1
|
Zhang HX, Zhang C, Lu S, Tong X, Zhang K, Yin H, Zhang Y. Cas12a-based one-pot SNP detection with high accuracy. CELL INSIGHT 2023; 2:100080. [PMID: 37193068 PMCID: PMC10134196 DOI: 10.1016/j.cellin.2023.100080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas12a based one-pot detection system has been used in nucleic acid detection and diagnosis. However, it is not sensitive enough to distinguish single nucleotide polymorphisms (SNP), which has greatly restricted its application. To overcome these limitations, we engineered a LbCas12a variant with enhanced sensitivity against SNP, named seCas12a (sensitive Cas12a). SeCas12a-based one-pot SNP detection system is a versatile platform that could use both canonical and non-canonical PAM, and was almost not limited by mutation types to distinguish SNPs located between position 1 to 17. The use of truncated crRNA further improved SNP specificity of seCas12a. Mechanistically, we found only when the cis-cleavage was at low level between 0.01min-1 and 0.0006 min-1, a good signal-to-noise ratio can be achieved in one-pot test. SeCas12a-based one-pot SNP detection system was applied to detect pharmacogenomic SNPs in human clinical samples. Of thirteen donors tested in two different SNPs, the seCas12a mediated one-pot system could faithfully detect the SNPs in 30 min with 100% accuracy.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caixiang Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuhan Lu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaohan Tong
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Affan A, Zurada JM, Inanc T. Control-Relevant Adaptive Personalized Modeling From Limited Clinical Data for Precise Warfarin Management. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 3:242-251. [PMID: 36846361 PMCID: PMC9955254 DOI: 10.1109/ojemb.2023.3240072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 12/26/2023] Open
Abstract
Warfarin is a challenging drug to administer due to the narrow therapeutic index of the International Normalized Ratio (INR), the inter- and intra-variability of patients, limited clinical data, genetics, and the effects of other medications. Goal: To predict the optimal warfarin dosage in the presence of the aforementioned challenges, we present an adaptive individualized modeling framework based on model (In)validation and semi-blind robust system identification. The model (In)validation technique adapts the identified individualized patient model according to the change in the patient's status to ensure the model's suitability for prediction and controller design. Results: To implement the proposed adaptive modeling framework, the clinical data of warfarin-INR of forty-four patients has been collected at the Robley Rex Veterans Administration Medical Center, Louisville. The proposed algorithm is compared with recursive ARX and ARMAX model identification methods. The results of identified models using one-step-ahead prediction and minimum mean squared analysis (MMSE) show that the proposed framework effectively predicts the warfarin dosage to keep the INR values within the desired range and adapt the individualized patient model to exhibit the true status of the patient throughout treatment. Conclusion: This paper proposes an adaptive personalized patient modeling framework from limited patientspecific clinical data. It is shown by rigorous simulations that the proposed framework can accurately predict a patient's doseresponse characteristics and it can alert the clinician whenever identified models are no longer suitable for prediction and adapt the model to the current status of the patient to reduce the prediction error.
Collapse
Affiliation(s)
- Affan Affan
- Electrical and Computer Engineering DepartmentUniversity of LouisvilleLouisvilleKY40292USA
| | - Jacek M. Zurada
- Electrical and Computer Engineering DepartmentUniversity of LouisvilleLouisvilleKY40292USA
- Information Technology InstituteAcademy of Social Sciences90-193LodzPoland
| | - Tamer Inanc
- Electrical and Computer Engineering DepartmentUniversity of LouisvilleLouisvilleKY40292USA
| |
Collapse
|
3
|
McDonnell JM, Rigney B, Storme J, Ahern DP, Cunniffe G, Butler JS. Pharmacogenetic profiling and individualised therapy in the treatment of degenerative spinal conditions. Ir J Med Sci 2022:10.1007/s11845-022-03112-9. [PMID: 35962253 DOI: 10.1007/s11845-022-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Patients presenting with degenerative spinal changes are often poor surgical candidates due to associated co-morbidities, frailty, or sarcopenia. Additionally, surgeries of a degenerative spine can prove difficult due to the distortion of normal surgical anatomy. Therefore, many patients are managed conservatively with a variety of modalities, including over-the-counter and prescription medications. Nevertheless, several patients do not experience adequate relief from pain with analgesic medications, precipitating multiple hospital visits, and usage of resources. As a result, back pain is regarded as a major economic burden, with total costs of associated treatment exceeding $100 billion annually. Pharmacogenetics is a relatively novel method of evaluating an individual's response to analgesic medications, through analysis of germline polymorphisms. It entails obtaining a genetic sample, often via buccal swab or peripheral blood sample, and genetic analysis achieved through either polymerase chain reaction +/- Sanger sequencing, microassays, restriction length fragment polymorphism analysis, or genetic library preparation and next generation sequencing. The potential efficacy of pharmacogenetic analysis has been highlighted across several specialities to date. However, a paucity of evidence exists regarding spine surgery populations. Nevertheless, regular prospective pharmacogenetic analysis may ultimately prove beneficial when concerning degenerative spinal cohorts due to aforementioned surgical and economic considerations. The purpose of this narrative review is to outline how metaboliser profile variants affect the pharmacokinetics of specific analgesia used to treat back pain, and to discuss the current potential and limitations of employing regular pharmacogenetic analysis for spine surgery populations with degenerative conditions.
Collapse
Affiliation(s)
- Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.
| | - Brian Rigney
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - James Storme
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Daniel P Ahern
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, Trinity College, Dublin, Ireland
| | - Gráinne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Daly AK. Pharmacogenetics of the cytochromes P450: Selected pharmacological and toxicological aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:49-72. [PMID: 35953163 DOI: 10.1016/bs.apha.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the availability of detailed genomic data on all 57 human cytochrome P450 genes, it is clear that there is substantial variability in gene product activity with functionally significant polymorphisms reported across almost all isoforms. This article is concerned mainly with 13 P450 isoforms of particular relevance to xenobiotic metabolism. After brief review of the extent of polymorphism in each, the relevance of selected P450 isoforms to both adverse drug reaction and disease susceptibility is considered in detail. Bleeding due to warfarin and other coumarin anticoagulants is considered as an example of a type A reaction with idiosyncratic adverse drug reactions affecting the liver and skin as type B. It is clear that CYP2C9 variants contribute significantly to warfarin dose requirement and also risk of bleeding, with a minor contribution from CYP4F2. In the case of idiosyncratic adverse drug reactions, CYP2B6 variants appear relevant to both liver and skin reactions to several drugs with CYP2C9 variants also relevant to phenytoin-related skin rash. The relevance of P450 genotype to disease susceptibility is also considered but detailed genetic studies now suggest that CYP2A6 is the only P450 relevant to risk of lung cancer with alleles associated with low or absent activity clearly protective against disease. Other cytochrome P450 genotypes are generally not predictors for risk of cancer or other complex disease development.
