1
|
Vasan A, Kim S, Davis E, Roh DS, Eyckmans J. Advances in Designer Materials for Chronic Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40306934 DOI: 10.1089/wound.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Significance: Nonhealing or chronic wounds represent a significant and growing global health concern, imposing substantial burdens on individuals, health care systems, and economies worldwide. Although the standard-of-care treatment involves the application of wound dressings, most dressing materials are not specifically designed to address the pathological processes underlying chronic wounds. This review highlights recent advances in biomaterial design tailored to chronic wound healing. Recent Advances: Chronic wounds are characterized by persistent inflammation, impaired granulation tissue formation, and delayed re-epithelialization. Newly developed designer materials aim to manage reactive oxygen species and extracellular matrix degradation to suppress inflammation while promoting vascularization, cell proliferation, and epithelial migration to accelerate tissue repair. Critical Issues: Designing optimal materials for chronic wounds remains challenging due to the diverse etiology and a multitude of pathological mechanisms underlying chronic wound healing. While designer materials can target specific aberrations, designing a materials approach that restores all aberrant wound-healing processes remains the Holy Grail. Addressing these issues requires a deep understanding of how cells interact with the materials and the complex etiology of chronic wounds. Future Directions: New material approaches that target wound mechanics and senescence to improve chronic wound closure are under development. Layered materials combining the best properties of the approaches discussed in this review will pave the way for designer materials optimized for chronic wound healing.
Collapse
Affiliation(s)
- Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Suntae Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Emily Davis
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel S Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ishii T, Kawaguchi Y, Ishikawa O, Takemori H, Takasawa N, Kobayashi H, Takahashi Y, Yasuoka H, Kodera T, Takai O, Nakaya I, Sato Y, Izumiyama T, Fujii H, Kamogawa Y, Shirota Y, Shirai T, Fujita Y, Saito S, Chiu SW, Yamaguchi T, Shimokawa H, Harigae H. Effectiveness and safety of low-energy shock wave therapy for digital ulcers associated with systemic sclerosis: A Phase 3 pivotal clinical trial. Mod Rheumatol 2025; 35:484-495. [PMID: 39562303 DOI: 10.1093/mr/roae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/30/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterised by ischaemic skin ulcers on the fingertips, and low-energy shock wave therapy is suggested as a novel treatment for ischaemic lesions with angiogenic effects. We aimed to investigate the efficacy and safety of shock wave therapy for skin ulcers in patients with SSc. METHODS In this Phase 3 pivotal study, we analysed 60 SSc patients with digital ulcers that did not disappear after >4 weeks of existing treatment: 30 patients were treated with extracorporeal shock wave therapy and 30 with conventional treatment. The ulcer count reduction observed after an 8-week treatment period was compared between the shock wave therapy and conventional treatment groups. RESULTS After an 8-week treatment period, the mean reduction in the number of ulcers was 0.83 (SD 2.79) in the conventional treatment group compared to a more pronounced reduction of 4.47 (SD 2.65) in the shock wave therapy group. CONCLUSIONS The study findings indicate the efficacy of extracorporeal shock wave therapy for refractory digital ulcers associated with SSc, which has limited therapeutic options. This therapy is non-invasive and safe and can be used without restriction in combination with other therapies, thus serving as a novel therapeutic method.
Collapse
Affiliation(s)
- Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Hematology and Rheumatology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yasushi Kawaguchi
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Naruhiko Takasawa
- Department of Rheumatology, Tohoku Medical and Pharmaceutical University Wakabayashi Hospital, Sendai, Japan
| | - Hitoshi Kobayashi
- Suginoko-kai Marios Kobayashi Internal Medicine Clinic, Iwate, Japan
| | | | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Takao Kodera
- Division of Hematology and Rheumatology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | | | - Izaya Nakaya
- Department of Nephrology and Rheumatology, Iwate Prefectural Central Hospital, Morioka, Iwate, Japan
| | - Yukio Sato
- Kaiyama Central Hospital, Sendai, Miyagi, Japan
| | | | - Hiroshi Fujii
- Department of Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukiko Kamogawa
- Ichibancho Internal Medicine & Rheumatology Clinic, Sendai, Miyagi, Japan
| | - Yuko Shirota
- Department of Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tsuyoshi Shirai
- Department of Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Fujita
- Kouzenkai (Kouzen Association), Sakuragaoka Aozora Internal Medicine Clinic, Miyagi, Japan
| | | | - Shih-Wei Chiu
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Son DO, Benitez R, Diao L, Hinz B. How to Keep Myofibroblasts under Control: Culture of Mouse Skin Fibroblasts on Soft Substrates. J Invest Dermatol 2024; 144:1923-1934. [PMID: 39078357 DOI: 10.1016/j.jid.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024]
Abstract
During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.
