1
|
Alshaalan KS, Albawardi TK, Zhra M, Bin Sulaiman N, Jnied OY, Saleem RA, Aljada A. Differential Expression of LMNA/C and Insulin Receptor Transcript Variants in Peripheral Blood Mononuclear Cells of Leukemia Patients. J Clin Med 2024; 13:2568. [PMID: 38731097 PMCID: PMC11084221 DOI: 10.3390/jcm13092568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Khalid Saud Alshaalan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Turki Khalid Albawardi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Norah Bin Sulaiman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Osama Yaheia Jnied
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Rimah Abdullah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| |
Collapse
|
2
|
IKZF1 rs4132601 and rs11978267 Gene Polymorphisms and Acute Lymphoblastic Leukemia: Relation to Disease Susceptibility and Outcome. J Pediatr Hematol Oncol 2020; 42:420-428. [PMID: 32769565 DOI: 10.1097/mph.0000000000001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
(IKZF1) rs4132601 and rs11978267 are common gene polymorphisms and have been associated with the risk of acute lymphoblastic leukemia. However, these associations are less evident in races and/or ethnicities other than European and Hispanic. Therefore, we investigated the association between these single-nucleotide polymorphisms and acute lymphoblastic leukemia susceptibility and disease outcome. Real-time polymerase chain reaction typing was performed for IKZF1 rs4132601 and rs11978267 for 128 pediatric acute lymphoblastic leukemia (pALL), 45 adult acute lymphoblastic leukemia (aALL), and 436 healthy controls. The G allele-containing and G-containing genotypes (GG+GT) of rs4132601 were significantly higher in pALL (P=0.003, odds ratio [OR]=1.65, 0.009, OR=1.42, respectively) and aALL (P=0.016, OR=1.81 and 0.011, OR=1.61, respectively). However, the GG haplotype was associated with the risk of pALL (P=0.044), the GA haplotype was associated with the risk of aALL (P=0.007). In aALL, the GG genotype of rs4132601 was associated with absence of remission and poor overall survival (P=0.003 and 0.041, respectively). The IKZF1 rs4132601 single-nucleotide polymorphism can be considered a susceptibility risk factor for the development of pALL and aALL in the studied cohort of Egyptian patients. The GG genotype of IKZF1 rs4132601 may be a risk factor for poor outcome in aALL patients.
Collapse
|
3
|
Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J Clin Oncol 2020; 11:348-369. [PMID: 32855905 PMCID: PMC7426929 DOI: 10.5306/wjco.v11.i6.348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of genes by sequence-specific binding to mRNA to either promote or block its translation; they can also act as tumor suppressors (e.g., let-7b, miR-29a, miR-99, mir-100, miR-155, and miR-181) and/or oncogenes (e.g., miR-29a, miR-125b, miR-143-p3, mir-155, miR-181, miR-183, miR-196b, and miR-223) in childhood acute leukemia (AL). Differentially expressed miRNAs are important factors associated with the initiation and progression of AL. As shown in many studies, they can be used as noninvasive diagnostic and prognostic biomarkers, which are useful in monitoring early stages of AL development or during therapy (e.g., miR-125b, miR-146b, miR-181c, and miR-4786), accurate classification of different cellular or molecular AL subgroups (e.g., let-7b, miR-98, miR-100, miR-128b, and miR-223), and identification and development of new therapeutic agents (e.g., mir-10, miR-125b, miR-203, miR-210, miR-335). Specific miRNA patterns have also been described for commonly used AL therapy drugs (e.g., miR-125b and miR-223 for doxorubicin, miR-335 and miR-1208 for prednisolone, and miR-203 for imatinib), uncovering miRNAs that are associated with treatment response. In the current review, the role of miRNAs in the development, progression, and therapy monitoring of pediatric ALs will be presented and discussed.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń 87100, Poland
| |
Collapse
|
4
|
Mosaad YM, Elashery R, Darwish A, Sharaf Eldein OA, Barakat T, Marouf S, Abou El-Khier NT, Youssef LF, Fawzy IM. GATA3 rs3824662 gene polymorphism as possible risk factor in a cohort of Egyptian patients with pediatric acute lymphoblastic leukemia and its prognostic impact. Leuk Lymphoma 2016; 58:689-698. [PMID: 27684731 DOI: 10.1080/10428194.2016.1204656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To investigate the possible role of GATA3 rs3824662 polymorphism as risk factor for the development of acute lymphoblastic leukemia (ALL) in a cohort of Egyptian children and to evaluate its prognostic role. Typing of GATA3 rs3824662 polymorphism was done using real-time PCR for 116 patients with ALL and 273 healthy controls. The A allele and AA genotype were significantly higher in ALL patients (p = .015 and .016, respectively) especially B-ALL (p = .014 and .01, respectively). The AA genotype was associated with shorter disease free survival (DFS) in univariate (p = .017) and multivariate cox regression analysis (p = .028), increased incidence of relapse (p = .008) and poor prognosis (p = .028) in pediatric ALL. The GATA3 rs3824662 A allele and AA genotype may be risk factors for the development of pediatric ALL especially B-ALL in the studied cohort of Egyptian patients. The AA genotype is associated with shorter DSF, increased incidence of relapse and poor prognosis in pediatric ALL.
