1
|
Teratani T, Fujimoto Y, Sakuma Y, Kasahara N, Maeda M, Miki A, Lefor AK, Sata N, Kitayama J. Improved Preservation of Rat Small Intestine Transplantation Graft by Introduction of Mesenchymal Stem Cell-Secreted Fractions. Transpl Int 2024; 37:11336. [PMID: 38962471 PMCID: PMC11219629 DOI: 10.3389/ti.2024.11336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Yasuhiro Fujimoto
- Transplantation Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Naoya Kasahara
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Maeda
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Avila JG, Tsujimura T, Oberholzer J, Churchill T, Salehi P, Shapiro AMJ, Lakey JRT. Improvement of Pancreatic Islet Isolation Outcomes Using Glutamine Perfusion during Isolation Procedure. Cell Transplant 2017; 12:877-881. [DOI: 10.3727/000000003771000228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During procurement, isolation, and transplantation, islets are exposed to high levels of oxidative stress triggering a variety of signaling pathways that can ultimately lead to cell death. Glutamine is an important cellular fuel and an essential precursor for the antioxidant glutathione. The aim of this study was to examine the role of intraductal glutamine administration in facilitating recovery of isolated rat islets from pancreases subjected to a clinically relevant period of warm ischemia. Islets were isolated in Sprague-Dawley (SD) rats (n= 18 per group). Pancreata in groups 1 and 2 were procured immediately while groups 3 and 4 were subjected to 30-min warm ischemia. Groups 2 and 4 were treated intraductally with 5 mM glutamine prior to pancreatectomy. Exposure to 30-min warm ischemia significantly reduced islet yield [groups 1 & 2 (nonischemia): 503 ± 29 islets/rat vs. groups 3 & 4 (ischemia): 247 ± 26 islets/rat; p < 0.05]. Intraductal glutamine treatment significantly improved islet yield when pancreata were subjected to 30-min warm ischemia [144 ± 16 islets/rat without glutamine (group 3) vs. 343 ± 36 islets/rat with glutamine (group 4), p < 0.05]. Glutamine also significantly improved islet viability (values were 50 ± 4% in group 4 vs. 27 ± 3% in group 3, p < 0.05). Similarly, glutathione (reduced) levels were significantly elevated in both glutamine-treated groups; however, this increase was greatest in tissues exposed to ischemia (2.76 ± 0.04 nmol/mg protein in group 4 vs. 1.66 ± 0.04 nmol/mg protein in group 3, p < 0.05). Intraductal glutamine administration considerably improves the islet yield, viability, and augments endogenous glutathione levels in pancreata procured after a clinically relevant period of ischemia. Intraductal administration of glutamine at the time of digestive enzyme delivery into the harvested pancreas may represent a simple yet effective tool to improve islet yields in clinical isolations.
Collapse
Affiliation(s)
- J. G. Avila
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
- Department of Surgery, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - T. Tsujimura
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
- Department of Surgery, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - J. Oberholzer
- Department of Surgery, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - T. Churchill
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - P. Salehi
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - A. M. James Shapiro
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
- Department of Surgery, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| | - J. R. T. Lakey
- Surgical-Medical Research Institute, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
- Department of Surgery, University of Alberta, 1074 Dentistry/Pharmacy Centre, Edmonton, Canada T6G 2N8
| |
Collapse
|
3
|
Oltean M, Hellström M, Ciuce C, Zhu C, Casselbrant A. Luminal solutions protect mucosal barrier during extended preservation. J Surg Res 2014; 194:289-96. [PMID: 25439322 DOI: 10.1016/j.jss.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mucosal barrier injury during intestinal preservation (IP) and transplantation favors life-threatening infections. Luminal delivery of solutions containing amino acids or polyethylene glycols (PEGs) may improve preservation results and reduce this injury. We tested if solutions containing glutamine and PEG influence the mucosal injury. MATERIALS AND METHODS Rat intestines were perfused and stored in Viaspan-University of Wisconsin solution. Before IP, a PEG 3350 solution was introduced intraluminally alone (group 1) or supplemented with 40 mmol/L L-glutamine (group 2). Controls underwent vascular flush alone (group 3). Preservation injury was evaluated after 8, 14, and 24 h by histology and goblet cell count. Tight-junction proteins zonula occludens-1, claudin-3, claudin-4, and caveolin-1 were studied by immunofluorescence. Maltase and caspase-3 activity were also analyzed. RESULTS Group 1 showed mild edema at 8 h and mucosal disruption by 24 h; these features were greatly improved in group 2 where continuous mucosa was found after 24 h of IP. Intestines in group 3 did worse at all time points with subepithelial edema (Park/Chiu grade 3) and marked goblet cell depletion; caspase-3 activity was lowest in group 2. Tight-junction proteins varied continuously during IP; zonula occludens-1 expression and colocalization with claudins decreased significantly in group 3 but not in other groups. Claudin-3 was distinctly localized in the membrane, but stained diffuse, cytoplasmic at later time-points. Claudin-4 changed to a cytoplasmic granular pattern. No caveolin-1 colocalization was observed. CONCLUSIONS Luminal PEG and glutamine delay epithelial breakdown and preserve several important mucosal features during extended IP.
