1
|
Jiang YJ, Xiong YQ, Huang T, Xiao YX. Toenail and blood selenium mediated regulation of thyroid dysfunction through immune cells: a mediation Mendelian randomization analysis. Front Nutr 2024; 11:1378969. [PMID: 38840695 PMCID: PMC11150534 DOI: 10.3389/fnut.2024.1378969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose Specific nutrients found in food, such as minerals, antioxidants, and macronutrients, have a significant impact on immune function and human health. However, there is currently limited research exploring the relationship between specific nutrients, immune system function, and thyroid dysfunction commonly observed in autoimmune thyroid diseases, which manifest predominantly as hyperthyroidism or hypothyroidism. Therefore, the objective of this study was to investigate the connections between dietary traits and thyroid dysfunction, as well as the potential mediating role of immune cells, using Mendelian randomization (MR) analysis. Methods The two-step MR analysis used single-nucleotide polymorphisms as instruments, with a threshold of p < 5e-08 for nutrients and thyroid dysfunction, and p < 5e-06 for immune cells. Data from different GWAS databases and UK Biobank were combined to analyze 8 antioxidants and 7 minerals, while the data for 4 macronutrients came from a cohort of 235,000 individuals of European. The outcome data (hypothyroidism, N = 3340; hyperthyroidism, N = 1840; free thyroxin [FT4], N = 49,269; thyroid-stimulating hormone [TSH], N = 54,288) were source from the ThyroidOmics consortium. Immune trait data, including 731 immune phenotypes, were collected from the GWAS catalog. Results The results revealed that nutrient changes, such as lycopene, toenail and blood selenium, and α-tocopherol, impacted the immune system. Immune cells also affected thyroid function, with cDC cells promoting hypothyroidism and median fluorescence intensity (MFI) phenotypes correlating strongly with FT4 levels. Toenail and blood selenium reduce the relative cell counts (RCC) phenotypes of immune cells (CD62L- plasmacytoid DC %DC and transitional B cells %Lymphocyte), thereby diminishing its promoting effect on hypothyroidis. Furthermore, toenail and blood selenium mainly impacted phenotypes in three types of T cells (CD25 + + CD8br, CD3 on CD45RA- CD4+, and CD45RA on Terminally Differentiated CD8br), reinforcing the negative regulation of FT4 levels. Conclusion The role of immune cells as mediators in the relationship between nutrients and thyroid dysfunction highlights their potential as diagnostic or therapeutic markers. Toenail and blood selenium levels can indirectly impact hypothyroidism by influencing the RCC levels of two types of immune cells, and can indirectly affect FT4 levels by influencing three types of T cells.
Collapse
Affiliation(s)
| | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-xiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Akagaki K, Kadota A, Ishida T, Sagawa T, Kagaya Y, Kawada K, Tamura N, Shiraishi H, Jobu K, Yoshioka S, Yamamoto M, Fujieda M, Miyamura M. [Development and Assessment of a New Oral Selenium Fast-disintegrating Tablets]. YAKUGAKU ZASSHI 2023; 143:1039-1046. [PMID: 38044109 DOI: 10.1248/yakushi.23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Selenium is an essential trace element and its deficiency causes myositis, myocardial damage, and other symptoms. Patients receiving long-term intravenous nutrition or tube-feeding in particular are deficient in essential trace elements, including selenium, and require regular supplementation. In Japan, injectable selenium-containing products are listed on the National Health Insurance drug price list, and oral solutions are prepared and used in hospitals. However, these formulations have problems related to preservation and require complicated administration procedures. In this study, we developed a new fast-disintegrating tablet formulation of selenium, using SmartEx® (D-mannitol·low substituted hydroxypropylcellulose (L-HPC)·fully hydrolyzed polyvinyl alcohol (PVA) mixture) as a coprocessing additive, that can be administered orally or by feeding tube. The tablet formulation had excellent disintegrable capability, sufficient hardness, and did not cause tube blockage when administered in the simple suspension method. In addition, the tablet formulation showed no changes in properties in an accelerated test without packaging for 42 d, indicating that it could be stored for a long period. Fast-disintegrating tablets prepared with SmartEx® are expected to improve the adherence and quality of life of patients who require selenium supplementation.