Collapse
Affiliation(s)
- Youssef M Mosaad
- a Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cells (MARC_CSC), Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Rasha Elashery
- b Hematology/Oncology Unit , Mansoura University Children's Hospital , Mansoura , Egypt
| | - Ahmad Darwish
- b Hematology/Oncology Unit , Mansoura University Children's Hospital , Mansoura , Egypt
| | - Omar A Sharaf Eldein
- c Clinical Hematology Unit, Clinical Pathology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Tarek Barakat
- d Pediatric Gastroenterology Unit , Mansoura University Children's Hospital , Mansoura , Egypt
| | - Samy Marouf
- c Clinical Hematology Unit, Clinical Pathology Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Noha T Abou El-Khier
- e Microbiology and Immunology Department , Mansoura Faculty of Medicine , Mansoura , Egypt
| | - Laila F Youssef
- f Department of Biochemistry, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Iman M Fawzy
- g Laboratory Medicine Department , Mansoura Fever Hospital, Ministry of Health , Mansoura , Egypt
| |
Collapse
|
5
|
Brisson GD, Alves LR, Pombo-de-Oliveira MS. Genetic susceptibility in childhood acute leukaemias: a systematic review. Ecancermedicalscience 2015; 9:539. [PMID: 26045716 PMCID: PMC4448992 DOI: 10.3332/ecancer.2015.539] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
Acute leukaemias (AL) correspond to 25-35% of all cancer cases in children. The aetiology is still sheltered, although several factors are implicated in causality of AL subtypes. Childhood acute leukaemias are associated with genetic syndromes (5%) and ionising radiation as risk factors. Somatic genomic alterations occur during fetal life and are initiating events to childhood leukaemia. Genetic susceptibility has been explored as a risk factor, since environmental exposure of the child to xenobiotics, direct or indirectly, can contribute to the accumulation of somatic mutations. Hence, a systematic review was conducted in order to understand the association between gene polymorphisms and childhood leukaemia risk. The search was performed in the electronic databases PubMed, Lilacs, and Scielo, selecting articles published between 1995 and 2013. This review included 90 case-control publications, which were classified into four groups: xenobiotic system (n = 50), DNA repair (n = 16), regulatory genes (n = 15), and genome wide association studies (GWAS) (n = 9). We observed that the most frequently investigated genes were: NQO1, GSTM1, GSTT1, GSTP1, CYP1A1, NAT2, CYP2D6, CYP2E1, MDR1 (ABCB1), XRCC1, ARID5B, and IKZF1. The collected evidence suggests that genetic polymorphisms in CYP2E1, GSTM1, NQO1, NAT2, MDR1, and XRCC1 are capable of modulating leukaemia risk, mainly when associated with environmental exposures, such as domestic pesticides and insecticides, smoking, trihalomethanes, alcohol consumption, and x-rays. More recently, genome wide association studies identified significant associations between genetic polymorphisms in ARID5B e IKZF1 and acute lymphoblastic leukaemia, but only a few studies have replicated these results until now. In conclusion, genetic susceptibility contributes to the risk of childhood leukaemia through the effects of gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Gisele D Brisson
- Paediatric Haematology-Oncology Programme, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| | - Liliane R Alves
- Pharmacy Service, Multiprofessional Residency Programme, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Programme, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil, 20231050
| |
Collapse
|
6
|
Abbas S, Sanders MA, Zeilemaker A, Geertsma-Kleinekoort WMC, Koenders JE, Kavelaars FG, Abbas ZG, Mahamoud S, Chu IWT, Hoogenboezem R, Peeters JK, van Drunen E, van Galen J, Beverloo HB, Löwenberg B, Valk PJM. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations. Haematologica 2014; 99:848-57. [PMID: 24441149 DOI: 10.3324/haematol.2013.095604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia.
