1
|
Gibula-Tarlowska E, Wydra K, Kotlinska JH. Deleterious Effects of Ethanol, Δ(9)-Tetrahydrocannabinol (THC), and Their Combination on the Spatial Memory and Cognitive Flexibility in Adolescent and Adult Male Rats in the Barnes Maze Task. Pharmaceutics 2020; 12:pharmaceutics12070654. [PMID: 32660138 PMCID: PMC7407502 DOI: 10.3390/pharmaceutics12070654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Research demonstrates that adolescents differ from adults in their response to drugs of abuse. The aim of the present study was to examine the influence of ethanol, Δ9-tetrahydrocannabinol hydrochloride (THC), and a combination of these drugs given during adolescence on spatial memory in adolescent and adult rats. Thus, adolescent rats (postnatal day (PND) 30) were subjected to the following groups: 0.9% NaCl; 1.5 g/kg ethanol; 1.0 mg/kg THC; 1.5 g/kg ethanol + 1.0 mg/kg THC. Rats received drug injection four times at three-day intervals. One day after the last injection, half of the treated animals were tested in the Barnes maze task, whereas the remaining animals were tested on PND 70. Results show that there was a significant age effect on spatial memory in the Barnes maze task after these drug administrations. Adolescent animals demonstrated more potent deficits in the spatial learning and memory (probe trial) and in cognitive flexibility (reversal learning) than did adults. However, in adult rats that received these drugs in adolescence, memory decline was observed only after ethanol and ethanol + THC administration. Thus, our results are important in understanding the deleterious impact of THC and/or ethanol abuse during adolescence on memory function across the lifespan (adolescent versus adult).
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
- Correspondence:
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Blednov YA, Borghese CM, Ruiz CI, Cullins MA, Da Costa A, Osterndorff-Kahanek EA, Homanics GE, Harris RA. Mutation of the inhibitory ethanol site in GABA A ρ1 receptors promotes tolerance to ethanol-induced motor incoordination. Neuropharmacology 2017. [PMID: 28623169 DOI: 10.1016/j.neuropharm.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genes encoding the ρ1/2 subunits of GABAA receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABAA ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans.
Collapse
Affiliation(s)
- Yuri A Blednov
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Cecilia M Borghese
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Carlos I Ruiz
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Madeline A Cullins
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | - Adriana Da Costa
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States
| | | | - Gregg E Homanics
- University of Pittsburgh, Departments of Anesthesiology, Neurobiology, and Pharmacology & Chemical Biology, Pittsburgh, PA 15261, United States
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, TX 78712, United States.
| |
Collapse
|
3
|
Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R. Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:16-27. [PMID: 28025019 DOI: 10.1016/j.pnpbp.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Zebrafish have become a popular animal model for behavioural pharmacology due to their small size, rapid development, and amenability to high throughput behavioural drug screens. Furthermore, water-soluble compounds can be administered via immersion of the fish in the drug solution, which provides a non-invasive drug delivery method. Numerous studies have demonstrated stimulant effects of alcohol. Diazepam and caffeine, on the other hand have been found to have inhibitory effect on locomotor activity in zebrafish. However, the time-dependent changes induced by these psychoactive drugs are rarely reported, and potential drug interactions have not been examined in zebrafish, despite the translational relevance of this question. In the current study, we examine time- and dose-dependent changes in zebrafish following exposure to caffeine, diazepam, and ethanol quantifying four different behavioural parameters over a 30min recording session. We subsequently analyze potential drug-drug interactions by co-administering the three drugs in different combinations. Our time-course and dose-response analyses for each of the three drugs represent so far the most detailed studies available serving as a foundation for future psychopharmacology experiments with zebrafish. Furthermore, we report significant interactions between the three drugs corroborating findings obtained with rodent models as well as in humans, providing translational relevance for the zebrafish model.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Niveen Fulcher
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Magda Nowicki
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Priyanka Desai
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Benjamin Tsang
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Hayden Chow
- University of Western Ontario, Department of Physiology and Pharmacology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
4
|
