion
The beneficial vasodilatory effects of CORM-3 during warm preservation improved renal function during reperfusion; SNP exerted similar, although less pronounced, effects.
Collapse
Affiliation(s)
- S A Hosgood
- Department of Transplant Surgery, University Hospitals of Leicester, Leicester, UK
| | - A Bagul
- Department of Transplant Surgery, University Hospitals of Leicester, Leicester, UK
| | - M Kaushik
- Department of Transplant Surgery, University Hospitals of Leicester, Leicester, UK
| | - J Rimoldi
- Department of Medicinal Chemistry, University of Mississippi, 331 Faser Hall, University, MS 38677, USA
| | - R S Gadepalli
- Department of Transplant Surgery, University Hospitals of Leicester, Leicester, UK
| | - M L Nicholson
- Department of Transplant Surgery, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
28
|
Tolboom H, Pouw R, Uygun K, Tanimura Y, Izamis ML, Berthiaume F, Yarmush ML. A model for normothermic preservation of the rat liver. ACTA ACUST UNITED AC 2007; 13:2143-51. [PMID: 17596120 DOI: 10.1089/ten.2007.0101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Current techniques for the preservation of donor livers typically rely on cold temperatures (approximately 0-4 degrees C) to slow down metabolic processes. Recently, normothermic extracorporeal liver perfusion (NELP) has regained interest as a potentially promising approach for long-term liver preservation. Unlike cold-storage techniques, NELP attempts to maintain the liver in a near physiological environment, thus enabling normal metabolic and tissue repair processes to take place, which may help in the recovery of ischemically damaged and fatty donor livers, both of which represent significant untapped sources of donor livers. However, NELP is technically more complex than cold-storage techniques, and the lack of standardized small animal models limits its development. Here we describe a rat NELP system that is simple and cost-effective to run. We show that rat livers that underwent NELP for 6 h could be routinely transplanted into syngeneic recipient rats with excellent 1-month survival. During perfusion, the release of cytosolic enzymes, bile and urea production, and oxygen uptake rate could be readily monitored, thus providing a comprehensive picture of hepatic function before transplantation. This system will help in the optimization of NELP in several ways, such as for the improvement of perfusion conditions and the development of quantitative metabolic criteria for hepatic viability.
Collapse
Affiliation(s)
- Herman Tolboom
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Snoeijs MG, van Heurn LE, van Mook WN, Christiaans MH, van Hooff JP. Controlled donation after cardiac death: a European perspective. Transplant Rev (Orlando) 2007. [DOI: 10.1016/j.trre.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Fuller BJ, Lee CY. Hypothermic perfusion preservation: the future of organ preservation revisited? Cryobiology 2007; 54:129-45. [PMID: 17362905 DOI: 10.1016/j.cryobiol.2007.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 12/24/2022]
Abstract
Hypothermic perfusion preservation (HPP) was an integral step in the development of early clinical transplantation programmes, and considerable progress was made in understanding the basic principles underlying the technique. In subsequent years, the development of better preservation solutions for cold hypoxic storage, along with pragmatic choices made on grounds of costs and logistics, saw a fall in the application of HPP. More recently, the acute shortage of suitable organ donors and the inevitable pressure to use organs from sub-optimal (or expanded criteria) donors, has forced a re-evaluation of HPP, and the development of a new generation of HPP machines and associated perfusion solutions. This review sets out the historical development of HPP across the range of organs in which the method was originally investigated, describes the biological benefits and drawbacks associated with HPP, and sets out the most recent literature on the topic (including comments on the interest in use of higher temperatures in organ perfusion).
Collapse
Affiliation(s)
- Barry J Fuller
- University Department of Surgery and Liver Transplant Unit, Royal Free and University College Medical School, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
31
|
|
32
|
Lindell SL, Compagnon P, Mangino MJ, Southard JH. UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation 2005; 79:1358-61. [PMID: 15912104 DOI: 10.1097/01.tp.0000159143.45022.f6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Donation of kidneys from non-heart beating donors (NHBD) is increasingly being used to expand the donor pool. Warm ischemic injury of these kidneys suffered at harvest results in DGF at transplantation. In this study, we used hypothermic continuous machine perfusion preservation to mitigate this injury using two available solutions. METHODS Dog kidneys (beagles) were exposed to 0, 60, or 75 min of in situ warm ischemia (37 degrees C), followed by 24 to 72 hr preservation by machine perfusion with Belzer MPS solution or the UW-solution (Viaspan). Auto-transplantation was performed with immediate contralateral nephrectomy. Survival and renal function (serum creatinine) were evaluated for up to 10 days posttransplant. RESULTS Both solutions were equally effective for 72 hr machine perfusion preservation of dog kidneys giving 100% survival with only minor renal injury. Both solutions were also equally effective for preservation of kidneys exposed to 60 min of warm ischemia. However, only the UW solution gave reliable preservation (86% survival vs. 25% survival) in kidneys exposed to 75 min of warm ischemia and 24 hr machine perfusion. CONCLUSION UW solution used with continuous hypothermic machine perfusion preservation can rescue canine kidneys from severe warm ischemic injury.