Collapse
Affiliation(s)
- Dong Ok Son
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Li Diao
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Chien WC, Tsai TF. The Pressurized Skin: A Review on the Pathological Effect of Mechanical Pressure on the Skin from the Cellular Perspective. Int J Mol Sci 2023; 24:15207. [PMID: 37894888 PMCID: PMC10607711 DOI: 10.3390/ijms242015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Since human skin is the primary interface responding to external mechanical stimuli, extrinsic forces can disrupt its balanced microenvironment and lead to cutaneous lesions. We performed this review to delve into the pathological effects of mechanical pressure on skin from the cellular perspective. Fibroblasts of different subsets act as heterogeneous responders to mechanical load and express diverse functionalities. Keratinocytes relay mechanical signals through mechanosensitive receptors and the ensuing neurochemical cascades to work collaboratively with other cells and molecules in response to pressure. Mast cells release cytokines and neuropeptides, promoting inflammation and facilitating interaction with sensory neurons, while melanocytes can be regulated by pressure through cellular and molecular crosstalk. Adipocytes and stem cells sense pressure to fine-tune their regulations of mechanical homeostasis and cell differentiation. Applying mechanical pressure to the skin can induce various changes in its microenvironment that potentially lead to pathological alterations, such as ischemia, chronic inflammation, proliferation, regeneration, degeneration, necrosis, and impaired differentiation. The heterogeneity of each cellular lineage and subset from different individuals with various underlying skin conditions must be taken into consideration when discussing the pathological effects of pressure on the skin. Thus, elucidating the mechanotransduction and mechanoresponsive pathways from the cellular viewpoint is crucial in diagnosing and managing relevant dermatological disorders.
Collapse
Affiliation(s)
- Wei-Chen Chien
- Department of Medical Education, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
5
|
Odagiri K, Fujisaki H, Takada H, Ogawa R. Mathematical model for promotion of wound closure with ATP release. Biophys Physicobiol 2023; 20:e200023. [PMID: 38496238 PMCID: PMC10941958 DOI: 10.2142/biophysico.bppb-v20.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 03/19/2024] Open
Abstract
To computationally investigate the recent experimental finding such that extracellular ATP release caused by exogeneous mechanical forces promote wound closure, we introduce a mathematical model, the Cellular Potts Model (CPM), which is a popular discretized model on a lattice, where the movement of a "cell" is determined by a Monte Carlo procedure. In the experiment, it was observed that there is mechanosensitive ATP release from the leading cells facing the wound gap and the subsequent extracellular Ca2+ influx. To model these phenomena, the Reaction-Diffusion equations for extracellular ATP and intracellular Ca2+ concentrations are adopted and combined with CPM, where we also add a polarity term because the cell migration is enhanced in the case of ATP release. From the numerical simulations using this hybrid model, we discuss effects of the collective cell migration due to the ATP release and the Ca2+ influx caused by the mechanical forces and the consequent promotion of wound closure.
