1
|
Suehiro T, Kozuru H, Matusmoto K, Kugiyama Y, Motoyoshi Y, Saeki A, Nagaoka S, Yamasaki K, Komori A, Yatsuhashi H. Changes in serum myostatin levels among patients with type C liver cirrhosis treated with direct-acting antivirals. Hepatol Res 2025; 55:631-637. [PMID: 40317867 DOI: 10.1111/hepr.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/13/2024] [Accepted: 01/04/2025] [Indexed: 05/07/2025]
Abstract
AIM To clarify whether direct-acting antiviral treatment improves serum myostatin levels of patients with cirrhosis caused by hepatitis C virus. METHODS A total of 99 patients with type C liver cirrhosis were administered direct-acting antiviral treatment. The median age was 73 years, and 58 patients were women. We measured the levels of serum myostatin, decorin, follistatin, and insulin-like growth factor-1, as well as the skeletal muscle mass index at baseline. We measured the sustained virological response at 48 weeks. RESULTS Serum myostatin levels of the Child-Pugh class B or C group (n = 30) were significantly higher than those of the Child-Pugh class A group (n = 69) at baseline. The multivariate analysis indicated that the total bilirubin level and Mac-2 binding protein glycosylation isomer level were independent factors associated with serum myostatin levels. Serum myostatin levels significantly decreased, whereas the skeletal muscle mass index and insulin-like growth factor-1 level were significantly increased at 48 weeks. CONCLUSIONS Direct-acting antiviral treatment decreased serum myostatin levels and may improve sarcopenia in patients with cirrhosis.
Collapse
Affiliation(s)
- Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kosuke Matusmoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yasuhide Motoyoshi
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| |
Collapse
|
2
|
Benítez R, Núñez Y, Ayuso M, Isabel B, Fernández-Barroso MA, De Mercado E, Gómez-Izquierdo E, García-Casco JM, López-Bote C, Óvilo C. Changes in Biceps femoris Transcriptome along Growth in Iberian Pigs Fed Different Energy Sources and Comparative Analysis with Duroc Breed. Animals (Basel) 2021; 11:ani11123505. [PMID: 34944282 PMCID: PMC8697974 DOI: 10.3390/ani11123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The genetic mechanisms that regulate biological processes, such as skeletal muscle development and growth, or intramuscular fat deposition, have attracted great interest, given their impact on production traits and meat quality. In this sense, a comparison of the transcriptome of skeletal muscle between phenotypically different pig breeds, or along growth, could be useful to improve the understanding of the molecular processes underlying the differences in muscle metabolism and phenotypic traits, potentially driving the identification of causal genes, regulators and metabolic pathways involved in their variability. Abstract This experiment was conducted to investigate the effects of developmental stage, breed, and diet energy source on the genome-wide expression, meat quality traits, and tissue composition of biceps femoris muscle in growing pure Iberian and Duroc pigs. The study comprised 59 Iberian (IB) and 19 Duroc (DU) animals, who started the treatment at an average live weight (LW) of 19.9 kg. The animals were kept under identical management conditions and fed two diets with different energy sources (6% high oleic sunflower oil or carbohydrates). Twenty-nine IB animals were slaughtered after seven days of treatment at an average LW of 24.1 kg, and 30 IB animals plus all the DU animals were slaughtered after 47 days at an average LW of 50.7 kg. The main factors affecting the muscle transcriptome were age, with 1832 differentially expressed genes (DEGs), and breed (1055 DEGs), while the effect of diet on the transcriptome was very small. The results indicated transcriptome changes along time in Iberian animals, being especially related to growth and tissue development, extracellular matrix (ECM) composition, and cytoskeleton organization, with DEGs affecting relevant functions and biological pathways, such as myogenesis. The breed also affected functions related to muscle development and cytoskeleton organization, as well as functions related to solute transport and lipid and carbohydrate metabolism. Taking into account the results of the two main comparisons (age and breed effects), we can postulate that the Iberian breed is more precocious than the Duroc breed, regarding myogenesis and muscle development, in the studied growing stage.