Collapse
Affiliation(s)
- Keita Akagaki
- Department of Pharmacy, Kochi Medical School Hospital
| | - Aki Kadota
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Takaya Sagawa
- Department of Pharmacy, Kochi Medical School Hospital
| | - Yoko Kagaya
- Department of Pharmacy, Kochi Medical School Hospital
| | - Kei Kawada
- Department of Pharmacy, Kochi Medical School Hospital
- Graduate School of Integrated Arts and Sciences, Kochi University
| | - Naohisa Tamura
- Department of Pharmacy, Kochi Medical School Hospital
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital
| | | | | | | | - Mitsuhiko Miyamura
- Department of Pharmacy, Kochi Medical School Hospital
- Graduate School of Integrated Arts and Sciences, Kochi University
| |
Collapse
|
4
|
Abstract
Thyroid diseases in children and adolescents include acquired or congenital conditions, including genetic disorders either isolated or part of a syndrome. Briefly, we will review the physiology and pathophysiology of the thyroid gland and its disorders. The aim of this chapter is to describe genetic abnormalities of the thyroid gland.
Collapse
|
5
|
Effect of thyroid hormones on rat exocrine pancreas morphology and function. Life Sci 2020; 245:117385. [PMID: 32014425 DOI: 10.1016/j.lfs.2020.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
AIM The influence of thyroid hormones on exocrine pancreas function is poorly understood, and limited to the postnatal development period. Here, we evaluated the effects of hypo- and hyperthyroidism on the morphology and enzyme content of this tissue. MAIN METHODS To induce hypothyroidism male Wistar rats were subjected to a thyroidectomy (Tx) or sham operated (SO). After 40 days, some of the Tx and SO rats were treated with T3 for 7 days. Following euthanization, the pancreas was removed and evaluated for morphology, as well as amylase, lipase and trypsin content, using histological and immunoreactive techniques analyses, respectively. Serum amylase levels were also evaluated. KEY FINDINGS The pancreatic acinar cells of Tx rats were smaller, exhibited reduced Haematoxyllin stained areas, and contained lower amylase and lipase levels, indicative of low cell activity. Tx rats also presented higher collagen levels, and high trypsin content in pancreatic extracts. Interestingly, T3 administration reversed the observed acinar cell alterations and restored pancreatic enzyme content, by augmenting amylase and lipase and attenuating trypsin levels, but failed to change collagen content. Increased levels of lipase and decreased trypsin were also observed in T3-treated SO rats. SIGNIFICANCE Thyroid hormones play an important role in acinar cell morphology and function. In the hypothyroid state there is a decrease in pancreatic enzyme levels that is restored with T3 treatment. In addition to participating in insulin sensitivity and glycemic control, THs also modulate enzyme expression and activity in the exocrine pancreas, consequently, delivering metabolic substrates to specific organs and tissues.
Collapse
|
6
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
7
|
Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19092665. [PMID: 30205557 PMCID: PMC6163693 DOI: 10.3390/ijms19092665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
The selenium content of the body is known to control the expression levels of numerous genes, both so-called selenoproteins and non-selenoproteins. Selenium is a trace element essential to human health, and its deficiency is related to, for instance, cardiovascular and myodegenerative diseases, infertility and osteochondropathy called Kashin–Beck disease. It is incorporated as selenocysteine to the selenoproteins, which protect against reactive oxygen and nitrogen species. They also participate in the activation of the thyroid hormone, and play a role in immune system functioning. The synthesis and incorporation of selenocysteine occurs via a special mechanism, which differs from the one used for standard amino acids. The codon for selenocysteine is a regular in-frame stop codon, which can be passed by a specific complex machinery participating in translation elongation and termination. This includes a presence of selenocysteine insertion sequence (SECIS) in the 3′-untranslated part of the selenoprotein mRNAs. Nonsense-mediated decay is involved in the regulation of the selenoprotein mRNA levels, but other mechanisms are also possible. Recent transcriptional analyses of messenger RNAs, microRNAs and long non-coding RNAs combined with proteomic data of samples from Keshan and Kashin–Beck disease patients have identified new possible cellular pathways related to transcriptional regulation by selenium.