Collapse
Affiliation(s)
- Kenta Odagiri
- School of Network and Information, Senshu University, Kawasaki, Kanagawa 214-8580, Japan
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
| | - Hiroshi Fujisaki
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Physics, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Hiroya Takada
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Anti-Aging and Preventive Medicine, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
| | - Rei Ogawa
- AMED-CREST, Bunkyo, Tokyo 113-8603, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan
| |
Collapse
|
6
|
Matar DY, Ng B, Darwish O, Wu M, Orgill DP, Panayi AC. Skin Inflammation with a Focus on Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:269-287. [PMID: 35287486 PMCID: PMC9969897 DOI: 10.1089/wound.2021.0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: The skin is the crucial first-line barrier against foreign pathogens. Compromise of this barrier presents in the context of inflammatory skin conditions and in chronic wounds. Skin conditions arising from dysfunctional inflammatory pathways severely compromise the quality of life of patients and have a high economic impact on the U.S. health care system. The development of a thorough understanding of the mechanisms that can disrupt skin inflammation is imperative to successfully modulate this inflammation with therapies. Recent Advances: Many advances in the understanding of skin inflammation have occurred during the past decade, including the development of multiple new pharmaceuticals. Mechanical force application has been greatly advanced clinically. Bioscaffolds also promote healing, while reducing scarring. Critical Issues: Various skin inflammatory conditions provide a framework for analysis of our understanding of the phases of successful wound healing. The large burden of chronic wounds on our society continues to focus attention on the chronic inflammatory state induced in many of these skin conditions. Future Directions: Better preclinical models of disease states such as chronic wounds, coupled with enhanced diagnostic abilities of human skin, will allow a better understanding of the mechanism of action. This will lead to improved treatments with biologics and other modalities such as the strategic application of mechanical forces and scaffolds, which ultimately results in better outcomes for our patients.
Collapse
Affiliation(s)
- Dany Y. Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C. Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
An Y, Wang G, Shang Y, Zhen Y, Li X, Shu F, Li D, Zhao Z, Li H. Autologous Shuffling Lipo-Aspirated Fat Combined Mechanical Stretch in Revision Rhinoplasty for Severe Contractures in Asian Patients. Aesthetic Plast Surg 2023; 47:282-291. [PMID: 35606536 DOI: 10.1007/s00266-022-02920-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND A severely contracted nose is a common occurrence. Intraoperative expansion is not sufficient to soften the severely constricted nasal envelope, which poses challenges in revision rhinoplasty. In recent years, adjuvant therapies, including nasal fat grafting and cell component injection, are applied before revision rhinoplasty to soften the nasal envelope. Herein, autologous shuffling lipo-aspirated fat and manual mechanical stretch were combined as adjuvant therapy before revision rhinoplasty. METHODS A total of 24 patients with severe nasal contracture were included in this study. Of these, 8 received autologous shuffling lipo-aspirated fat and manual mechanical stretch before revision rhinoplasty (comprehensive therapy), 8 underwent mechanical stretch and revision rhinoplasty, and 8 patients underwent only revision rhinoplasty. The objective and subjective outcome assessment was processed in the follow-up period of 6 months. Nasal length, nasal tip projection, nasofrontal angle, and nasolabial angle were measured, and potential complications were assessed. RESULTS All 24 patients underwent a successful revision rhinoplasty. In the comprehensive therapy group, no patient had postoperative wound infection and defect of the nasal column mucous. The comprehensive treatment group had the most significant improvement in nasal length and nasal tip projection, and the nasolabial angle was the closest to 90°, which indicated the most effective nasal revision and aesthetic contour. CONCLUSIONS The adjuvant therapy combines autologous shuffling lipo-aspirated fat and manual mechanical stretch before revision rhinoplasty could effectively improve the surgical outcome and decrease the postoperative complications regarding severe nasal contractures. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yang An
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China.