Collapse
Affiliation(s)
- Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Miriam Ayuso
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Miguel A. Fernández-Barroso
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Eduardo De Mercado
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Emilio Gómez-Izquierdo
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
- Correspondence: ; Tel.: +34-91-3471492
| |
Collapse
|
3
|
Stantzou A, Relizani K, Morales-Gonzalez S, Gallen C, Grassin A, Ferry A, Schuelke M, Amthor H. Extracellular matrix remodelling is associated with muscle force increase in overloaded mouse plantaris muscle. Neuropathol Appl Neurobiol 2020; 47:218-235. [PMID: 32772401 DOI: 10.1111/nan.12655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
AIMS Transforming growth factor-β (TGF-β) signalling is thought to contribute to the remodelling of extracellular matrix (ECM) of skeletal muscle and to functional decline in patients with muscular dystrophies. We wanted to determine the role of TGF-β-induced ECM remodelling in dystrophic muscle. METHODS We experimentally induced the pathological hallmarks of severe muscular dystrophy by mechanically overloading the plantaris muscle in mice. Furthermore, we determined the role of TGF-β signalling on dystrophic tissue modulation and on muscle function by (i) overloading myostatin knockout (Mstn-/- ) mice and (ii) by additional pharmacological TGF-β inhibition via halofuginone. RESULTS Transcriptome analysis of overloaded muscles revealed upregulation predominantly of genes associated with ECM, inflammation and metalloproteinase activity. Histology revealed in wild-type mice signs of severe muscular dystrophy including myofibres with large variation in size and internalized myonuclei, as well as increased ECM deposition. At the same time, muscle weight had increased by 208% and muscle force by 234%. Myostatin deficiency blunted the effect of overload on muscle mass (59% increase) and force (76% increase), while having no effect on ECM deposition. Concomitant treatment with halofuginone blunted overload-induced muscle hypertrophy and muscle force increase, while reducing ECM deposition and increasing myofibre size. CONCLUSIONS ECM remodelling is associated with an increase in muscle mass and force in overload-modelled dystrophic muscle. Lack of myostatin is not advantageous and inhibition of ECM deposition by halofuginone is disadvantageous for muscle plasticity in response to stimuli that induce dystrophic muscle.
Collapse
Affiliation(s)
- A Stantzou
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - K Relizani
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,NeuroCure Cluster of Excellence and Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Morales-Gonzalez
- NeuroCure Cluster of Excellence and Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Gallen
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - A Grassin
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - A Ferry
- Center for Research in Myology, Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - M Schuelke
- NeuroCure Cluster of Excellence and Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - H Amthor
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| |
Collapse
|
4
|
Mazur-Bialy AI, Kołomańska-Bogucka D, Nowakowski C, Tim S. Urinary Incontinence in Women: Modern Methods of Physiotherapy as a Support for Surgical Treatment or Independent Therapy. J Clin Med 2020; 9:E1211. [PMID: 32340194 PMCID: PMC7230757 DOI: 10.3390/jcm9041211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary incontinence (UI) is a common health problem affecting quality of life of nearly 420 million people, both women and men. Pelvic floor muscle (PFM) training and other physiotherapy techniques play an important role in non-surgical UI treatment, but their therapeutic effectiveness is limited to slight or moderate severity of UI. Higher UI severity requires surgical procedures with pre- and post-operative physiotherapy. Given that nearly 30%-40% of women without dysfunction and about 70% with pelvic floor dysfunction are unable to perform a correct PFM contraction, therefore, it is particularly important to implement physiotherapeutic techniques aimed at early activation of PFM. Presently, UI physiotherapy focuses primarily on PFM therapy and its proper cooperation with synergistic muscles, the respiratory diaphragm, and correction of improper everyday habits for better pelvic organ support and continence. The purpose of this work is a systematic review showing the possibilities of using physiotherapeutic techniques in the treatment of UI in women with attention to the techniques of PFM activation. Evidence of the effectiveness of well-known (e.g., PFM training, biofeedback, and electrostimulation) and less-known (e.g., magnetostimulation, vibration training) techniques will be presented here regarding the treatment of symptoms of urinary incontinence in women.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland
| | | | | | | |
Collapse
|
5