Kaplan JS, Mohr C, Hostetler CM, Ryabinin AE, Finn DA, Rossi DJ. Alcohol Suppresses Tonic GABAA Receptor Currents in Cerebellar Granule Cells in the Prairie Vole: A Neural Signature of High-Alcohol-Consuming Genotypes. Alcohol Clin Exp Res 2016; 40:1617-26. [PMID: 27426857 DOI: 10.1111/acer.13136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Evidence indicates that the cerebellum plays a role in genetic predilection to excessive alcohol (ethanol [EtOH]) consumption in rodents and humans, but the molecular mechanisms mediating such predilection are not understood. We recently determined that EtOH has opposite actions (enhancement or suppression) on tonic GABAA receptor (GABAA R) currents in cerebellar granule cells (GCs) in low- and high-EtOH-consuming rodents, respectively, and proposed that variation in GC tonic GABAA R current responses to EtOH contributes to genetic variation in EtOH consumption phenotype. METHODS Voltage-clamp recordings of GCs in acutely prepared slices of cerebellum were used to evaluate the effect of EtOH on GC tonic GABAA R currents in another high-EtOH-consuming rodent, prairie voles (PVs). RESULTS EtOH (52 mM) suppressed the magnitude of the tonic GABAA R current in 57% of cells, had no effect in 38% of cells, and enhanced the tonic GABAA R current in 5% of cells. This result is similar to GCs from high-EtOH-consuming C57BL/6J (B6) mice, but it differs from the enhancement of tonic GABAA R currents by EtOH in low-EtOH-consuming DBA/2J (D2) mice and Sprague Dawley (SD) rats. EtOH suppression of tonic GABAA R currents was not affected by the sodium channel blocker, tetrodotoxin (500 nM), and was independent of the frequency of phasic GABAA R-mediated currents, suggesting that suppression is mediated by postsynaptic actions on GABAA Rs, rather than a reduction of GABA release. Finally, immunohistochemical analysis of neuronal nitric oxide synthase (nNOS; which can mediate EtOH enhancement of GABA release) demonstrated that nNOS expression in the GC layer of PV cerebellum was similar to the levels seen in B6 mice, both being significantly reduced relative to D2 mice and SD rats. CONCLUSIONS Combined, these data highlight the GC GABAA R response to EtOH in another species, the high-EtOH-consuming PV, which correlates with EtOH consumption phenotype and further implicates the GC GABAA R system as a contributing mechanism to high EtOH consumption.
Collapse
Affiliation(s)
- Joshua S Kaplan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Caroline M Hostetler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - David J Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
5
|
Crabbe JC, Metten P, Belknap JK, Spence SE, Cameron AJ, Schlumbohm JP, Huang LC, Barkley-Levenson AM, Ford MM, Phillips TJ. Progress in a replicated selection for elevated blood ethanol concentrations in HDID mice. GENES, BRAIN, AND BEHAVIOR 2014; 13:236-46. [PMID: 24219304 PMCID: PMC3923418 DOI: 10.1111/gbb.12105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
Drinking in the dark (DID) is a limited access ethanol-drinking phenotype in mice. High Drinking in the Dark (HDID-1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol. A second replicate line (HDID-2) was started later from the same founder population and is currently in S20. An initial report of response to selection in HDID-1 was published after S11. This article reports genetic and behavioral characteristics of both lines in comparison with the HS controls. Heritability is low in both replicates (h(2) = 0.09) but the lines have shown 4-5 fold increases in BEC since S0; 80% of HDID-1 and 60% of HDID-2 mice reach BECs greater than 1.0 mg/ml. Several hours after a DID test, HDID mice show mild signs of withdrawal. Although not considered during selection, intake of ethanol (g/kg) during the DID test increased by approximately 80% in HDID-1 and 60% in HDID-2. Common genetic influences were more important than environmental influences in determining the similarity between BEC and intake for HDID mice. Analysis of the partitioning of intake showed that 60% of intake is concentrated in the last 2 h of the 4 h session. However, this has not changed during selection. Hourly BECs during the DID test reach peak levels after 3 or 4 h of drinking. HDID mice do not differ from HS mice in their rate of elimination of an acute dose of alcohol.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Pamela Metten
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - John K. Belknap
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Stephanie E. Spence
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Andy J. Cameron
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Jason P. Schlumbohm
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Lawrence C. Huang
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Amanda M. Barkley-Levenson
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Matthew M. Ford
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Portland, Oregon USA
| | - Tamara J. Phillips
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| |
Collapse
|
6
|
Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats. Alcohol 2011; 45:473-83. [PMID: 21600728 DOI: 10.1016/j.alcohol.2011.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/17/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.
Collapse
|
7
|
Crabbe JC, Bell RL, Ehlers CL. Human and laboratory rodent low response to alcohol: is better consilience possible? Addict Biol 2010; 15:125-44. [PMID: 20148776 DOI: 10.1111/j.1369-1600.2009.00191.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of 'low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, OR 97239, USA.