Collapse
Affiliation(s)
- Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
5
|
McGurk KA, Farrell L, Kendall AC, Keavney BD, Nicolaou A. Genetic analyses of circulating PUFA-derived mediators identifies heritable dihydroxyeicosatrienoic acid species. Prostaglandins Other Lipid Mediat 2022; 160:106638. [PMID: 35472599 DOI: 10.1016/j.prostaglandins.2022.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Estimates of heritability are the first step in identifying a trait with substantial variation due to genetic factors. Large-scale genetic analyses can identify the DNA variants that influence the levels of circulating lipid species and the statistical technique Mendelian randomisation can use these DNA variants to address potential causality of these lipids in disease. We estimated the heritability of plasma eicosanoids, octadecanoids and docosanoids to identify those lipid species with substantial heritability. We analysed plasma lipid mediators in 31 White British families (196 participants) ascertained for high blood pressure and deeply clinically and biochemically phenotyped over a 25-year period. We found that the dihydroxyeicosatrienoic acid (DHET) species, 11,12-DHET and 14,15-DHET, products of arachidonic acid metabolism by cytochrome P450 (CYP) monooxygenase and soluble epoxide hydrolase (sEH), exhibited substantial heritability (h2 = 33%-37%; Padj<0.05). Identification of these two heritable bioactive lipid species allows for future large-scale, targeted, lipidomics-genomics analyses to address causality in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Farrell
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bernard D Keavney
- Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
6
|
Salmasi S, Högg T, Safari A, De Vera MA, Lynd LD, Koehoorn M, Barry AR, Andrade JG, Loewen P. The Random Effects Warfarin Days' Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data. Am J Epidemiol 2022; 191:1116-1124. [PMID: 35015808 DOI: 10.1093/aje/kwab295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Warfarin's complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996-2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days' Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients' cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients' individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson's correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days' supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days' supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.
Collapse
|
7
|
Huang Q, Cao L, Luo N, Qian H, Wei M, Xue L, Zhou Q, Zou B, Tan L, Chu Y, Ma X, Wang C, Wu H, Zhang L, Sun L, Li D, Fan X, Miao L, Zhou G. Predicting Range of Initial Warfarin Dose Based on Pharmacometabolomic and Genetic Inputs. Clin Pharmacol Ther 2021; 110:1585-1594. [PMID: 34460938 DOI: 10.1002/cpt.2407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 12/29/2022]
Abstract
Anticoagulation response to warfarin during the initial stage of therapy varies among individuals. In this study, we aimed to combine pharmacometabolomic and pharmacogenetic data to predict interindividual variation in warfarin response, and, on this basis, suggest an initial daily dose range. The baseline metabolic profiles, genotypes, and clinical information of 160 patients with heart valve disease served as the variables of the function of the last international normalized ratio measured before a patient's discharge (INRday7 ) to screen for potential biomarkers. The partial least-squares model showed that two baseline metabolites (uridine and guanosine), one single-nucleotide variation (VKORC1), and four clinical parameters (weight, creatinine level, amiodarone usage, and initial daily dose) had good predictive power for INRday7 (R2 = 0.753 for the training set, 0.643 for the test set). With these biomarkers, a machine learning algorithm (two-dimensional linear discriminant analysis-multinomial logit model) was used to predict the subgroups with extremely warfarin-sensitive or less warfarin-sensitive patients with a prediction accuracy of 91% for the training set and 90% for the test set, indicating that individual responses to warfarin could be effectively predicted. Based on this model, we have successfully designed an algorithm,"IniWarD," for predicting an effective dose range in the initial 7-day warfarin therapy. The results indicate that the daily dose range suggested by the IniWarD system is more appropriate than that of the conventional genotype-based method, and the risk of bleeding or thrombus due to warfarin could thus be avoided.
Collapse
Affiliation(s)
- Qing Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Ling Cao
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Nan Luo
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Qian
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Meng Wei
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ling Xue
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Bingjie Zou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Tan
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Changtian Wang
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Haiwei Wu
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lei Zhang
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lei Sun
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Demin Li
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xialei Fan
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
8
|
Bae S, Son K, Lee D, Han S, Choi K, Kim S. Warfarin Pharmacogenetics: Single-nucleotide Polymorphism Detection using CMOS Photosensor-based Real-time PCR. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Shah RR. Genotype‐guided warfarin therapy: Still of only questionable value two decades on. J Clin Pharm Ther 2020; 45:547-560. [DOI: 10.1111/jcpt.13127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
|
10
|
FREQUENCIES OF POLYMORPHISMS IN THE CYTOCHROME’S P450 GENES OF WARFARIN TRANSFORMATION IN A EUROPEAN POPULATION OF EASTERN SIBERIA. ACTA BIOMEDICA SCIENTIFICA 2018. [DOI: 10.29413/abs.2018-3.5.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Genotypes of the cytochrome p450 isoform (CYP2C9 and CYP4F2) determine warfarin dose requirements. Frequencies of risk alleles and genotypes of CYP2C9 and CYP4F2 gene vary in different races and ethnic groups.Aim. This study analyzed the frequencies of *2, *3 alleles of CYP2C9 gene and the 1347 C>T allele of CYP4F2 gene in the Caucasians of Eastern Siberia, and compare with other populations.Materials and methods. Participants were 147 patients (Caucasians): 67 (45.58 %) man and 80 (54.42 %) women), taking warfarin for the prevention of thrombosis with a mean age of 64.74 ± 14.29 years. There were patients with atrial fibrillation – 77 (52.38 %) persons, coronary artery disease – 10 (6.80 %), pulmonary embolism – 5 (3.40 %), 15 (10.20 %) patients after implantation of an mechanical heart valve, etc. The subjects were genotyped for CYP2C9 (*1,*2,*3), and CYP4F2 (1347 C>T) by real-time polymerase chain reaction (RT-PCR) using “Pharmacogenetics Warfarin” reagent kits (DNA technology, Russia).Results. 69.4 % of Caucasians of Eastern Siberia (Russians), have two functional alleles (*1/*1) of CYP2C9 (they’re extensive/normal metabolizers), the number of intermediate metabolizers (*1/*2, *1/*3) was 29.8 % and 0.68 % of slow metabolizers (*3/*3). Homozygous carriers of two non-functional alleles *2 and *3 (*2/*2, *2/*3) were absent. Carriers of one coumarin-resistant Т-allele of CYP4F2 were 57 (38.7 %) respondents, two coumarin-resistant alleles – 10 (6.8 %) respondents.Conclusions. Frequencies of polymorphisms in the Cytochrome’s p450 genes of warfarin transformation in a European population of Eastern Siberia have no differences with other European populations of the world
Collapse
|
11
|
Gelosa P, Castiglioni L, Tenconi M, Baldessin L, Racagni G, Corsini A, Bellosta S. Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacol Res 2018; 135:60-79. [PMID: 30040996 DOI: 10.1016/j.phrs.2018.07.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
The use of warfarin, the most commonly prescribed oral anticoagulant, is being questioned by clinicians worldwide due to warfarin several limitations (a limited therapeutic window and significant variability in dose-response among individuals, in addition to a potential for drug-drug interactions). Therefore, the need for non-vitamin K antagonist oral anticoagulants (NOACs) with a rapid onset of antithrombotic effects and a predictable pharmacokinetic (PK) and pharmacodynamic (PD) profile led to the approval of five new drugs: the direct factor Xa (F-Xa) inhibitors rivaroxaban, apixaban, edoxaban and betrixaban (newly approved by FDA) and the direct thrombin (factor-IIa) inhibitor dabigatran etexilate. The advantages of NOACs over warfarin are a fixed-dosage, the absence of the need for drug monitoring for changes in anti-coagulation and fewer clinically significant PK and PD drug-drug interactions. NOACs exposure will likely be increased by the administration of strong P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4-inhibitors and may increase the risk of bleeds. On the contrary, P-gp inducers could significantly decrease the NOACs plasma concentration with an associated reduction in their anticoagulant effects. This manuscript gives an overview of NOACs PK profiles and their drug-drug interactions potential. This is meant to be of help to physicians in choosing the best therapeutic approach for their patients.