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Praktiknjo M, Book M, Luetkens J, Pohlmann A, Meyer C, Thomas D, Jansen C, Feist A, Chang J, Grimm J, Lehmann J, Strassburg CP, Abraldes JG, Kukuk G, Trebicka J. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology 2018; 67:1014-1026. [PMID: 29059469 DOI: 10.1002/hep.29602] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED Muscle mass seems to be a prognostic marker in patients with liver cirrhosis. However, reported methods to quantify muscle mass are heterogeneous, consented cutoff values are missing, and most studies have used computed tomography. This study evaluated fat-free muscle area (FFMA) as a marker of sarcopenia using magnetic resonance imaging (MRI) in patients with decompensated cirrhosis with transjugular intrahepatic portosystemic shunt (TIPS). The total erector spinae muscle area and the intramuscular fat tissue area were measured and subtracted to calculate the FFMA in 116 patients with cirrhosis by TIPS and MRI. The training cohort of 71 patients compared computed tomography-measured transversal psoas muscle thickness with FFMA. In 15 patients MRI was performed before and after TIPS, and in 12 patients follistatin serum measurements were carried out. The results on FFMA were confirmed in a validation cohort of 45 patients. FFMA correlated with follistatin and transversal psoas muscle thickness and showed slightly better association with survival than transversal psoas muscle thickness. Gender-specific cutoff values for FFMA were determined for sarcopenia. Decompensation (ascites, overt hepatic encephalopathy) persisted after TIPS in the sarcopenia group but resolved in the nonsarcopenia group. Sarcopenic patients showed no clinical improvement after TIPS as well as higher mortality, mainly due to development of acute-on-chronic liver failure. FFMA was an independent predictor of survival in these patients. CONCLUSION This study offers an easy-to-apply MRI-based measurement of fat-free muscle mass as a marker of sarcopenia in decompensated patients; while TIPS might improve sarcopenia and thereby survival, persistence of sarcopenia after TIPS is associated with a reduced response to TIPS and a higher risk of acute-on-chronic liver failure development and mortality. (Hepatology 2018;67:1014-1026).
Collapse
Affiliation(s)
| | - Marius Book
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | - Carsten Meyer
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Daniel Thomas
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Christian Jansen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Andreas Feist
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Johannes Chang
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jochen Grimm
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | - Guido Kukuk
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Department of Gastroenterology, Odense Hospital, University of Southern Denmark, Odense, Denmark.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona, Spain
| |
Collapse
|
7
|
Baati N, Feillet-Coudray C, Fouret G, Vernus B, Goustard B, Coudray C, Lecomte J, Blanquet V, Magnol L, Bonnieu A, Koechlin-Ramonatxo C. Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1044-1055. [DOI: 10.1016/j.bbalip.2017.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
|
8
|
Pharmacological Therapy for the Prevention and Treatment of Weakness After Critical Illness: A Systematic Review. Crit Care Med 2017; 44:1198-205. [PMID: 26958749 DOI: 10.1097/ccm.0000000000001652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES ICU-acquired weakness is a common complication of critical illness and can have significant effects upon functional status and quality of life. As part of preliminary work to inform the design of a randomized trial of a complex intervention to improve recovery from critical illness, we sought to identify pharmacological interventions that may play a role in this area. DATA SOURCES We systematically reviewed the published literature relating to pharmacological intervention for the treatment and prevention of ICU-acquired weakness. STUDY SELECTION We searched MEDLINE, EMBASE, CINAHL+, Web of Science, and both U.S. and European trial registries up to July 2014 alongside reviews and reference lists from populations with no age or language restrictions. We included studies that reported a measure of muscle structure or physical function as an outcome measure. DATA EXTRACTION We estimated pooled odds ratios and 95% CI using data extracted from published articles or where available, original data provided by the authors. Assessment of bias was performed using the Cochrane Collaboration's risk of bias tool. DATA SYNTHESIS Ten studies met the inclusion criteria. The current body of evidence does not support the use of any pharmacological agent in this setting, although maintaining euglycemia may reduce the prevalence of critical illness polyneuropathy. CONCLUSIONS At present, no pharmacological intervention can be recommended to prevent or treat ICU-acquired weakness. Further research is required into this field to include more novel agents such as myostatin inhibitors. Challenges in the conduct of research in this area are highlighted.