Collapse
Affiliation(s)
- Susanne L Lindell
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
33
|
Brasile L, Stubenitsky BM, Booster MH, Haisch C, Kootstra G. NOS: the underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. Am J Transplant 2003; 3:674-9. [PMID: 12780558 DOI: 10.1034/j.1600-6143.2003.00134.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Research involving metabolically active and functioning organs, maintained ex vivo in culture-like conditions, could provide numerous opportunities for medical innovations and research. We report successful perfusion of isolated canine and human kidneys ex vivo at near physiologic temperature for 48 h. During the perfusions parameters of metabolism and function remained stable. Nitric oxide synthase (NOS) was identified as the underlying mechanism preserving vascular integrity. Most importantly, when the canine kidneys were reimplanted there was immediate normal renal function. This report highlights the potential significance of whole organ culture using a warm temperature ex vivo perfusion and discusses medical applications that could be developed.
Collapse
Affiliation(s)
- Lauren Brasile
- UM Faculty of Medicine and the Department of Surgery, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
34
|
Brook NR, Waller JR, Nicholson ML. Nonheart-beating kidney donation: current practice and future developments. Kidney Int 2003; 63:1516-29. [PMID: 12631369 DOI: 10.1046/j.1523-1755.2003.00854.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nonheart-beating kidney donation (NHBD) is gaining acceptance as a method of donor pool expansion. However, a number of practitioners have concerns over rates of delayed graft function, acute rejection, and long-term graft survival. The ethical issues associated with NHBD are complex and may be a further disincentive. Tailored strategies for preservation, viability prediction, and immunosuppression for kidneys from this source have the potential to maximize the number of available organs. This review article presents the current practice of NHBD kidney transplantation, examines the results and draws comparisons with cadaveric kidneys, and explores some areas of potential development. METHODS A review of the current literature on NHBD kidney donation was performed. RESULTS The renewed interest in NHBD kidneys is driven by a continuing shortfall in available organs. Those centers involved in NHBD report an increase in kidney transplants of the order of 16% to 40% and there is no evidence that the financial costs are higher with NHBDs. The majority of experience comes from Maastricht category 2 NHBDs, where an estimation of warm time is possible. This is generally limited to 40 minutes. There are variations in the technique for kidney preservation prior to retrieval, but most centers use an aortic balloon catheter. Much work has looked at the ideal technique for kidney preservation prior to implantation. Evidence suggests that machine perfusion produces the best initial function rates, decreased use of adjuvant immunotherapy and fewer haemodialysis sessions than static cold storage. CONCLUSION Despite being associated with poorer initial graft function, the long-term allograft survival of NHBD kidneys does not differ from the results of transplantation from cadaveric kidneys. Further, serum creatinine levels are generally equivalent. Constant reassessment of the ethical issues is required for donation to be increased while respecting public concerns. Use of viability assessment and tailoring of immune suppression for NHBD kidneys may allow a further increase in donation from this source.
Collapse
Affiliation(s)
- Nicholas R Brook
- Division of Transplant Surgery, The Department of Surgery, University of Leicester, Leicester General Hospital, Leicester, United Kingdom.
| | | | | |
Collapse
|
35
|
Abstract
Ischemia followed by reperfusion (I/R) has cardinal implications in the pathogenesis of organ transplantation and rejection. Apoptosis and inflammation are central mechanisms leading to organ damage in the course of renal I/R. General aspects of apoptosis, morphology, induction, and biochemistry are discussed. Activated caspases, the classical effector enzymes of apoptosis, are able to induce not only apoptosis but also inflammation after I/R in experimental models. This redefines the involvement of apoptosis in I/R injury toward a central and functional role in the development of organ damage. Our purpose is to assess aspects of apoptosis and inflammation in terms of involvement in the pathogenesis of I/R-induced organ damage. Moreover, the implications of recent experimental advances for diagnosis and treatment of renal I/R injury in clinical practice will be discussed.