Collapse
Affiliation(s)
- Paolo Gelosa
- Centro Cardiologico Monzino IRCCS, Via C. Parea, 4, 20138 Milan, Italy.
| | - Laura Castiglioni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy.
| | - Marco Tenconi
- EDRA S.p.A., Via G. Spadolini, 7, 20141 Milan, Italy.
| | | | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy.
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; IRCCS MultiMedica, via G. Fantoli 16, 20138 Milan, Italy.
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; IRCCS MultiMedica, via G. Fantoli 16, 20138 Milan, Italy.
| |
Collapse
|
12
|
Tavares LC, Marcatto LR, Santos PCJL. Genotype-guided warfarin therapy: current status. Pharmacogenomics 2018; 19:667-685. [PMID: 29701078 DOI: 10.2217/pgs-2017-0207] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Warfarin pharmacogenomics has been an extensively studied field in the last decades as it is focused on personalized therapy to overcome the wide interpatient warfarin response variability and decrease the risk of side effects. In this expert review, besides briefly summarizing the current knowledge about warfarin pharmacogenetics, we also present an overview of recent studies that aimed to assess the efficacy, safety and economic issues related to genotype-based dosing algorithms used to guide warfarin therapy, including randomized and controlled clinical trials, meta-analyses and cost-effectiveness studies. To date, the findings still present disparities, mostly because of standard limitations. Thus, further studies should be encouraged to try to demonstrate the benefits of the application of warfarin pharmacogenomic dosing algorithms in clinical practice.
Collapse
Affiliation(s)
- Letícia C Tavares
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, SP 05403-900, Brazil
| | - Leiliane R Marcatto
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, SP 05403-900, Brazil
| | - Paulo C J L Santos
- Department of Pharmacology, Universidade Federal de Sao Paulo UNIFESP, SP 04044-020, Brazil
| |
Collapse
|
13
|
Soko ND, Masimirembwa C, Dandara C. Pharmacogenomics of Rosuvastatin: A Glocal (Global+Local) African Perspective and Expert Review on a Statin Drug. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 20:498-509. [PMID: 27631189 DOI: 10.1089/omi.2016.0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The incidence of cardiovascular diseases (CVDs) in African populations residing in the African continent is on the rise fueled by both a steady increase in CVD risk factors and comorbidities such as human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS), tuberculosis, and parasitic diseases such as bilharzia. Statins are recommended together with lifestyle changes in the treatment of hypercholesterolemia and overall reduction of cardiovascular events. Rosuvastatin in particular is an attractive candidate in the management of CVDs in African populations often plagued with multimorbidities owing to both its potency and low drug-to-drug interaction potential. In this expert review, we describe the pharmacogenetics of rosuvastatin and how it may instrumentally affect the African populations. We describe polymorphisms in the candidate genes, ABCG2, SLCO1B1, CYP2C9, APOE, PCSK9, LDLR, LPA, and HMGCR, and their role in the potency and safety of rosuvastatin therapy. We report on qualitative and quantitative differences in the distribution of genetic variants that affect efficacy and toxicity of rosuvastatin. These differences are observed across world populations (Caucasian, European, and Asian) as well as within African populations. Finally, we advocate for extensive pharmacogenetic studies in African populations that take into account the genetic diversity of intra-African ethnic groups and the genetic differences between African populations and other global populations, with a collaborative and collective aim to provide effective and safe use of rosuvastatin in management of CVD in Africa. Our key thesis presented in this innovation field analysis is that rosuvastatin precision medicine can serve as a veritable Glocal (Global and Local) model to offer pharmacogenetic-guided optimal therapeutics for the public in both developing and developed regions of the world.
Collapse
Affiliation(s)
- Nyarai D Soko
- 1 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, and University of Cape Town , Cape Town, South Africa
| | - Collen Masimirembwa
- 2 African Institute of Biomedical Science and Technology (AiBST) , Wilkins Hospital, Harare, Zimbabwe .,3 Clinical Pharmacology, Department of Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 1 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, and University of Cape Town , Cape Town, South Africa
| |
Collapse
|
14
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
15
|
Pharmacogenomics Guided-Personalization of Warfarin and Tamoxifen. J Pers Med 2017; 7:jpm7040020. [PMID: 29236081 PMCID: PMC5748632 DOI: 10.3390/jpm7040020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The use of pharmacogenomics to personalize drug therapy has been a long-sought goal for warfarin and tamoxifen. However, conflicting evidence has created reason for hesitation in recommending pharmacogenomics-guided care for both drugs. This review will provide a summary of the evidence to date on the association between cytochrome P450 enzymes and the clinical end points of warfarin and tamoxifen therapy. Further, highlighting the clinical experiences that we have gained over the past ten years of running a personalized medicine program, we will offer our perspectives on the utility and the limitations of pharmacogenomics-guided care for warfarin and tamoxifen therapy.
Collapse
|
16
|
Mili FD, Allen T, Wadell PW, Hooper WC, Staercke CD, Bean CJ, Lally C, Austin H, Wenger NK. VKORC1-1639A allele influences warfarin maintenance dosage among Blacks receiving warfarin anticoagulation: a retrospective cohort study. Future Cardiol 2017; 14:15-26. [PMID: 29218998 DOI: 10.2217/fca-2017-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The study objectives were to investigate the association between selected CYP2C9 and VKORC1 single nucleotide polymorphisms with serious bleeding or thrombotic risk, and to estimate mean daily maintenance dose of warfarin and international normalized ratio measurements among Blacks receiving warfarin anticoagulation. METHODS We conducted a retrospective cohort study among 230 Black adults receiving warfarin for a minimum of three consecutive months with a confirmed date of first dosage. RESULTS A lower mean daily maintenance dosage of warfarin was required to maintain an international normalized ratio measurement within the therapeutic range among Blacks with the VKORC1-1639G>A variant alleles ([G/A vs G/G, p = 0.02], [A/A vs G/A, p = 0.008] and [A/A vs G/G, p = 0.001]). CONCLUSION Data indicated that VKORC1-1639A variant allele influenced warfarin daily maintenance dosage among our small, likely admixed Black patient population.
Collapse
Affiliation(s)
- Fatima Donia Mili
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Tenecia Allen
- Emory Heart & Vascular Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paula Weinstein Wadell
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - W Craig Hooper
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Christine De Staercke
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Christopher J Bean
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Cathy Lally
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Harland Austin
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Nanette K Wenger
- Emory Heart & Vascular Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Li Q, Wineinger NE, Fu DJ, Libiger O, Alphs L, Savitz A, Gopal S, Cohen N, Schork NJ. Genome-wide association study of paliperidone efficacy. Pharmacogenet Genomics 2017; 27:7-18. [PMID: 27846195 PMCID: PMC5152628 DOI: 10.1097/fpc.0000000000000250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental Digital Content is available in the text. Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples.
Collapse
Affiliation(s)
- Qingqin Li
- aNeuroscience, Janssen Research & Development, LLC bJanssen Scientific Affairs, LLC, Titusville cJanssen Research & Development, LLC, Raritan dBlue Note Biosciences, LLC, Princeton, New Jersey eBiostatistics and Bioinformatics, The Scripps Translational Science Institute fDepartment of Molecular and Experimental Medicine, The Scripps Research Institute gScripps Health hHuman Biology, J. Craig Venter Institute, La Jolla iMD Revolution, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Metabolism is a biotransformation process, where endogenous and exogenous compounds are converted to more polar products to facilitate their elimination from the body. The process of metabolism is divided into 3 phases. Phase I metabolism involves functionalization reactions. Phase II drug metabolism is a conjugation reaction. Phase III refers to transporter-mediated elimination of drug and/or metabolites from body normally via liver, gut, kidney, or lung. This review presents basic information on drug-metabolizing enzymes and potential factors that might affect the metabolic capacities of the enzyme or alter drug response or drug-mediated toxicities.