Collapse
Affiliation(s)
- Mihai Oltean
- Department of Surgery/Laboratory for Transplantation and Regenerative Medicine, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Mats Hellström
- Department of Surgery/Laboratory for Transplantation and Regenerative Medicine, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Catalin Ciuce
- Department of Surgery/Laboratory for Transplantation and Regenerative Medicine, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; First Surgical Clinic, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Changlian Zhu
- Institute of Neuroscience and Physiology, Center for Brain Repair and Rehabilitation, University of Gothenburg, Gothenburg, Sweden
| | - Anna Casselbrant
- Department of Gastrosurgical research and Education, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
González-Riaño MG, Repiso R, Delgado López-Cózar E. Repercusión de los rankings universitarios en la prensa española. REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA 2014. [DOI: 10.3989/redc.2014.3.1128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
5
|
Kasahara N, Kikuchi T, Doi J, Teratani T, Fujimoto Y, Uemoto S, Yasuda Y, Kobayashi E. Luminescence-based assay to screen preservation solutions for optimal ability to maintain viability of rat intestinal grafts. Transplant Proc 2014; 45:2486-90. [PMID: 23953567 DOI: 10.1016/j.transproceed.2013.02.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/16/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Segmental intestinal transplantations from living, genetically related donors provide advantages compared with those from cadaveric subjects. However, successful preservation during ischemic cold storage is critical for living donor grafts. Thus, the development of preservation solutions that maintain graft viability is essential for success. Herein we have reported application of a cell-based viability assay in multiwell plates to assess the effectiveness of various solutions to preserve intestinal grafts. METHODS Freshly isolated intestinal chips from luciferase transgenic rats were placed in 96-well tissue culture plates for incubation at 4°C for 24 hours in various preservation solutions: ET-Kyoto (ET-K), University of Wisconsin (UW) solution, Euro-Collins (EC) solution, histidine-tryptophan-ketoglutarate (HTK) solution, lactated Ringer's (LR) solution, or saline. RESULTS As indicated by a higher level of luminescence, intestinal chips preserved in UW, HTK, or ET-K solution contained more viable cells, than those preserved in EC, LR, or saline solution. After exposure to the preservation solutions for 1 hour, the mucosal layer chips showed lower cell viability than the muscle layer chips. CONCLUSION Our data demonstrated that ET-K and UW solutions used together with intestinal chips of Luciferase transgenic rat and in vivo imaging provided optimal viability during ischemic cold storage prior to transplantation. Further development of preservation conditions to minimize the loss of viability of intestinal grafts before clinical transplantation is essential to improve outcomes.