Collapse
Affiliation(s)
- Marc A R C Daemen
- Department of General Surgery, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
36
|
Brasile L, Stubenitsky BM, Booster MH, Lindell S, Araneda D, Buck C, Bradfield J, Haisch CE, Kootstra G. Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation 2002; 73:897-901. [PMID: 11923688 DOI: 10.1097/00007890-200203270-00011] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ability to effectively utilize kidneys damaged by severe (2 hr) warm ischemia (WI) could provide increased numbers of kidneys for transplantation. The present study was designed to examine the effect of restoring renal metabolism after severe WI insult during ex vivo warm perfusion using an acellular technology. After warm perfusion for 18 hr, kidneys were reimplanted and evaluated for graft function. METHODS Using a canine autotransplant model, kidneys were exposed to 120 min of WI. They were then either reimplanted immediately, hypothermically machine perfused (4 degrees C) for 18 hr with Belzer's solution, or transitioned to 18 hr of warm perfusion (32 degrees C) with an acellular perfusate before implantation. RESULTS Warm perfused kidneys with 120 min of WI provided life-sustaining function after transplantation, whereas the control kidneys immediately reimplanted or with hypothermic machine perfusion did not. The mean peak serum creatinine in the warm perfused kidneys was 3.7 mg/dl, with the mean peak occurring on day 2 and normalizing on day 9 posttransplant. CONCLUSIONS These results indicate that 18 hr of ex vivo warm perfusion of kidneys is feasible. Furthermore, recovery of renal function during warm perfusion is demonstrated, resulting in immediate function after transplantation. The use of ex vivo warm perfusion to recover function in severe ischemically damaged kidneys could provide the basis for increasing the number of transplantable kidneys.
Collapse
Affiliation(s)
- Lauren Brasile
- UM Faculty of Medicine and azM Department of Surgery, P Debyelaan 25, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brasile L, Stubenitsky B, Booster M, Kootstra G. The cadaveric kidney and the organ shortage--a perspective review. Clin Transplant 2001; 15:369-74. [PMID: 11737111 DOI: 10.1034/j.1399-0012.2001.150601.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the technical and logistical hurdles that must be overcome with the reintroduction of non-heartbeating donor kidneys, the potential of these organs represents the only near-term solution for effectively alleviating the growing disparity between demand and supply. This review provides an argumentative overview of the history of cadaveric kidney transplantation. During the early years of transplantation retrieval of kidneys from non-heartbeating donors necessitated a prolonged period of warm ischemic exposure, with a corresponding minimal ex vivo period since organ preservation was in its infancy. Today we have the inverse situation where warm ischemic times are quite limited and hypothermic preservation times average 24 h because organs are shipped to remote centers due to mandated organ sharing algorithms. The recent experience with the reintroduction of non-heartbeating donors has necessitated combining the worst aspects from both eras: substantial warm ischemia with prolonged hypothermic preservation. Nevertheless, recent results from several transplant groups poignantly highlight the potential of this approach in expanding the organ donor pool.
Collapse
Affiliation(s)
- L Brasile
- University of Maastricht, Faculty of Medicine, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Brasile L, Stubenitsky BM, Booster MH, Arenada D, Haisch C, Kootstra G. Hypothermia--a limiting factor in using warm ischemically damaged kidneys. Am J Transplant 2001; 1:316-20. [PMID: 12099374 DOI: 10.1034/j.1600-6143.2001.10405.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A study was performed to determine the limiting factors to expanding the donor pool with warm ischemically (WI) damaged kidneys. Canine kidneys were damaged by 30 min of WI, and then either cold stored (CS) in ViaSpan (4 degrees C) for 18 h, or warm perfused with exsanguineous metabolic support (EMS) technology (32 degrees C) for 18h, or subjected to combinations of both techniques. The kidneys were autotransplanted with contralateral nephrectomy. In kidneys with WI and CS alone, the mean peak serum creatinine value was 6.3mg/dL and took 14 days to normalize. In contrast, kidneys where renal metabolism was resuscitated ex vivo during 18 h of warm perfusion demonstrated mild elevations in the serum chemistries (2.6mg/dL). The damage in kidneys CS for 18h was ameliorated with 3 h of subsequent warm perfusion and eliminated by 18 h of warm perfusion. In contrast, reversing the order with CS following WI and 18h of warm perfusion resulted in a time-dependent increase in damage. These results identify hypothermia as a major limiting factor to expanding indications for kidney donation. While hypothermia represents the foundation of preservation in the heart-beating donor, its use in WI damaged organs appears to represent a limiting factor.
Collapse
Affiliation(s)
- L Brasile
- UM Faculty of Medicine, Department of Surgery, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Kootstra G. Re: a case-control comparison of the results of renal transplantation from heart-beating and non-heart-beating donors. Transplantation 2001; 71:1509-10. [PMID: 11435955 DOI: 10.1097/00007890-200106150-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- G Kootstra
- Faculty of Medicine, University of Maastricht, The Netherlands
| |
Collapse
|