Collapse
|
9
|
Pasteuning-Vuhman S, Boertje-van der Meulen JW, van Putten M, Overzier M, Ten Dijke P, Kiełbasa SM, Arindrarto W, Wolterbeek R, Lezhnina KV, Ozerov IV, Aliper AM, Hoogaars WM, Aartsma-Rus A, Loomans CJM. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB J 2016; 31:238-255. [PMID: 27733450 PMCID: PMC5161514 DOI: 10.1096/fj.201600675r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology Leiden University Medical Center, Leiden, The Netherlands.,Cancer Genomics Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wibowo Arindrarto
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ksenia V Lezhnina
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Ivan V Ozerov
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Aleksandr M Aliper
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Willem M Hoogaars
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Move Research Institute Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands;
| | - Cindy J M Loomans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Costagliola A, Wojcik S, Pagano TB, De Biase D, Russo V, Iovane V, Grieco E, Papparella S, Paciello O. Age-Related Changes in Skeletal Muscle of Cattle. Vet Pathol 2016; 53:436-46. [PMID: 26869152 DOI: 10.1177/0300985815624495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sarcopenia, the age-related loss of muscle mass and strength, is a multifactorial condition that represents a major healthcare concern for the elderly population. Although its morphologic features have been extensively studied in humans, animal models, and domestic and wild animals, only a few reports about spontaneous sarcopenia exist in other long-lived animals. In this work, muscle samples from 60 healthy Podolica-breed old cows (aged 15-23 years) were examined and compared with muscle samples from 10 young cows (3-6 years old). Frozen sections were studied through standard histologic and histoenzymatic procedures, as well as by immunohistochemistry, immunofluorescence, and Western blot analysis. The most prominent age-related myopathic features seen in the studied material included angular fiber atrophy (90% of cases), mitochondrial alterations (ragged red fibers, 70%; COX-negative fibers, 60%), presence of vacuolated fibers (75%), lymphocytic (predominantly CD8+) inflammation (40%), and type II selective fiber atrophy (40%). Immunohistochemistry revealed increased expression of major histocompatibility complex I in 36 cases (60%) and sarcoplasmic accumulations of β-amyloid precursor protein-positive material in 18 cases (30%). In aged cows, muscle atrophy was associated with accumulation of myostatin. Western blot analysis indicated increased amount of both proteins-myostatin and β-amyloid precursor protein-in muscles of aged animals compared with controls. These findings confirm the presence of age-related morphologic changes in cows similar to human sarcopenia and underline the possible role of amyloid deposition and subsequent inflammation in muscle senescence.
Collapse
Affiliation(s)
- A Costagliola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - S Wojcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - T B Pagano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - D De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - V Russo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - V Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - E Grieco
- Azienda Sanitaria Locale, Salerno, Italy
| | - S Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - O Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. BMC Genomics 2015; 16:377. [PMID: 25962502 PMCID: PMC4437458 DOI: 10.1186/s12864-015-1580-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022] Open
Abstract
Background The growth and development of skeletal muscle directly impacts the quantity and quality of pork production. Chinese indigenous pig breeds and exotic species vary greatly in terms of muscle production and performance traits. We present transcriptome profiles of 110 skeletal muscle samples from Tongcheng (TC) and Yorkshire (YK) pigs at 11 developmental periods (30, 40, 55, 63, 70, 90, and 105 days of gestation, and 0, 1, 3, and 5 weeks of age) using digital gene expression on Solexa/Illumina’s Genome Analyzer platform to investigate the differences in prenatal and postnatal skeletal muscle between the two breeds. Results Muscle morphological changes indicate the importance of primary fiber formation from 30 to 40 dpc (days post coitus), and secondary fiber formation from 55 to 70 dpc. We screened 4,331 differentially expressed genes in TC and 2,259 in YK (log2 ratio >1 and probability >0.7). Cluster analysis showed different gene expression patterns between TC and YK pigs. The transcripts were annotated in terms of Gene Ontology related to muscle development. We found that the genes CXCL10, EIF2B5, PSMA6, FBXO32, and LOC100622249 played vital roles in the muscle regulatory networks in the TC breed, whereas the genes SGCD, ENG, THBD, AQP4, and BTG2 played dominant roles in the YK breed. These genes showed breed-specific and development-dependent differential expression patterns. Furthermore, 984 genes were identified in myogenesis. A heat map showed that significantly enriched pathways (FDR <0.05) had stage-specific functional regulatory mechanisms. Finally, the differentially expressed genes from our sequencing results were confirmed by real-time quantitative polymerase chain reaction. Conclusions This study detected many functional genes and showed differences in the molecular mechanisms of skeletal muscle development between TC and YK pigs. TC pigs showed slower muscle growth and more complicated genetic regulation than YK pigs. Many differentially expressed genes showed breed-specific expression patterns. Our data provide a better understanding of skeletal muscle developmental differences and valuable information for improving pork quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1580-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Thevis M, Thomas A, Schänzer W. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions. Expert Rev Proteomics 2014; 11:663-73. [DOI: 10.1586/14789450.2014.965159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports? Sports Med 2014; 43:965-77. [PMID: 23832852 DOI: 10.1007/s40279-013-0075-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the last 2 decades, progress in deciphering the human gene map as well as the discovery of specific defective genes encoding particular proteins in some serious human diseases have resulted in attempts to treat sick patients with gene therapy. There has been considerable focus on human recombinant proteins which were gene-engineered and produced in vitro (insulin, growth hormone, insulin-like growth factor-1, erythropoietin). Unfortunately, these substances and methods also became improper tools for unscrupulous athletes. Biomedical research has focused on the possible direct insertion of gene material into the body, in order to replace some defective genes in vivo and/or to promote long-lasting endogenous synthesis of deficient proteins. Theoretically, diabetes, anaemia, muscular dystrophies, immune deficiency, cardiovascular diseases and numerous other illnesses could benefit from such innovative biomedical research, though much work remains to be done. Considering recent findings linking specific genotypes and physical performance, it is tempting to submit the young athletic population to genetic screening or, alternatively, to artificial gene expression modulation. Much research is already being conducted in order to achieve a safe transfer of genetic material to humans. This is of critical importance since uncontrolled production of the specifically coded protein, with serious secondary adverse effects (polycythaemia, acute cardiovascular problems, cancer, etc.), could occur. Other unpredictable reactions (immunogenicity of vectors or DNA-vector complex, autoimmune anaemia, production of wild genetic material) also remain possible at the individual level. Some new substances (myostatin blockers or anti-myostatin antibodies), although not gene material, might represent a useful and well-tolerated treatment to prevent progression of muscular dystrophies. Similarly, other molecules, in the roles of gene or metabolic activators [5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), GW1516], might concomitantly improve endurance exercise capacity in ischaemic conditions but also in normal conditions. Undoubtedly, some athletes will attempt to take advantage of these new molecules to increase strength or endurance. Antidoping laboratories are improving detection methods. These are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein or metabolite patterns (genomics, proteomics or metabolomics).
Collapse
|
14
|
Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell Dev Biol Anim 2013; 50:94-102. [PMID: 24052475 DOI: 10.1007/s11626-013-9689-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023]
Abstract
Myostatin (MSTN), is a known negative regulator of myogenesis. Silencing of the function of MSTN could result in increasing muscle mass in mice. To determine the function of endogenous MSTN expression on proliferation of sheep myoblasts, a short-hairpin RNA-targeting sheep MSTN was constructed into lentiviral vector to silence endogenous MSTN expression. We demonstrated that silencing of endogenous MSTN gene with up to approximately 73.3% reduction by short hairpin RNA (shRNA) resulted in significant increase (overall 28.3%) of proliferation of primary ovine myoblasts. The upregulation of proliferation was accompanied by the decrease expression of MyoD (-37.6%, p = 0.025), myogenin (-33.1%, p = 0.049), p21 (-49.3%, p = 0.046), and Smad3 (-50.0%, p = 0.007). Silencing of myostatin using shRNA may provide a feasible approach to improve meat productivity in farm animals.
Collapse
|
15
|
Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 2013; 14:273-92. [PMID: 23666344 PMCID: PMC3719007 DOI: 10.1007/s10522-013-9429-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
Abstract
Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle. Our study, along with other studies, demonstrated that although the regenerative program can also be impaired by the limited proliferative capacity of satellite cells, this limit is not reached during normal aging, and it is more likely that the restricted muscle repair program in aging is presumably due to missing signals that usually render the damaged muscle a permissive environment for regenerative activity.