Collapse
Affiliation(s)
- Omar Abdulhameed Almazroo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Mohammad Kowser Miah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 718 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA; Department of Pathology, University of Pittsburgh Medical Center, Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Liu R, Cao J, Zhang Q, Shi XM, Pan XD, Dong R. Clinical and genetic factors associated with warfarin maintenance dose in northern Chinese patients with mechanical heart valve replacement. Medicine (Baltimore) 2017; 96:e5658. [PMID: 28079798 PMCID: PMC5266160 DOI: 10.1097/md.0000000000005658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The effects of genetic variants on warfarin dosing vary among different ethnic groups, especially in the Chinese population. The objective of this study was to recruit patients through a rigorous experimental design and to perform a comprehensive screen to identify gene polymorphisms that may influence warfarin dosing in northern Han Chinese patients with mechanical heart valve replacement. Consenting patients (n = 183) with a stable warfarin dose were included in this study. Ninety-six single nucleotide polymorphisms (SNPs) in 30 genes involved in warfarin pharmacological pathways were genotyped using the Illumina SNP GoldenGate Assay, and their associations with warfarin dosing were assessed using univariate regression analysis with post hoc comparison using least significant difference analysis. Multiple linear regression was performed by incorporating patients' clinical and genetic data to create a new algorithm for warfarin dosing. From the 96 SNPs analyzed, VKORC1 rs9923231, CYP1A2 rs2069514, CYP3A4 rs28371759, and APOE rs7412 were associated with higher average warfarin maintenance doses, whereas CYP2C9 rs1057910, EPHX1 rs2260863, and CYP4F2 rs2189784 were associated with lower warfarin doses (P < 0.05). Multiple linear regression analysis could estimate 44.4% of warfarin dose variability consisting of, in decreasing order, VKORC1 rs9923231 (14.2%), CYP2C9*3 (9.6%), body surface area (6.7%), CYP1A2 rs2069514 (3.7%), age (2.7%), CYP3A4 rs28371759 (2.5%), CYP4F2 rs2108622 (1.9%), APOE rs7412 (1.7%), and VKORC1 rs2884737 (1.4%). In the dosing algorithm we developed, we confirmed the strongest effects of VKORC1, CYP2C9 on warfarin dosing. In the limited sample set, we also found that novel genetic predictors (CYP1A2, CYP3A4, APOE, EPHX1, CYP4F2, and VKORC1 rs2884737) may be associated with warfarin dosing. Further validation is needed to assess our results in larger independent northern Chinese samples.
Collapse
Affiliation(s)
- Rui Liu
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing
| | - Jian Cao
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing
| | - Qian Zhang
- Department of Epidemiology, Beijing Institute of Heart, Lung and Blood Vessel Disease
| | - Xin-Miao Shi
- Department of Pediatrics, Peking University First Hospital, Beijing
| | - Xiao-Dong Pan
- Experimental Center, Beijing Institute of Heart, Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing
| |
Collapse
|
20
|
Roden DM. Pharmacogenetic Implementation Lessons From the "Real World". Clin Pharmacol Ther 2016; 102:25-27. [PMID: 27981579 DOI: 10.1002/cpt.584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 11/10/2022]
Abstract
The manuscript "Anticoagulation Endpoints With Clinical Implementation of Warfarin Pharmacogenetic Dosing in a Real- World Setting: A Proposal for a New Pharmacogenetic Dosing Approach" describes process outcomes in an institutional program to use pharmacogenetic testing to optimize warfarin dose in a cohort of 257 patients of diverse ancestries. The strengths and weaknesses of the approach and program are discussed, along with the current and potential future status of warfarin as a model for pharmacogenetic testing.
Collapse
Affiliation(s)
- D M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:298-313. [PMID: 27729266 PMCID: PMC5093856 DOI: 10.1016/j.gpb.2016.03.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
The interindividual genetic variations in drug metabolizing enzymes and transporters influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision medicine, pharmacogenomics, the study of responses of individuals to medication based on their genomic information, enables the evaluation of some specific genetic variants responsible for an individual’s particular drug response. In this article, we review the contributions of genetic polymorphisms to major individual variations in drug pharmacotherapy, focusing specifically on the pharmacogenomics of phase-I drug metabolizing enzymes and transporters. Substantial frequency differences in key variants of drug metabolizing enzymes and transporters, as well as their possible functional consequences, have also been discussed across geographic regions. The current effort illustrates the common presence of variability in drug responses among individuals and across all geographic regions. This information will aid health-care professionals in prescribing the most appropriate treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects for a particular patient.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- Department of Precision Medicine and Biopharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; International Center for Precision Medicine, Zhejiang California International NanoSystems Institute, Hangzhou 310058, China.
| |
Collapse
|
22
|
Abstract
Certain antithrombotic drugs exhibit high patient-to-patient variability that significantly impacts the safety and efficacy of therapy. Pharmacogenetics offers the possibility of tailoring drug treatment to patients based on individual genotypes, and this type of testing has been recommended for 2 oral antithrombotic agents, warfarin and clopidogrel, to influence use and guide dosing. Limited studies have identified polymorphisms that affect the metabolism and activity of newer oral antithrombotic drugs, without clear evidence of the clinical relevance of such polymorphisms. This article provides an overview of the current status of pharmacogenetics in oral antithrombotic therapy.
Collapse
Affiliation(s)
- Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Emory University School of Medicine, 1364 Clifton Road Northeast, Atlanta, GA 30322, USA.
| | - Alexander Duncan
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Emory University School of Medicine, 1364 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Charles E Hill
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Emory University School of Medicine, 1364 Clifton Road Northeast, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Nagalla S, Bray PF. Personalized medicine in thrombosis: back to the future. Blood 2016; 127:2665-71. [PMID: 26847245 PMCID: PMC4891951 DOI: 10.1182/blood-2015-11-634832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/31/2016] [Indexed: 01/26/2023] Open
Abstract
Most physicians believe they practiced personalized medicine prior to the genomics era that followed the sequencing of the human genome. The focus of personalized medicine has been primarily genomic medicine, wherein it is hoped that the nucleotide dissimilarities among different individuals would provide clinicians with more precise understanding of physiology, more refined diagnoses, better disease risk assessment, earlier detection and monitoring, and tailored treatments to the individual patient. However, to date, the "genomic bench" has not worked itself to the clinical thrombosis bedside. In fact, traditional plasma-based hemostasis-thrombosis laboratory testing, by assessing functional pathways of coagulation, may better help manage venous thrombotic disease than a single DNA variant with a small effect size. There are some new and exciting discoveries in the genetics of platelet reactivity pertaining to atherothrombotic disease. Despite a plethora of genetic/genomic data on platelet reactivity, there are relatively little actionable pharmacogenetic data with antiplatelet agents. Nevertheless, it is crucial for genome-wide DNA/RNA sequencing to continue in research settings for causal gene discovery, pharmacogenetic purposes, and gene-gene and gene-environment interactions. The potential of genomics to advance medicine will require integration of personal data that are obtained in the patient history: environmental exposures, diet, social data, etc. Furthermore, without the ritual of obtaining this information, we will have depersonalized medicine, which lacks the precision needed for the research required to eventually incorporate genomics into routine, optimal, and value-added clinical care.