Collapse
|
8
|
Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients 2018; 10:E1203. [PMID: 30200430 PMCID: PMC6163284 DOI: 10.3390/nu10091203] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in development and a wide variety of physiological processes including effect immune responses. The immune system relies on adequate dietary selenium intake and this nutrient exerts its biological effects mostly through its incorporation into selenoproteins. The selenoproteome contains 25 members in humans that exhibit a wide variety of functions. The development of high-throughput omic approaches and novel bioinformatics tools has led to new insights regarding the effects of selenium and selenoproteins in human immuno-biology. Equally important are the innovative experimental systems that have emerged to interrogate molecular mechanisms underlying those effects. This review presents a summary of the current understanding of the role of selenium and selenoproteins in regulating immune cell functions and how dysregulation of these processes may lead to inflammation or immune-related diseases.
Collapse
Affiliation(s)
- Joseph C Avery
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
9
|
Rose AH, Hoffmann PR. Selenoproteins and cardiovascular stress. Thromb Haemost 2014; 113:494-504. [PMID: 25354851 DOI: 10.1160/th14-07-0603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023]
Abstract
Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarise the current understanding of the roles these selenoproteins play in protecting the cardiovascular system from different types of stress including ischaemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others.
Collapse
Affiliation(s)
| | - Peter R Hoffmann
- Peter R. Hoffmann, University of Hawaii, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA, Fax: +1 808 692 1968, E-mail:
| |
Collapse
|
10
|
Fonseca TL, Werneck-De-Castro JP, Castillo M, Bocco BM, Fernandes GW, McAninch EA, Ignacio DL, Moises CC, Ferreira A, Gereben B, Bianco AC. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse. Diabetes 2014; 63:1594-604. [PMID: 24487027 PMCID: PMC3994955 DOI: 10.2337/db13-1768] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/26/2014] [Indexed: 01/05/2023]
Abstract
Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3'-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity.
Collapse
Affiliation(s)
- Tatiana L. Fonseca
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Joao Pedro Werneck-De-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
- Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melany Castillo
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Barbara M.L.C. Bocco
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Gustavo W. Fernandes
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Elizabeth A. McAninch
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Daniele L. Ignacio
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
- Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio C.S. Moises
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Alexandre Ferreira
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes, and Metabolism, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
11
|
Chandra AK, Goswami H, Sengupta P. Dietary calcium induced cytological and biochemical changes in thyroid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:454-465. [PMID: 22789468 DOI: 10.1016/j.etap.2012.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Certain epidemiological studies revealed correlation between hard water consumption (with high calcium) and thyroid size of the population, though the possible alterations in thyroid physiology upon calcium exposure are still inconclusive. Adult male Wistar strain rats were subjected to calcium treatment at the doses of 0.5g%, 1.0g% and 1.5g% calcium chloride (CaCl(2)) for 60 days. The parameters studied were - thyroid gland weight, histopathology, histomorphometry; thyroid peroxidase (TPO), 5'-deiodinase I (DI), sodium-potassium adenosine triphosphatase (Na(+)-K(+)-ATPase) activities; serum total and free thyroxine (tT4, fT4), total and free triiodothyronine (tT3, fT3), thyroid stimulating hormone (TSH) levels. Enlargement of thyroid with hypertrophic and hyperplastic changes, retarded TPO and 5'-DI but enhanced Na(+)-K(+)-ATPase activities, augmented serum total and free T4 and TSH but decreased total and free T3 levels and low T3/T4 ratio (T3:T4) were observed in the treated groups. All these findings indicate development of goitrogenesis upon exposure to excessive dietary calcium.
Collapse
Affiliation(s)
- Amar K Chandra
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Haimanti Goswami
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Pallav Sengupta
- Endocrinology & Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
13
|
Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 2009; 66:2457-78. [PMID: 19399585 PMCID: PMC2866081 DOI: 10.1007/s00018-009-0032-4] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is a nutritional trace mineral essential for various aspects of human health that exerts its effects mainly through its incorporation into selenoproteins as the amino acid, selenocysteine. Twenty-five selenoprotein genes have been identified in humans and several selenoproteins are broadly classified as antioxidant enzymes. As progress is made on characterizing the individual members of this protein family, however, it is becoming clear that their properties and functions are quite diverse. This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression. Also discussed are potential roles the different selenoproteins play in human health and disease.