Collapse
|
16
|
Mittlmeier T, Stratos I. Muscle and Ligament Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Resistance training induced increase in muscle fiber size in young and older men. Eur J Appl Physiol 2012; 113:641-50. [PMID: 22898716 DOI: 10.1007/s00421-012-2466-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/23/2012] [Indexed: 01/07/2023]
Abstract
Muscle strength and mass decline in sedentary individuals with aging. The present study investigated the effects of both age and 21 weeks of progressive hypertrophic resistance training (RT) on skeletal muscle size and strength, and on myostatin and myogenin mRNA expression in 21 previously untrained young men (26.0 ± 4.3 years) and 18 older men (61.2 ± 4.1 years) and age-matched controls. Vastus lateralis muscle biopsies were taken before and after RT. Type I and type II muscle fiber cross-sectional areas increased more in young men than in older men after RT (P < 0.05). Concentric leg extension increased (P < 0.05) more after 10.5 weeks in young men compared to older men, but after 21 weeks no statistical differences existed. The daily energy and protein intake were greater (P < 0.001) in young subjects. Both myostatin and myogenin mRNA expression increased in older when compared with young men after RT (P < 0.05). In conclusion, after RT, muscle fiber size increased less in older compared to young men. This was associated with lower protein and energy intake and increases in myostatin gene expression in older when compared to young men.
Collapse
|
18
|
Schneider AJ, Fedoruk MN, Rupert JL. Human genetic variation: new challenges and opportunities for doping control. J Sports Sci 2012; 30:1117-29. [PMID: 22681541 DOI: 10.1080/02640414.2012.692480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.
Collapse
Affiliation(s)
- Angela J Schneider
- The International Centre for Olympic Studies, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
19
|
Bo Li Z, Zhang J, Wagner KR. Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci 2012; 125:3957-65. [PMID: 22685331 DOI: 10.1242/jcs.090365] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.
Collapse
Affiliation(s)
- Zhao Bo Li
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
20
|
Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem 2012; 60:22-30. [PMID: 22205678 DOI: 10.1369/0022155411425389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury.
Collapse
Affiliation(s)
- Moataz Elkasrawy
- School of Dental Medicine, University of Colorado Denver, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
21
|
Elkasrawy M, Fulzele S, Bowser M, Wenger K, Hamrick M. Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression. Growth Factors 2011; 29:253-62. [PMID: 21756198 PMCID: PMC3738019 DOI: 10.3109/08977194.2011.599324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we investigate a possible direct role for myostatin in chondrogenesis. First, we examined the effects of myostatin on the proliferation of bone marrow stromal cells (BMSCs) and epiphyseal growth plate (EGP) chondrocytes (EGPCs) isolated from myostatin-deficient mice. Results show that myostatin deficiency is associated with a significant (P < 0.001) increase in proliferation of both BMSCs (+25%) and EGPCs (+35%) compared with wild-type cells. Next, we examined the effects of myostatin treatment on chondrogenic differentiation of BMSCs. These experiments show that myostatin treatment starting at either 0 or 48 h induces a significant decrease in collagen type II protein synthesis by 31% (P < 0.001) and 25% (P < 0.05), respectively. Real-time PCR reveals significant (P < 0.01) down regulation of Sox9 mRNA expression with 10 and 100 ng/ml treatments. Together, these findings suggest that myostatin has direct effects on chondrogenesis, and may, therefore, represent a potential therapeutic target for improving bone repair.
Collapse
Affiliation(s)
- Moataz Elkasrawy
- Department of Cellular Biology & Anatomy, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Matthew Bowser
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Karl Wenger
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Mark Hamrick
- Department of Cellular Biology & Anatomy, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Address all correspondence to: Mark W. Hamrick, Ph.D. Department of Cellular Biology & Anatomy Georgia Health Sciences University Medical College of Georgia Cb1116 Laney Walker Blvd. Augusta, GA 30912 USA PH: 706-721-1958 FAX: 706-721-6120
| |
Collapse
|
22
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Srikuea R, Pholpramool C, Kitiyanant Y, Yimlamai T. Satellite cell activity in muscle regeneration after contusion in rats. Clin Exp Pharmacol Physiol 2011; 37:1078-86. [PMID: 20726992 DOI: 10.1111/j.1440-1681.2010.05439.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The role of satellite cells in muscle growth during development is well documented, but the involvement of these cells in muscle repair after contusion is less well known. In the present study, we investigated the time-course of satellite cell activity (from 3h to 7days) after contusion of rat gastrocnemius muscle using specific molecular markers for immunofluorescence and real-time polymerase chain reaction (PCR). 2. Inflammation of the injured muscle occurred within 6h, followed by disintegration of the damaged myofibres within 12h. Newly formed myofibres appeared by Day 7. 