Collapse
|
7
|
Dettman E, Simko SJ, Ayanga B, Carofino B, Margolin J, Morse HC, Justice MJ. Prdm14 initiates lymphoblastic leukemia after expanding a population of cells resembling common lymphoid progenitors. Oncogene 2011; 30:2859-73. [PMID: 21339739 PMCID: PMC3121925 DOI: 10.1038/onc.2011.12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/23/2010] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
Abstract
Understanding the heterogeneous genetic mechanisms of tumor initiation in lymphoid leukemias (LL) will lead to improvements in prognostic classification and treatment regimens. In previous studies of mouse leukemias, we showed that retroviral insertion at the ecotropic viral insertion site 32 locus leads to increased expression of Prdm14, a pluripotency gene implicated in the self-renewal capacity of embryonic stem cells and the early stages of breast cancer. Here, we show that PRDM14 is also overexpressed in ∼25% of human lymphoid neoplasms, with increased frequencies in T-cell acute LL and hyperdiploid precursor B-cell acute LL. To test if Prdm14 overexpression could initiate leukemia, mice were transduced with bone marrow cells transfected with a Prdm14 expression vector. LLs developed in 96% of female mice and 42% of male mice. Before the onset of leukemia, differentiation of transduced cells was biased up to 1000-fold toward cells with features of common lymphoid progenitors (CLPs), and lymphoid differentiation showed a relative block at the pro-B stage. Microarray gene expression analysis of expanded CLP-like cells before the onset of leukemia demonstrated upregulation of genes involved in pluripotency, tumor initiation, early B-lineage commitment, Wnt/Ras signaling and the epithelial-to-mesenchymal transition. Among the dysregulated genes were imprinted genes and non-coding RNAs including Dlk1 and Meg3, which are also key pluripotency mediators. Heightened expression of the estrogen-dependent oncogene, Myb, in tumors suggests a basis for the increased frequency of cancer in female mice. These data provide the first direct evidence for the association of Prdm14 with cancer initiation in an in vivo mouse model and in human lymphoid malignancies, while suggesting mechanisms for Prdm14's mode of action.
Collapse
Affiliation(s)
- E.J. Dettman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen J. Simko
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brandi Carofino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Judith Margolin
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Herbert C. Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Reimann V, Creutzig U, Kögler G. Stem cells derived from cord blood in transplantation and regenerative medicine. DEUTSCHES ARZTEBLATT INTERNATIONAL 2009; 106:831-6. [PMID: 20049094 PMCID: PMC2801068 DOI: 10.3238/arztebl.2009.0831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Physicians of any specialty may be the first persons to whom prospective parents turn for information about the acquisition and storage of stem cells derived from cord blood. Stem cells can potentially be used to treat many diseases, yet they are not a panacea. This article provides an overview of their current and possible future applications. METHODS Original papers were retrieved by a selective search of the literature, and the Internet sites and advertising brochures of private stem cell banks were also examined. RESULTS Allogeneic hematopoietic stem cells derived from umbilical cord blood (obtained from healthy donors, rather than from the patient to be treated) have been in routine use worldwide for more than ten years in the treatment of hematopoietic diseases. Experiments in cell culture and in animal models suggest that these cells might be of therapeutic use in regenerative medicine, but also show that this potential can be realized only if the cells are not cryopreserved. There is as yet no routine clinical application of autologous hematopoietic stem cells from cord blood (self-donation of blood), even though cord blood has been stored in private banks for more than ten years. CONCLUSIONS Autologous stem cells from cord blood have poor prospects for use in regenerative medicine, because they have to be cryopreserved until use. Physicians should tell prospective parents that they have no reason to feel guilty if they choose not to store cord blood in a private bank.