Collapse
Affiliation(s)
- N Kasahara
- Division of Development of Advanced Treatment Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Oltean M, Churchill TA. Organ-specific solutions and strategies for the intestinal preservation. Int Rev Immunol 2013; 33:234-44. [PMID: 24328709 DOI: 10.3109/08830185.2013.853764] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the intraabdominal organs, the intestine is the most susceptible to storage injury and as a consequence its safe cold ischemic time in the clinic is restricted to below 10 hours. The current practice for the intestinal preservation (IP) consists of an in-situ vascular flush with iced University of Wisconsin or Histidine-Tryptophan-Ketoglutarate solution followed by cold storage at 4°C. Mucosal injury is initiated within 1 hour and rapidly progresses to mucosal breakdown; tissue injury worsens upon reperfusion and further impairs the mucosal barrier, favoring bacterial translocation and sepsis. In addition of releasing danger signals, an advanced ischemia-reperfusion injury (IRI) may increase graft immunogenicity and promote rejection. Several alternative approaches have been tested as alternatives to the static storage. The aim of this review is to summarize and discuss the various intraluminal interventions as additional strategies aiming to reduce the IP/reperfusion injury and highlight the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mihai Oltean
- 1The Transplant Institute, Sahlgrenska University Hospital , Gothenburg , Sweden
| | | |
Collapse
|
7
|
Roskott AMC, Nieuwenhuijs VB, Dijkstra G, Koudstaal LG, Leuvenink HGD, Ploeg RJ. Small bowel preservation for intestinal transplantation: a review. Transpl Int 2010; 24:107-31. [PMID: 21083772 DOI: 10.1111/j.1432-2277.2010.01187.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intestinal transplantation has become the therapy of choice for patients with intestinal failure and life-threatening complications from total parenteral nutrition. Results, however, remain inferior as compared with other transplant types with the quality of the organ graft as the most important factor of outcome after transplantation. The intestine is extremely sensitive to ischemia. Unfortunately, a relatively long ischemic preservation period is inevitable. The current standard in organ preservation [cold storage (CS) with University of Wisconsin solution] was developed for kidney/liver preservation and is suboptimal for the intestinal graft despite good results for other organs. This review aimed at appraising the results from the use of previously applied and recently developed preservation solutions and techniques to identify key areas for improvement. As the studies available do not reveal the most effective method for intestinal preservation, an optimal strategy will result from a synergistic effect of different vital elements identified from a review of published material from the literature. A key factor is the composition of the solution using a low-viscosity solution to facilitate washout of blood, including amino acids to improve viability, impermeants and colloids to prevent edema, and buffer for pH-homeostasis. Optimizing conditions include a vascular flush before CS and luminal preservation. The most effective composition of the luminal solution and a practical, clinically applicable optimal technique are yet to reach finality. Short-duration oxygenated arterial and/or luminal perfusion have to be considered. Thus, a tailor-made approach to luminal preservation solution and technique need further investigation in transplant models and the human setting to develop the ultimate technique meeting the physiologic demands of the intestinal graft during preservation.
Collapse
|
8
|
Reduced Ischemia-Reoxygenation Injury in Rat Intestine After Luminal Preservation With a Tailored Solution. Transplantation 2010; 90:622-9. [DOI: 10.1097/tp.0b013e3181ebf796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Wei L, Hata K, Doorschodt BM, Büttner R, Minor T, Tolba RH. Experimental small bowel preservation using Polysol: A new alternative to University of Wisconsin solution, Celsior and histidine-tryptophan-ketoglutarate solution? World J Gastroenterol 2007; 13:3684-91. [PMID: 17659727 PMCID: PMC4250639 DOI: 10.3748/wjg.v13.i27.3684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the potential of Polysol, a newly developed preservation solution, in cold storage of small bowel grafts, compared with the current standards, University of Wisconsin solution (UW), Celsior and histidine-tryptophan-ketoglutarate solution (HTK).
METHODS: Male Wistar rats were used as donors. Small bowels were retrieved, flushed and then stored in the respective 4 solutions for 18 h at 4°C. Functional integrity of the grafts was evaluated by isolated reperfusion with oxygenated Krebs-Henseleit buffer at 37°C for 30 min in all 4 groups.
RESULTS: Polysol preservation exhibited the highest tissue ATP concentration and the lowest release of LDH. Malondialdehyde, an index for tissue lipid peroxidation, was also the lowest in Polysol. Tissue oxygen consumption was significantly higher in Polysol than in the others. Of interest, UW-storage promoted 10-fold higher apoptosis than in the others. Moreover, electron microscopy revealed that the mucosal villi/micro-villi formation and the cell organelles, including mitochondria, were both significantly better preserved in Polysol, while deleterious alterations were apparent in the others, most notably in UW. Although Celsior and HTK exhibited the better trend of results than UW in some parameters, but could not reach the over-all superiority to UW.
CONCLUSION: Cold storage using Polysol resulted in significantly better integrity and function of small bowel grafts than UW. Hence, Polysol may be a novel alternative for the small bowel preservation.
Collapse
Affiliation(s)
- Lai Wei
- House of Experimental Therapy, University of Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|