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Xiao Li
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Fan Shu
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Dong Li
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University 3rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Hua Li
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Wu M, Matar DY, Yu Z, Chen Z, Knoedler S, Ng B, Darwish O, Haug V, Friedman L, Orgill DP, Panayi AC. Modulation of Lymphangiogenesis in Incisional Murine Diabetic Wound Healing Using Negative Pressure Wound Therapy. Adv Wound Care (New Rochelle) 2023. [PMID: 36424821 DOI: 10.1089/wound.2022.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Despite the significant function of lymphatics in wound healing, and frequent clinical use of Negative Pressure Wound Therapy (NPWT), the effect of mechanical force application on lymphangiogenesis remains to be elucidated. We utilize a murine incisional wound healing model to assess the mechanisms of lymphangiogenesis following NPWT. Approach: Dorsal incisional skin wounds were created on diabetic mice (genetically obese leptin receptor-deficient mice [db/db]; n = 30) and covered with an occlusive dressing (Control, n = 15) or NPWT (-125 mmHg, continuous, 24 h for 7 days; NPWT, n = 15). The wounds were macroscopically assessed for 28 days. Tissue was harvested on day 10 for analysis. Qualitative functional analysis of lymphatic drainage was performed on day 28 using Evans Blue staining (n = 2). Results: NPWT increased lymphatic vessel density (40 ± 20 vs. 12 ± 6 podoplanin [PDPN]+ and 25 ± 9 vs. 14 ± 8 lymphatic vessel endothelial receptor 1 [LYVE-1]+) and vessel diameter (28 ± 9 vs. 12 ± 2 μm). Western blotting verified the upregulation of LYVE-1 with NPWT. Leukocyte presence was higher with NPWT (22% ± 3.7% vs. 9.1% ± 4.1% lymphocyte common antigen [CD45]+) and the leukocytes were predominately B cells clustered within vessels (8.8% ± 2.5% vs. 18% ± 3.6% B-lymphocyte antigen CD20 [CD20]+). Macrophage presence was lower in the NPWT group. Lymphatic drainage was increased in the NPWT group, which exhibited greater Evans Blue positivity. Innovation: The lymphangiogenic effects take place independent of macrophage infiltration, appearing to correlate with B cell presence. Conclusion: NPWT promotes lymphangiogenesis in incisional wounds, significantly increasing the lymph vessel density and diameter. This study highlights the potential of NPWT to stimulate lymphatic drainage and wound healing of surgical incisions.
Collapse
Affiliation(s)
- Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dany Y Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhen Yu
- Opthalmology Department, Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, Jinan University, Shenzhen, China.,Angiogenesis Laboratory, Ophthalmology Department, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyu Chen
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leigh Friedman
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Lehigh University, Bethlehem, Pennsylvania, USA.,Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
9
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
10
|
Tam J. The case for considering volar skin in a "separate status" for wound healing. Front Med (Lausanne) 2023; 10:1156828. [PMID: 37035315 PMCID: PMC10076700 DOI: 10.3389/fmed.2023.1156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Foot ulcers, particularly in the diabetic setting, are a major medical and socioeconomic challenge. While the effects of diabetes and its various sequelae have been extensively studied, in the wound field it is commonly assumed that the wound healing process is essentially identical between different skin types, despite the many well-known specializations in palmoplantar skin, most of which are presumed to be evolutionary adaptations for weightbearing. This article will examine how these specializations could alter the wound healing trajectory and contribute to the pathology of foot ulcers.
Collapse
Affiliation(s)
- Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Joshua Tam,
| |
Collapse
|
11
|
Yamashiro T, Kushibiki T, Mayumi Y, Tsuchiya M, Ishihara M, Azuma R. Negative-Pressure Wound Therapy: What We Know and What We Need to Know. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:131-152. [PMID: 36922487 DOI: 10.1007/5584_2023_773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Negative-pressure wound therapy (NPWT) promotes wound healing by applying negative pressure to the wound surface. A quarter of a century after its introduction, NPWT has been used in various clinical conditions, although molecular biological evidence is insufficient due to delay in basic research. Here, we have summarized the history of NPWT, its mechanism of action, what is currently known about it, and what is expected to be known in the future. Particularly, attention has shifted from the four main mechanisms of NPWT to the accompanying secondary effects, such as effects on various cells, bacteria, and surgical wounds. This chapter will help the reader to understand the current status and shortcomings of NPWT-related research, which could aid in the development of basic research and, eventually, clinical use with stronger scientific evidence.