Collapse
Affiliation(s)
- M. A. Reeves
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| | - P. R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| |
Collapse
|
14
|
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008; 29:898-938. [PMID: 18815314 PMCID: PMC2647704 DOI: 10.1210/er.2008-0019] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/15/2008] [Indexed: 02/06/2023]
Abstract
The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T(3) during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-kappaB, growth factors, bile acids, hypoxia-inducible factor-1alpha, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Collapse
Affiliation(s)
- Balázs Gereben
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chan SY, Franklyn JA, Pemberton HN, Bulmer JN, Visser TJ, McCabe CJ, Kilby MD. Monocarboxylate transporter 8 expression in the human placenta: the effects of severe intrauterine growth restriction. J Endocrinol 2006; 189:465-71. [PMID: 16731778 PMCID: PMC2869027 DOI: 10.1677/joe.1.06582] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thyroid hormones (THs) are essential for normal fetal development, with even mild perturbation in maternal thyroid status in early pregnancy being associated with neurodevelopmental delay in children. Transplacental transfer of maternal THs is critical, with increasing evidence suggesting a role for 3,3',5-tri-iodothyronine (T3) in development and function of the placenta itself, as well as in development of the central nervous and other organ systems. Intrauterine growth restriction (IUGR) is associated with fetal hypothyroxinaemia, a factor that may contribute to neurodevelopmental delay. The recent description of monocarboxylate transporter 8 (MCT8) as a powerful and specific TH membrane transporter, and the association of MCT8 mutations with profound neurodevelopmental delay, led us to explore MCT8 expression in placenta. We describe the expression of MCT8 in normal human placenta throughout gestation, and in normal third-trimester placenta compared with that associated with IUGR using quantitative reverse transcriptase PCR. MCT8 mRNA was detected in placenta from early first trimester, with a significant increase with advancing gestation (P=0.007). In the early third trimester, MCT8 mRNA was increased in IUGR placenta compared with normal samples matched for gestational age (P<0.05), but there was no difference between IUGR and normal placenta in the late third trimester. Western immunoblotting findings in IUGR and normal placentae were in accord with mRNA data. MCT8 immunostaining was demonstrated in villous cytotrophoblast and syncytiotrophoblast as well as extravillous trophoblast cells from the first trimester onwards with increasingly widespread immunoreactivity seen with advancing gestation. In conclusion, expression of MCT8 in placenta from early gestation is compatible with an important role in TH transport during fetal development and a specific role in placental development. Altered expression in placenta associated with IUGR may reflect a compensatory mechanism attempting to increase T3 uptake by trophoblast cells.
Collapse
Affiliation(s)
- S-Y Chan
- Department of Fetal Medicine, Division of Reproductive & Child Health, University of Birmingham, Edgbaston, Birmingham B15 2TG, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Farwell AP, Dubord-Tomasetti SA, Pietrzykowski AZ, Leonard JL. Dynamic nongenomic actions of thyroid hormone in the developing rat brain. Endocrinology 2006; 147:2567-74. [PMID: 16469804 DOI: 10.1210/en.2005-1272] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two well-characterized nongenomic actions of thyroid hormone in cultured brain tissues are: 1) regulation of type 2 iodothyronine 5'deiodinase (D2) activity and 2) regulation of actin polymerization. In particular, the latter is likely to have profound effects on neuronal migration in the developing brain. In this study, we determined whether these nongenomic actions also occurred in vivo during brain development. Neonatal hypothyroidism was induced by propylthiouracil given to pregnant dams beginning on d17 of gestation and continued throughout the neonatal period. On postnatal d 14, rats were injected with either cold or [(125)I]-labeled iodothyronines and killed sequentially after injection. In contrast to reports in the adult rat, all three iodothyronines readily and equally entered developing brain tissues. As expected, cerebrocortical D2 activity was markedly elevated in the hypothyroid brain and both reverse T(3) (rT(3)) and T(4) rapidly decreased D2 to euthyroid levels within 3 h. Furthermore, cerebellar G-actin content in the hypothyroid rat was approximately 5-fold higher than in the euthyroid rat. Again, both rT(3) and T(4) rapidly decreased the G-actin content by approximately 50%, with a reciprocal increase in F-actin content to euthyroid levels without altering total actin. Neither T(3) nor vehicle had any effect on D2 activity in the cortex or G- or F-actin content in the cerebellum. The thyroid hormone-dependent regulation of actin polymerization in the rat brain provides a mechanism by which this morphogenic hormone can influence neuronal migration independent of the need for altered gene transcription. Furthermore, these data suggest a prominent role for rT(3) during brain development.