Collapse
Affiliation(s)
- Verena Reimann
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| | | | - Gesine Kögler
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| |
Collapse
|
9
|
Sikic BI, Tibshirani R, Lacayo NJ. Genomics of Childhood Leukemias: The Virtue of Complexity. J Clin Oncol 2008; 26:4367-8. [DOI: 10.1200/jco.2008.16.4285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Branimir I. Sikic
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| | - Robert Tibshirani
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| | - Norman J. Lacayo
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
10
|
Ostrovsky O, Korostishevsky M, Levite I, Leiba M, Galski H, Vlodavsky I, Nagler A. Association of heparanase gene (HPSE) single nucleotide polymorphisms with hematological malignancies. Leukemia 2007; 21:2296-303. [PMID: 17611567 DOI: 10.1038/sj.leu.2404821] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heparanase, endo-beta-D-glucuronidase, degrades heparan sulfate glycosaminoglycans - the principal polysaccharide of the basement membrane and extracellular matrix. Heparanase activity plays a decisive role in biological processes associated with remodeling of the extracellular matrix, such as cancer metastasis, angiogenesis and inflammation. In the hematopoietic system, heparanase is thought to be associated with normal differentiation and function of myeloid cells and platelets. We investigated heparanase polymorphisms in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), Hodgkin's disease (HD) and multiple myeloma (MM). Significant correlation was found between rs11099592 and rs6535455 heparanase gene (HPSE) single nucleotide polymorphisms (SNPs) and ALL (chi2(1d.f.)=4.96, P=0.026). Genotype frequency comparisons revealed a significant association with rs4693602 (chi2(2d.f.)=7.276, P=0.026) in MM patients and rs4364254 (chi2(2d.f.)=6.226, P=0.044) in AML patients. Examination of HPSE gene mRNA expression by real-time RT-PCR indicated a significant low HPSE gene expression level in ALL patients and a high expression level in MM and AML patients, compared to healthy controls. Moreover, statistically significant correlation was found between heparanase mRNA expression level and three HPSE gene SNPs (rs4693608, rs11099592 and rs4364254) among healthy individuals. These data suggest that certain HPSE gene SNPs may contribute to basal heparanase gene expression and that alterations in this gene are an important determinant in the pathogenesis of ALL, AML and MM.
Collapse
Affiliation(s)
- O Ostrovsky
- Laboratory of Molecular Immunobiology, Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Riley BM, Mansilla MA, Ma J, Daack-Hirsch S, Maher BS, Raffensperger LM, Russo ET, Vieira AR, Dodé C, Mohammadi M, Marazita ML, Murray JC. Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci U S A 2007; 104:4512-7. [PMID: 17360555 PMCID: PMC1810508 DOI: 10.1073/pnas.0607956104] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Indexed: 11/18/2022] Open
Abstract
Nonsyndromic cleft lip and palate (NS CLP) is a complex birth defect resulting from a combination of genetic and environmental factors. Several members of the FGF and FGFR families are expressed during craniofacial development and can rarely harbor mutations that result in human clefting syndromes. We hypothesized that disruptions in this pathway might also contribute to NS CLP. We sequenced the coding regions and performed association testing on 12 genes (FGFR1, FGFR2, FGFR3, FGF2, FGF3, FGF4, FGF7, FGF8, FGF9, FGF10, FGF18, and NUDT6) and used protein structure analyses to predict the function of amino acid variants. Seven likely disease-causing mutations were identified, including: one nonsense mutation (R609X) in FGFR1, a de novo missense mutation (D73H) in FGF8, and other missense variants in FGFR1, FGFR2, and FGFR3. Structural analysis of FGFR1, FGFR2, and FGF8 variants suggests that these mutations would impair the function of the proteins, albeit through different mechanisms. Genotyping of SNPs in the genes found associations between NS CLP and SNPs in FGF3, FGF7, FGF10, FGF18, and FGFR1. The data suggest that the FGF signaling pathway may contribute to as much as 3-5% of NS CLP and will be a consideration in the clinical management of CLP.
Collapse
Affiliation(s)
- Bridget M. Riley
- *Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | | | - Jinghong Ma
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| | | | - Brion S. Maher
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | | | - Erilynn T. Russo
- *Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Alexandre R. Vieira
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Catherine Dodé
- Institut Cochin et Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, 75014 Paris, France; and
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219
| | | |
Collapse
|
12
|
Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation. BMC Genomics 2006; 7:305. [PMID: 17140446 PMCID: PMC1698923 DOI: 10.1186/1471-2164-7-305] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 12/01/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. RESULTS Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. CONCLUSION Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.
Collapse
|