Collapse
Affiliation(s)
- Toshifumi Yamashiro
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masato Tsuchiya
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
12
|
Fu S, Du C, Zhang Q, Liu J, Zhang X, Deng M. A Novel Peptide from Polypedates megacephalus Promotes Wound Healing in Mice. Toxins (Basel) 2022; 14:toxins14110753. [PMID: 36356003 PMCID: PMC9693016 DOI: 10.3390/toxins14110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Amphibian skin contains wound-healing peptides, antimicrobial peptides, and insulin-releasing peptides, which give their skin a strong regeneration ability to adapt to a complex and harsh living environment. In the current research, a novel wound-healing promoting peptide, PM-7, was identified from the skin secretions of Polypedates megacephalus, which has an amino acid sequence of FLNWRRILFLKVVR and shares no structural similarity with any peptides described before. It displays the activity of promoting wound healing in mice. Moreover, PM-7 exhibits the function of enhancing proliferation and migration in HUVEC and HSF cells by affecting the MAPK signaling pathway. Considering its favorable traits as a novel peptide that significantly promotes wound healing, PM-7 can be a potential candidate in the development of novel wound-repairing drugs.
Collapse
Affiliation(s)
- Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Canwei Du
- Chengdu Pep Biomedical Co., Ltd., Chengdu 610041, China
| | - Qijian Zhang
- Wound Center of Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiayu Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xushuang Zhang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Meichun Deng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence:
| |
Collapse
|
13
|
Van Daele U, Meirte J, Anthonissen M, Vanhullebusch T, Maertens K, Demuynck L, Moortgat P. Mechanomodulation: Physical Treatment Modalities Employ Mechanotransduction to Improve Scarring. EUROPEAN BURN JOURNAL 2022; 3:241-255. [PMID: 39599996 PMCID: PMC11575364 DOI: 10.3390/ebj3020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2024]
Abstract
Every year, surgical interventions, traumatic wounds, and burn injuries lead to over 80 million scars. These scars often lead to compromised skin function and can result in devastating disfigurement, permanent functional loss, psychosocial problems, and growth retardation. Today, a wide variety of nonsurgical scar management options exist, with only few of them being substantiated by evidence. The working mechanisms of physical anti-scarring modalities remained unclear for many years. Recent evidence underpinned the important role of mechanical forces in scar remodeling, especially the balance between matrix stiffness and cytoskeleton pre-stress. This perspective article aims to translate research findings at the cellular and molecular levels into working mechanisms of physical anti-scarring interventions. Mechanomodulation of scars applied with the right amplitude, frequency, and duration induces ECM remodeling and restores the 'tensile' homeostasis. Depending on the scar characteristics, specific (combinations of) non-invasive physical scar treatments are possible. Future studies should be aimed at investigating the dose-dependent effects of physical scar management to define proper guidelines for these interventions.
Collapse
Affiliation(s)
- Ulrike Van Daele
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Jill Meirte
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Mieke Anthonissen
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Tine Vanhullebusch
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Koen Maertens
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
- Department of Clinical and Lifespan Psychology, Vrije Universiteit Brussel, 1040 Brussels, Belgium
| | - Lot Demuynck
- Research Group MOVANT (Movement Antwerp), Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, 2000 Antwerp, Belgium; (T.V.); (L.D.)
| | - Peter Moortgat
- OSCARE, Organisation for Burns, Scar Aftercare and Research, 2170 Antwerp, Belgium; (J.M.); (M.A.); (K.M.); (P.M.)
| |
Collapse
|
14
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
15
|
Chen H, Hou K, Wu Y, Liu Z. Use of Adipose Stem Cells Against Hypertrophic Scarring or Keloid. Front Cell Dev Biol 2022; 9:823694. [PMID: 35071247 PMCID: PMC8770320 DOI: 10.3389/fcell.2021.823694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic scars or keloid form as part of the wound healing reaction process, and its formation mechanism is complex and diverse, involving multi-stage synergistic action of multiple cells and factors. Adipose stem cells (ASCs) have become an emerging approach for the treatment of many diseases, including hypertrophic scarring or keloid, owing to their various advantages and potential. Herein, we analyzed the molecular mechanism of hypertrophic scar or keloid formation and explored the role and prospects of stem cell therapy, in the treatment of this condition.
Collapse
Affiliation(s)
| | | | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|