Collapse
Affiliation(s)
- Srikanth Nagalla
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Paul F Bray
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
24
|
Bourgeois S, Jorgensen A, Zhang EJ, Hanson A, Gillman MS, Bumpstead S, Toh CH, Williamson P, Daly AK, Kamali F, Deloukas P, Pirmohamed M. A multi-factorial analysis of response to warfarin in a UK prospective cohort. Genome Med 2016; 8:2. [PMID: 26739746 PMCID: PMC4702374 DOI: 10.1186/s13073-015-0255-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background Warfarin is the most widely used oral anticoagulant worldwide, but it has a narrow therapeutic index which necessitates constant monitoring of anticoagulation response. Previous genome-wide studies have focused on identifying factors explaining variance in stable dose, but have not explored the initial patient response to warfarin, and a wider range of clinical and biochemical factors affecting both initial and stable dosing with warfarin. Methods A prospective cohort of 711 patients starting warfarin was followed up for 6 months with analyses focusing on both non-genetic and genetic factors. The outcome measures used were mean weekly warfarin dose (MWD), stable mean weekly dose (SMWD) and international normalised ratio (INR) > 4 during the first week. Samples were genotyped on the Illumina Human610-Quad chip. Statistical analyses were performed using Plink and R. Results VKORC1 and CYP2C9 were the major genetic determinants of warfarin MWD and SMWD, with CYP4F2 having a smaller effect. Age, height, weight, cigarette smoking and interacting medications accounted for less than 20 % of the variance. Our multifactorial analysis explained 57.89 % and 56.97 % of the variation for MWD and SMWD, respectively. Genotypes for VKORC1 and CYP2C9*3, age, height and weight, as well as other clinical factors such as alcohol consumption, loading dose and concomitant drugs were important for the initial INR response to warfarin. In a small subset of patients for whom data were available, levels of the coagulation factors VII and IX (highly correlated) also played a role. Conclusion Our multifactorial analysis in a prospectively recruited cohort has shown that multiple factors, genetic and clinical, are important in determining the response to warfarin. VKORC1 and CYP2C9 genetic polymorphisms are the most important determinants of warfarin dosing, and it is highly unlikely that other common variants of clinical importance influencing warfarin dosage will be found. Both VKORC1 and CYP2C9*3 are important determinants of the initial INR response to warfarin. Other novel variants, which did not reach genome-wide significance, were identified for the different outcome measures, but need replication. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0255-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephane Bourgeois
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | | - Eunice J Zhang
- University of Liverpool, Liverpool, Merseyside, L69 3GE, UK.
| | - Anita Hanson
- University of Liverpool, Liverpool, Merseyside, L69 3GE, UK.
| | - Matthew S Gillman
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Suzannah Bumpstead
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Cheng Hock Toh
- University of Liverpool, Liverpool, Merseyside, L69 3GE, UK.
| | | | - Ann K Daly
- Newcastle University, Newcastle upon Tyne, UK.
| | | | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Munir Pirmohamed
- University of Liverpool, Liverpool, Merseyside, L69 3GE, UK. .,Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, L7 8XP, UK. .,The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Block A: Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
| |
Collapse
|
25
|
Karlgren M, Bergström CAS. How Physicochemical Properties of Drugs Affect Their Metabolism and Clearance. NEW HORIZONS IN PREDICTIVE DRUG METABOLISM AND PHARMACOKINETICS 2015. [DOI: 10.1039/9781782622376-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter the transport proteins and enzymes of importance for drug clearance are discussed. The primary organ for drug metabolism is the liver and to reach the intracellular compartment of hepatocytes, orally administered drugs must cross both the intestinal wall and the cell membrane of the liver cells. Transport proteins present in the cellular membrane may facilitate or hinder the compounds crossing these cellular barriers and hence will influence to what extent compounds will reach the enzymes. Here, the enzymes and transport proteins of importance for drug clearance are discussed. The molecular features of importance for drug interactions with transport proteins and enzymes are analyzed and the possibility to predict molecular features vulnerable to enzymatic degradation is discussed. From detailed analysis of the current literature it is concluded that for interaction, both with transport proteins and enzymes, lipophilicity plays a major role. In addition to this property, molecular properties such as hydrogen bond acceptors and donors, charge, aromaticity and molecular size can be used to distinguish between routes of clearance.
Collapse
Affiliation(s)
- Maria Karlgren
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| |
Collapse
|
26
|
Shu WY, Li JL, Wang XD, Huang M. Pharmacogenomics and personalized medicine: a review focused on their application in the Chinese population. Acta Pharmacol Sin 2015; 36:535-43. [PMID: 25891088 DOI: 10.1038/aps.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
The field of pharmacogenomics was initiated in the 1950s and began to thrive after the completion of the human genome project 10 years ago. Thus far, more than 100 drug labels and clinical guidelines referring to pharmacogenomic biomarkers have been published, and several key pharmacogenomic markers for either drug safety or efficacy have been identified and subsequently adopted in clinical practice as pre-treatment genetic tests. However, a tremendous variation of genetic backgrounds exists between different ethnic groups. The application of pharmacogenomics in the Chinese population is still a long way off, since the published guidelines issued by the organizations such as US Food and Drug Administration require further confirmation in the Chinese population. This review highlights important pharmacogenomic discoveries in the Chinese population and compares the Chinese population with other nations regarding the pharmacogenomics of five most commonly used drugs, ie, tacrolimus, cyclosporine A, warfarin, cyclophosphamide and azathioprine.
Collapse
|
27
|
Abstract
The emergence of personalized medicine mandates a complete understating of DNA sequence variation that modulates drug response. Initial forays have been made in the cardiac arena, yet much remains to be elucidated in the pharmacogenetics of cardiac drugs. Most progress has been made in describing DNA sequence variation related to the anticoagulant warfarin and the antiplatelet drug clopidogrel. This includes a description of DNA sequence variation that underlies pharmacokinetic and pharmacodynamic variability, the impact of such variation on predicting hard outcomes, and the ability of genotype-guided prescription to facilitate rapid titration to a therapeutic range while avoiding unnecessary high plasma levels. Nuanced prescription will require a complete inventory of DNA sequence variants that underlie drug-related side effects.