| | | | | |
Collapse
|
8
|
Vecchio LM, Grace KP, Liu H, Harding S, Lê AD, Horner RL. State-dependent vs. central motor effects of ethanol on breathing. J Appl Physiol (1985) 2009; 108:387-400. [PMID: 19926825 DOI: 10.1152/japplphysiol.00797.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ethanol, one of the most widely used drugs in Western society, worsens obstructive sleep apnea in humans. No studies, however, have distinguished between two primary mechanisms that could mediate suppression of genioglossus (GG) activity with ethanol. We test the hypothesis that ethanol suppresses GG activity by effects at the hypoglossal motor pool and/or by state-dependent regulation of motor activity via independent influences on sleep/arousal processes. Intraperitoneal injections of ethanol (1.25 g/kg, n = 6 rats) resulted in maximum blood levels of 125.5 +/- 15.8 mg/dl, i.e., physiologically relevant levels for producing behavioral impairment in rats and humans. Ethanol decreased wakefulness, reduced sleep latency, and increased non-rapid eye movement sleep (P < 0.001, n = 10 rats) and significantly reduced postural muscle tone and electroencephalogram frequencies, consistent with sedation. Ethanol also caused a state-dependent (wakefulness only) decrease in respiratory-related GG activity (P = 0.018) but did not affect diaphragm amplitude or rate, with the magnitude of GG decrease related to baseline activity (P < 0.0002). Ethanol did not alter GG activity when applied to the hypoglossal motor pool (0.025-1 M, n = 16 isoflurane-anesthetized rats). In conclusion, ethanol promoted sleep and altered electroencephalogram and postural motor activities, indicative of sedation. The lack of effect on GG with ethanol at the hypoglossal motor pool indicates that the GG and postural motor suppression following systemic administration was mediated via effects on state-dependent/arousal-related processes. These data show that ethanol can suppress GG by primary influences on state-dependent aspects of central nervous system function independent of effects on the respiratory network per se, a distinction that has not previously been identified experimentally.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Crabbe JC. Review. Neurogenetic studies of alcohol addiction. Philos Trans R Soc Lond B Biol Sci 2008; 363:3201-11. [PMID: 18640917 DOI: 10.1098/rstb.2008.0101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurogenetic studies of alcohol dependence have relied substantially on genetic animal models, particularly rodents. Studies of inbred strains, selectively bred lines and mutants bearing genes whose function has been targeted for over or under expression are reviewed. Studies focused on gene expression changes are the most recent contributors to this literature, and some genetic effects may work through epigenetic mechanisms. In a few instances, interesting parallels have been revealed between genetic risk in humans and studies in non-human animal models. Future approaches are likely to be increasingly complex.
Collapse
Affiliation(s)
- John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center R&D 12, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Chappell AM, Weiner JL. Relationship between ethanol's acute locomotor effects and ethanol self-administration in male Long-Evans rats. Alcohol Clin Exp Res 2008; 32:2088-99. [PMID: 18828804 DOI: 10.1111/j.1530-0277.2008.00797.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human studies have suggested an important relationship between ethanol sensitivity and risk of alcoholism. These studies have led some to hypothesize that a low initial sensitivity to ethanol's depressant effects and/or an elevated response to ethanol's stimulant effects may represent important risk factors associated with the development of abusive drinking behavior. Unfortunately, elucidating neurobiologic mechanisms that may underlie these relationships between ethanol sensitivity and ethanol drinking have been hampered by difficulties in modeling some of these interactions in animals. In this study, we re-examined some of these relationships in an outbred strain of rats using continuous access two-bottle choice drinking and a limited-access operant procedure that engenders pharmacologically relevant levels of ethanol intake and permits the discrete assessment of appetitive and consummatory measures of ethanol drinking behavior. METHODS Twenty-three male Long-Evans rats were habituated to a locomotor activity box and then tested for their response to a stimulant (0.5 g/kg) and depressant (1.5 g/kg) ethanol dose. Rats were then trained to complete a lever pressing requirement to gain access to 10% ethanol for 20-minute sessions conducted 5 d/wk for 5 weeks. Appetitive behavior was assessed after 2.5 and 4.5 weeks using 20-minute extinction trials in which ethanol was not presented and lever responses were recorded. Home-cage ethanol preference was also assessed prior to and immediately following the 5-week self-administration regimen using a continuous access, two-bottle choice procedure. RESULTS A significant increase in home-cage ethanol preference was observed following the self-administration procedure, however, neither measure of ethanol preference correlated with average daily ethanol intake during the operant self-administration sessions or with initial sensitivity to ethanol's stimulant or depressant effects. Notably, a significant negative correlation was observed between sensitivity to ethanol's locomotor depressant effect and daily intake during the operant self-administration sessions. No significant relationships were noted between sensitivity to ethanol's locomotor effects and extinction responding. CONCLUSIONS The results of these studies suggest that the well-established relationship between a low level of response to ethanol and increased ethanol consumption reported in human studies can be observed in an outbred rodent strain using a limited-access operant self-administration procedure, but not with home-cage ethanol drinking.
Collapse
Affiliation(s)
- Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 57157, USA
| | | |
Collapse
|