Collapse
Affiliation(s)
- Alan P Farwell
- University of Massachusetts Medical School, Worcester, 01655, USA.
| | | | | | | |
Collapse
|
17
|
Kelley MW. Hair cell development: commitment through differentiation. Brain Res 2006; 1091:172-85. [PMID: 16626654 DOI: 10.1016/j.brainres.2006.02.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/15/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
The perceptions of sound, balance and acceleration are mediated through the vibration of stereociliary bundles located on the lumenal surfaces of mechanosensory hair cells located within the inner ear. In mammals, virtually all hair cells are generated during a relatively brief period in embryogenesis with any subsequent hair cell loss leading to a progressive and permanent loss of sensitivity. In light of the importance of these cells, considerable effort has been focused on understanding the molecular genetic pathways that regulate their development. The results of these studies have begun to elucidate the signaling molecules that regulate several key events in hair cell development. In particular, significant progress has been made in the understanding of hair cell commitment, survival and differentiation. In addition, several aspects of the development of the stereociliary bundle, including its elongation and orientation, have recently been examined. This review will summarize results from each of these developmental events and describe the molecular signaling pathways involved.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Drive, Bethesda, MA 20892, USA.
| |
Collapse
|
18
|
Abstract
Thyroid hormone (TH) has an important role in central nervous system development. TH action is mediated by a number of transcription factors including thyroid hormone receptors (TRs) in combination with a group of coregulators that can either activate (coactivators) or repress (corepressors) transcription in the presence of TH. The aims of this report were to determine if regulation of the corepressor Hairless (Hr) by TH was TR-isoform- mediated in neonatal cerebellum and to determine if other cerebellar corepressors (SMRT and NCoR) and coactivators (SRC family) are also regulated by TH. In order to study this we examined 14-day-old and adult knockout mice that lack expression of the TRbeta or TRalpha isoforms and measured mRNA expression in untreated, hypothyroid and TH-treated young mouse pups. TH-treated wild-type and TRbeta-deficient mice demonstrated upregulation of Hr by 22.8- +/- 8.6- and 11.8- +/- 3.6-fold respectively, which was not upregulated in TRalpha-deficient mice. In wild-type mice, TH treatment results in a reciprocal decrease (61%) in the coactivator SRC-1. These changes were not observed in adult mouse cerebellum. No effect was seen with NCoR and SRC-3 expression. SMRT was 3-fold increased in TH treatment of only wild-type mouse pups. We conclude that (1) TRalpha is the major TR regulating Hr expression in the cerebellum of young mouse pups; (2) TH upregulates Hr and SMRT and downregulates SRC-1; (3) NcoR and SRC-3 may not be regulated by TH in the cerebellum at the transcriptional level; and (4) autoregulation of TH action may be mediated through TH-dependent expression of the cofactors necessary for TH action in the cerebellum and may be developmentally specific.
Collapse
Affiliation(s)
- Helton E Ramos
- Thyroid Study Unit, Department of Medicine, The University of Chicago, Illinois 60645, USA
| | | |
Collapse
|
19
|
Hoffmann PR, Berry MJ. Selenoprotein synthesis: a unique translational mechanism used by a diverse family of proteins. Thyroid 2005; 15:769-75. [PMID: 16131320 DOI: 10.1089/thy.2005.15.769] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this review is to provide an overview of the unique mechanism by which mammalian selenoprotein synthesis occurs. Selenoprotein synthesis requires translational recoding of the UGA codon from a stop signal to a selenocysteine insertion signal (SECIS). Dedicated factors directly involved in this translation process include specific secondary structure in the mRNA (SECIS), a unique tRNA (Sec-tRNA(Sec)), an RNA binding protein (SBP2), and a specialized elongation factor (EFsec). Regulation of this process is discussed along with physiologic and clinical issues regarding selenoprotein synthesis, including the side effects associated with statin drugs.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
20
|
|