Collapse
|
28
|
Baranova EV, Verhoef TI, Asselbergs FW, de Boer A, Maitland-van der Zee AH. Genotype-guided coumarin dosing: where are we now and where do we need to go next? Expert Opin Drug Metab Toxicol 2015; 11:509-22. [DOI: 10.1517/17425255.2015.1004053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Pharmacogenetics of Coumarin Anticoagulant Therapy. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Verhoef TI, Redekop WK, Daly AK, van Schie RMF, de Boer A, Maitland-van der Zee AH. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol 2014; 77:626-41. [PMID: 23919835 DOI: 10.1111/bcp.12220] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022] Open
Abstract
Coumarin derivatives, such as warfarin, acenocoumarol and phenprocoumon are frequently prescribed oral anticoagulants to treat and prevent thromboembolism. Because there is a large inter-individual and intra-individual variability in dose-response and a small therapeutic window, treatment with coumarin derivatives is challenging. Certain polymorphisms in CYP2C9 and VKORC1 are associated with lower dose requirements and a higher risk of bleeding. In this review we describe the use of different coumarin derivatives, pharmacokinetic characteristics of these drugs and differences amongst the coumarins. We also describe the current clinical challenges and the role of pharmacogenetic factors. These genetic factors are used to develop dosing algorithms and can be used to predict the right coumarin dose. The effectiveness of this new dosing strategy is currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Talitha I Verhoef
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Aomori T, Fujita Y, Obayashi K, Sato H, Kiyotani K, Nakamura K, Nakamura T, Yamamoto K. Case report: dose adjustment of warfarin using genetic information and plasma concentration monitoring. J Clin Pharm Ther 2014; 39:319-21. [DOI: 10.1111/jcpt.12135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/06/2014] [Indexed: 11/27/2022]
Affiliation(s)
- T. Aomori
- Center for Pharmacy Practice; Faculty of Pharmacy; Keio University; Tokyo Japan
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
- Department of Clinical Pharmacology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Y. Fujita
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
- Department of Pharmacy; Gunma Prefectural Cancer Center; Ota Japan
| | - K. Obayashi
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
| | - H. Sato
- Department of Medicine; Pharmaceutical Administration; Center for Medical Welfare; Sapporo Ayuminosono; Sapporo Japan
| | - K. Kiyotani
- Section of Hematology/Oncology; the University of Chicago Medical Center; Chicago IL USA
| | - K. Nakamura
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
- Educational Research Center for Clinical Pharmacy; Nagoya City University; Graduate School of Pharmaceutical Science; Nagoya Japan
| | - T. Nakamura
- Center for Pharmacy Practice; Faculty of Pharmacy; Keio University; Tokyo Japan
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
- Department of Clinical Pharmacology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - K. Yamamoto
- Department of Pharmacy; Gunma University Hospital; Maebashi Japan
- Department of Clinical Pharmacology; Gunma University Graduate School of Medicine; Maebashi Japan
| |
Collapse
|
33
|
Zhao L, Chen C, Li B, Dong L, Guo Y, Xiao X, Zhang E, Qin L. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement. PLoS One 2014; 9:e94573. [PMID: 24728385 PMCID: PMC3984158 DOI: 10.1371/journal.pone.0094573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/18/2014] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. METHODS We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. RESULTS A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (<1.88 mg/day). Among the 8 algorithms compared, the algorithms of Wei, Huang, and Miao showed a lower MAE and higher percentage within 20% in both the initial and the stable warfarin dose prediction and in the low-dose and the ideal-dose ranges. CONCLUSIONS All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement.
Collapse
Affiliation(s)
- Li Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chunxia Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Bei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Li Dong
- Department of Cardiothoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yingqiang Guo
- Department of Cardiothoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xijun Xiao
- Department of Cardiothoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Eryong Zhang
- Department of Cardiothoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Li Qin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
34
|
Meyer NJ. Future clinical applications of genomics for acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2013; 1:793-803. [PMID: 24461759 DOI: 10.1016/s2213-2600(13)70134-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome remains a substantial cause of morbidity and mortality in intensive care units, yet no specific pharmacotherapy has proven useful in reducing the duration of mechanical ventilation or improving survival. One factor that might hamper the development of treatment for acute respiratory distress syndrome is the heterogeneous nature of the population who present with the syndrome. In this Review, the potential of genomic approaches-genetic association, gene expression, metabolomic, proteomic, and systems biology applications-for the identification of molecular endotypes within acute respiratory distress syndrome and potentially for the prediction, diagnosis, prognosis, and treatment of this difficult disorder are discussed.
Collapse
Affiliation(s)
- Nuala J Meyer
- Department of Medicine Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Bazan NS, Sabry NA, Rizk A, Mokhtar S, Badary OA. Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Ir J Med Sci 2013; 183:161-72. [DOI: 10.1007/s11845-013-0978-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/11/2013] [Indexed: 12/22/2022]
|
36
|
Abstract
Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual's warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics.
Collapse
|
37
|
Abstract
In the coming years, genomics will impact clinical practice in multiple ways. However, one of the most important applications will be in the determination of the best treatments in personalized medicine. This is, in fact, one of the fields in which genetic variants have already been most successful and useful to clinicians. Here, we briefly review the current state of the art on pharmacogenomics and its applications to modern cardiovascular medicine.
Collapse
|
38
|
Burstein AH, Clark DJ, O'Gorman M, Willavize SA, Brayman TG, Grover GS, Walsky RL, Obach RS, Faessel HM. Lack of Pharmacokinetic and Pharmacodynamic Interactions Between a Smoking Cessation Therapy, Varenicline, and Warfarin: An In Vivo and In Vitro Study1. J Clin Pharmacol 2013; 47:1421-9. [DOI: 10.1177/0091270007307574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Fung E, Patsopoulos NA, Belknap SM, O'Rourke DJ, Robb JF, Anderson JL, Shworak NW, Moore JH. Effect of genetic variants, especially CYP2C9 and VKORC1, on the pharmacology of warfarin. Semin Thromb Hemost 2012; 38:893-904. [PMID: 23041981 DOI: 10.1055/s-0032-1328891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genes encoding the cytochrome P450 2C9 enzyme (CYP2C9) and vitamin K-epoxide reductase complex unit 1 (VKORC1) are major determinants of anticoagulant response to warfarin. Together with patient demographics and clinical information, they account for approximately one-half of the warfarin dose variance in individuals of European descent. Recent prospective and randomized controlled trial data support pharmacogenetic guidance with their use in warfarin dose initiation and titration. Benefits from pharmacogenetics-guided warfarin dosing have been reported to extend beyond the period of initial dosing, with supportive data indicating benefits to at least 3 months. The genetic effects of VKORC1 and CYP2C9 in African and Asian populations are concordant with those in individuals of European ancestry; however, frequency distribution of allelic variants can vary considerably between major populations. Future randomized controlled trials in multiethnic settings using population-specific dosing algorithms will allow us to further ascertain the generalizability and cost-effectiveness of pharmacogenetics-guided warfarin therapy. Additional genome-wide association studies may help us to improve and refine dosing algorithms and potentially identify novel biological pathways.
Collapse
Affiliation(s)
- Erik Fung
- Section of Cardiology, Heart & Vascular Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Personalized cardiovascular medicine: status in 2012. Can J Cardiol 2012; 28:693-9. [PMID: 23036280 DOI: 10.1016/j.cjca.2012.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine is the tailoring of the diagnosis, prevention, and treatment to the characteristics of each individual patient. In this review, we provide a status report on genetic variants that influence therapy with antiplatelet agents, warfarin, and statins. Resistance to clopidogrel, an antiplatelet therapy, has been shown to be present in 25% to 30% of Caucasians and an even higher percentage in Asians. Part of this resistance is because of the CYP2C19*2 allele. Administering clopidogrel on the basis of previous genetic testing remains controversial. A recent breakthrough in point-of-care genetic testing for clopidogrel might be significant, not only for genetic testing for clopidogrel, but for the whole of personalized medicine. Genetic testing for aspirin resistance is not yet recommended because of incomplete genetic data. Studies to determine the value of genetic testing before the administration of warfarin are ongoing. Testing for SLCO1B1 allele for individuals with muscle cramps who are taking statins could be very helpful but is not yet recommended as routine. Pharmacogenetics has the potential to customize therapy and move away from the current model of 1 drug fits all.
Collapse
|
41
|
Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 2012; 7:e44064. [PMID: 22952875 PMCID: PMC3430615 DOI: 10.1371/journal.pone.0044064] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/30/2012] [Indexed: 01/13/2023] Open
Abstract
Background Warfarin is a highly effective anticoagulant however its effectiveness relies on maintaining INR in therapeutic range. Finding the correct dose is difficult due to large inter-individual variability. Two genes, CYP2C9 and VKORC1, have been associated with this variability, leading to genotype-guided dosing tables in warfarin labeling. Nonetheless, it remains unclear how genotypic information should be used in practice. Navigating the literature to determine how genotype will influence warfarin response in a particular patient is difficult, due to significant variation in patient ethnicity, outcomes investigated, study design, and methodological rigor. Our systematic review was conducted to enable fair and accurate interpretation of which variants affect which outcomes, in which patients, and to what extent. Methodology/Principal Findings A comprehensive search strategy was applied and 117 studies included. Primary outcomes were stable dose, time to stable dose and bleeding events. Methodological quality was assessed using criteria of Jorgensen and Williamson and data synthesized in meta-analyses using advanced methods. Pooled effect estimates were significant in most ethnic groups for CYP2C9*3 and stable dose (mutant types requiring between 1.1(0.7–1.5) and 2.3 (1.6–3.0)mg/day). Effect estimates were also significant for VKORC1 and stable dose for most ethnicities, although direction differed between asians and non-asians (mutant types requiring between 0.8(0.4–1.3) and 1.5(1.1–1.8)mg/day more in asians and between 1.5(0.7–2.2) and 3.1(2.7–3.6)mg/day less in non-asians). Several studies were excluded due to inadequate data reporting. Assessing study quality highlighted significant variability in methodological rigor. Notably, there was significant evidence of selective reporting, of outcomes and analysis approaches. Conclusions/Significance Genetic associations with warfarin response vary between ethnicities. In order to achieve unbiased estimates in different populations, a high level of methodological rigor must be maintained and studies should report sufficient data to enable inclusion in meta-analyses. We propose minimum reporting requirements, suggest methodological guidelines and provide recommendations for reducing the risk of selective reporting.
Collapse
Affiliation(s)
- Andrea L Jorgensen
- Department of Biostatistics, Shelley's Cottage, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
García-Martín E, Martínez C, Ladero JM, Agúndez JAG. Interethnic and Intraethnic Variability of CYP2C8 and CYP2C9 Polymorphisms in Healthy Individuals. Mol Diagn Ther 2012; 10:29-40. [PMID: 16646575 DOI: 10.1007/bf03256440] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 (CYP) superfamily members CYP2C8 and CYP2C9 are polymorphically expressed enzymes that are involved in the metabolic inactivation of several drugs, including, among others, antiepileptics, NSAIDs, oral hypoglycemics, and anticoagulants. Many of these drugs have a narrow therapeutic index, and growing evidence indicates a prominent role of CYP2C8 and CYP2C9 polymorphisms in the therapeutic efficacy and in the development of adverse effects among patients treated with drugs that are CYP2C8 or CYP2C9 substrates. In this review, we summarize present knowledge on human variability in the frequency of variant CYP2C8 and CYP2C9 alleles. Besides an expected interethnic variability in allele frequencies, a large intraethnic variability exists. Among Asian subjects, for example, statistically significant differences (p < 0.0001) in CYP2C9*3 allele frequencies between Chinese and Japanese individuals have been reported. In addition, individuals from East Asia present different allele frequencies for CYP2C9*2 and CYP2C9*3 compared with South Asian subjects (p < 0.0001). Among Caucasian Europeans, statistically significant differences for the frequency of CYP2C8*3, CYP2C9*2, and CYP2C9*3 exist (p < 0.0001). This indicates that Asian individuals or Caucasian European individuals cannot be considered as homogeneous groups regarding CYP2C8 or CYP2C9 allele frequencies. Caucasian American subjects also show a large variability in allele frequencies, which is likely to be related to ethnic ancestry. A higher frequency of variant CYP2C8 and CYP2C9 alleles is expected among Caucasian Americans with South European ancestry than in individuals with North European ancestry. The findings summarized in this review suggest that among individuals with Asian or European ancestry, intraethnic differences in the risk of developing adverse effects with drugs that are CYP2C8 or CYP2C9 substrates are to be expected. In addition, the observed intraethnic variability reinforces the need for proper selection of control subjects and points against the use of surrogate control groups for studies involving association of CYP2C8 or CYP2C9 alleles with adverse drug reactions or spontaneous diseases.
Collapse
Affiliation(s)
- Elena García-Martín
- Department of Biochemistry & Molecular Biology, School of Sciences, University of Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
43
|
|
44
|
Wisler JR, Wisler JW, Bansal S, Marsh CB. Challenges and opportunities in implementing pharmacogenomics testing in the clinics. Per Med 2012; 9:609-619. [PMID: 29768798 DOI: 10.2217/pme.12.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of pharmacogenomics aims to incorporate individual patient genomic information into treatment selection. This is a rapidly evolving field with significant clinical promise. Implementation into clinical practice has several challenges that must be overcome. Genomics-based information encompasses large databases and requires expert knowledge for interpretation. Existing research suggests there are already several areas where pharmacogenomics-based decision-making is ripe for adoption into clinical practice. Impediments exist that must be overcome prior to large-scale implementation of existing pharmacogenomics-based therapies. There are several institutions and corporations at the forefront of implementation that are leading the development; however, larger systems-based approaches will be necessary. This article will discuss some of the present successes and future challenges that are necessary to overcome in order to implement a more patient-centered healthcare system.
Collapse
Affiliation(s)
- Jon R Wisler
- Department of Surgery, The Ohio State University, OH, USA
| | - James W Wisler
- Department of Internal Medicine, Division of Cardiology, Duke University, Durham, NC, USA
| | - Shelly Bansal
- Department of Surgery, The Ohio State University, OH, USA
| | - Clay B Marsh
- College of Medicine & Center for Personalized Health Care, The Ohio State University, OH, USA.
| |
Collapse
|
45
|
Eriksson N, Wadelius M. Prediction of warfarin dose: why, when and how? Pharmacogenomics 2012; 13:429-40. [DOI: 10.2217/pgs.11.184] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prediction models are the key to individualized drug therapy. Warfarin is a typical example of where pharmacogenetics could help the individual patient by modeling the dose, based on clinical factors and genetic variation in CYP2C9 and VKORC1. Clinical studies aiming to show whether pharmacogenetic warfarin dose predictions are superior to conventional initiation of warfarin are now underway. This review provides a broad view over the field of warfarin pharmacogenetics from basic knowledge about the drug, how it is monitored, factors affecting dose requirement, prediction models in general and different types of prediction models for warfarin dosing.
Collapse
Affiliation(s)
- Niclas Eriksson
- Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala University Hospital, entrance 61, SE-751 85 Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala University Hospital, entrance 61, SE-751 85 Uppsala, Sweden
| |
Collapse
|
46
|
Russell Teagarden J, Stanek EJ. On pharmacogenomics in pharmacy benefit management. Pharmacotherapy 2012; 32:103-11. [PMID: 22392418 DOI: 10.1002/phar.1039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, the separate trajectories of pharmacy benefit management and pharmacogenomics converged. Pharmacogenomic tests have become more widely available for clinical use and at costs within the range of typical health care services. Pharmacy benefit payers continue to seek the precision they can apply to their coverage policies and clinical programs that pharmacogenomics offers. We describe how pharmacogenomics can now make sense as part of a pharmacy benefit and also how pharmacogenomics can be applied in a benefit coverage policy and clinical programs. Detail is provided on clinical program development and implementation processes featuring pharmacogenomics. We also discuss the research needed to support ongoing program development involving pharmacogenomics and describe the current roles of benefit payers and administrators in these research efforts. The legal and ethical dimensions of applying pharmacogenomics in pharmacy benefits are covered and in particular how benefit payers and administrators need to navigate between genetic exceptionalism and applicable laws and regulations. Finally, some thoughts are provided on future opportunities and challenges for pharmacogenomics in pharmacy benefit management and pharmacy in general.
Collapse
Affiliation(s)
- J Russell Teagarden
- Scientific Affairs, Advanced Clinical Science and Research, Medco Health Solutions, Inc., 100 Parsons Pond Drive, Franklin Lakes, NJ 07417, USA.
| | | |
Collapse
|
47
|
Ghimenti S, Lomonaco T, Onor M, Murgia L, Paolicchi A, Fuoco R, Ruocco L, Pellegrini G, Trivella MG, Di Francesco F. Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PLoS One 2011; 6:e28182. [PMID: 22164240 PMCID: PMC3229510 DOI: 10.1371/journal.pone.0028182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients on warfarin therapy undergo invasive and expensive checks for the coagulability of their blood. No information on coagulation levels is currently available between two controls. METHODOLOGY A method was developed to determine warfarin in oral fluid by HPLC and fluorimetric detection. The chromatographic separation was performed at room temperature on a C-18 reversed-phase column, 65% PBS and 35% methanol mobile phase, flow rate 0.7 mL/min, injection volume 25 µL, excitation wavelength 310 nm, emission wavelength 400 nm. FINDINGS The method was free from interference and matrix effect, linear in the range 0.2-100 ng/mL, with a detection limit of 0.2 ng/mL. Its coefficient of variation was <3% for intra-day measurements and <5% for inter-day measurements. The average concentration of warfarin in the oral fluid of 50 patients was 2.5±1.6 ng/mL (range 0.8-7.6 ng/mL). Dosage was not correlated to INR (r = -0.03, p = 0.85) but positively correlated to warfarin concentration in the oral fluid (r = 0.39, p = 0.006). The correlation between warfarin concentration and pH in the oral fluid (r = 0.37, p = 0.009) confirmed the importance of pH in regulating the drug transfer from blood. A correlation between warfarin concentration in the oral fluid and INR was only found in samples with pH values ≥7.2 (r = 0.84, p = 0.004). CONCLUSIONS Warfarin diffuses from blood to oral fluid. The method allows to measure its concentration in this matrix and to analyze correlations with INR and other parameters.
Collapse
Affiliation(s)
- Silvia Ghimenti
- Dipartimento di Chimica e Chimica Industriale – Università di Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Dipartimento di Chimica e Chimica Industriale – Università di Pisa, Pisa, Italy
| | - Massimo Onor
- Istituto di Chimica dei Composti Organometallici – CNR, Pisa, Italy
| | - Laura Murgia
- Dipartimento di Chimica e Chimica Industriale – Università di Pisa, Pisa, Italy
| | - Aldo Paolicchi
- Dipartimento di Patologia Sperimentale BMIE, sez. Patologia Generale e Clinica – Università di Pisa, Pisa, Italy
| | - Roger Fuoco
- Dipartimento di Chimica e Chimica Industriale – Università di Pisa, Pisa, Italy
| | - Lucia Ruocco
- Laboratorio di Analisi Chimico – Cliniche - Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Giovanni Pellegrini
- Laboratorio di Analisi Chimico – Cliniche - Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | | | - Fabio Di Francesco
- Dipartimento di Chimica e Chimica Industriale – Università di Pisa, Pisa, Italy
| |
Collapse
|
48
|
VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood 2011; 119:868-73. [PMID: 22010099 DOI: 10.1182/blood-2011-08-372722] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although genetic and environmental factors explain approximately half of the interindividual variability in warfarin dose requirement in adults, there is limited information available in children. In a cross-sectional study of anticoagulated children from 5 tertiary care centers, 120 children with a stable warfarin dose were genotyped for VKORC1 (-1639G > A; rs9923231), CYP2C9 (*2 and *3 alleles; rs1799853 and rs1057910), and CYP4F2 (V433M; rs2108622) polymorphisms. Clinical and demographic features were recorded. Multiple regression analysis of the data showed that, although CYP4F2 made no contribution to the dose model, 72.4% of the variability in warfarin dose requirement is attributed to by patient height, genetic polymorphisms in VKORC1 and CYP2C9, and indication for warfarin. The recently published International Warfarin Pharmacogenetics Consortium pharmacogenetic-based warfarin dosing algorithm (based on data derived from anticoagulated adults) consistently overestimated warfarin dose for our cohort of children. A similar proportion of the interindividual variability in warfarin dose is explained by genetic factors in children compared with adult patients, although height is a greater predictor in children. A pharmacogenomic approach to warfarin dosing has the potential to improve the efficacy and safety of warfarin therapy in children. However, algorithms should be derived from data in children if their potential benefit is to be realized.
Collapse
|
49
|
Cho HJ, On YK, Bang OY, Kim JW, Huh W, Ko JW, Kim JS, Lee SY. Development and comparison of a warfarin-dosing algorithm for Korean patients with atrial fibrillation. Clin Ther 2011; 33:1371-80. [PMID: 21981797 DOI: 10.1016/j.clinthera.2011.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pharmacokinetics and pharmacodynamics of warfarin are affected by polymorphisms in the genes coding for cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1). OBJECTIVE The objective of this study was to develop a pharmacogenetic dosing algorithm for warfarin in Korean patients with atrial fibrillation and to compare it with the published pharmacogenetic dosing algorithms for accuracy to predict warfarin maintenance dose. METHODS Clinical and genetic data from 130 Korean patients with atrial fibrillation (mean [SD] age: 66.2 [13.3] years; gender, male/female: 86/44; mean body weight: 66.6 [11.6] kg) were used to create a dosing algorithm, which was validated against an independent group of patients (n = 108; mean age: 67.4 [10.1] years; gender, male/female: 69/39; mean body weight: 66.0 [10.9] kg). Validation cohort data for the 12 previously published dosing algorithms incorporating CYP2C9 and VKORC1 genotype information were also applied. RESULTS A multivariate regression model including the variables of age, VKORC1 and CYP2C9 genotype, body surface area, and statin status produced the best model for estimating the warfarin dose (R(2) = 0.62). Among the 12 algorithms that were compared, the predicted doses using algorithms derived from both the Swedish Warfarin Genetics (WARG) study and the Korean population study showed the best correlation with actual warfarin doses. Comparing the percentage of patients whose predicted dosages were within 20% of actual dosages, these algorithms showed similar overall performance. CONCLUSIONS This study derived and validated a multivariate regression model for daily warfarin dose requirements in Korean patients with atrial fibrillation. As no algorithm could be considered the best for all dosing ranges, it may be important to consider the characteristics or limitations of each dosing algorithm and the nature of a population in choosing the most appropriate pharmacogenetic dosing.
Collapse
Affiliation(s)
- Hyun-Jung Cho
- Department of Laboratory Medicine, Konyang University Hospital, College of Medical Science Konyang University, Daejon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Verschuren JJW, Trompet S, Wessels JAM, Guchelaar HJ, de Maat MPM, Simoons ML, Jukema JW. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J 2011; 33:165-75. [PMID: 21804109 DOI: 10.1093/eurheartj/ehr239] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pharmacogenetics is the search for heritable genetic polymorphisms that influence responses to drug therapy. The most important application of pharmacogenetics is to guide choosing agents with the greatest potential of efficacy and smallest risk of adverse drug reactions. Many studies focusing on drug-gene interactions have been published in recent years, some of which led to adaptation of FDA recommendations, indicating that we are on the verge of the clinical application of genetic information in drug therapy. This systematic review provides a comprehensive overview of the current knowledge on pharmacogenetics of all major drug classes currently used in the treatment of cardiovascular diseases.
Collapse
|