3. The number of MyoD-positive nuclei (activated satellite cells) in the injured muscle was significantly increased by 6h, reaching a maximum by 12h after contusion. However, the number of MyoD-positive nuclei decreased towards control levels by Day 7. Changes in the number of bromodeoxyuridine-labelled nuclei (proliferating satellite cells) paralleled the changes seen in the number of MyoD-positive nuclei. Conversely, expression of myogenin protein was not apparent until Day 3 and increased further by Day 7. Colabelling of MyoD and myogenin was seen in only a few cells. 4. The time-course of MyoD mRNA expression corresponded with MyoD protein expression. However, there were two peaks in myogenin mRNA expression: 6h and Day 7 after contusion. The second peak coincided with upregulation of myostatin mRNA levels. 5. The results of the present study suggest that contusion activates a homogeneous population of satellite cells to proliferate within 3days, followed by differentiation to form new myofibres. The latter may be regulated, in part, by myostatin.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
24
|
Smith IJ, Aversa Z, Alamdari N, Petkova V, Hasselgren PO. Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J Cell Biochem 2011; 111:1059-73. [PMID: 20677217 DOI: 10.1002/jcb.22796] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis-induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham-operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p-Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p-Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p-Smad2 levels. Of note, total and p-Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
25
|
Muscle and Ligament Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Fakhfakh R, Michaud A, Tremblay JP. Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in dystrophic mice. Mol Ther 2011; 19:204-210. [PMID: 20700111 PMCID: PMC3017433 DOI: 10.1038/mt.2010.171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
27
|
Carosio S, Berardinelli MG, Aucello M, Musarò A. Impact of ageing on muscle cell regeneration. Ageing Res Rev 2011; 10:35-42. [PMID: 19683075 DOI: 10.1016/j.arr.2009.08.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022]
Abstract
Skeletal muscle regeneration is a coordinate process in which several factors are sequentially activated to maintain and preserve muscle structure and function. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic cells that reside between the basal lamina and plasmalemma and are rapidly activated in response to appropriate stimuli. However, in several muscle conditions, including aging, the capacity of skeletal muscle to sustain an efficient regenerative pathway is severely compromised. Nevertheless, if skeletal muscle possesses a stem cell compartment it is not clear why the muscle fails to regenerate under pathological conditions. Either the resident muscle stem cells are too rare or intrinsically incapable of repairing major damage, or perhaps the injured/pathological muscle is a prohibitive environment for stem cell activation and function. Although we lack definitive answers, recent experimental evidences suggest that the mere presence of endogenous stem cells may not be sufficient to guarantee muscle regeneration, and that the presence of appropriate stimuli and factors are necessary to provide a permissive environment that permits stem cell mediated muscle regeneration and repair. In this review we discuss the molecular basis of muscle regeneration and how aging impacts stem cell mediated muscle regeneration and repair.
Collapse
Affiliation(s)
- Silvia Carosio
- Institute Pasteur Cenci-Bolognetti, Department of Histology and Medical Embryology, IIM, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy
| | | | | | | |
Collapse
|
28
|
Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 2011; 152:164-71. [PMID: 21068158 DOI: 10.1210/en.2010-0868] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follistatin is a member of the TGF-β super family and inhibits the action of myostatin to regulate skeletal muscle growth. The regulation of follistatin during physical exercise is unclear but may be important because physical activity is a major intervention to prevent age-related sarcopenia. First, healthy subjects performed either bicycle or one-legged knee extensor exercise. Arterial-venous differences were assessed during the one-legged knee extensor experiment. Next, mice performed 1 h of swimming, and the expression of follistatin was examined in various tissues using quantitative PCR. Western blotting assessed follistatin protein content in the liver. IL-6 and epinephrine were investigated as drivers of follistatin secretion. After 3 h of bicycle exercise, plasma follistatin increased 3 h into recovery with a peak of 7-fold. No net release of follistatin could be detected from the exercising limb. In mice performing a bout of swimming exercise, increases in plasma follistatin as well as follistatin mRNA and protein expression in the liver were observed. IL-6 infusion to healthy young men did not affect the follistatin concentration in the circulation. When mice were stimulated with epinephrine, no increase in the hepatic mRNA of follistatin was observed. This is the first study to demonstrate that plasma follistatin is increased during exercise and most likely originates from the liver. These data introduce new perspectives regarding muscle-liver cross talk during exercise and during recovery from exercise.
Collapse
Affiliation(s)
- Jakob Hansen
- Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. ACTA ACUST UNITED AC 2010; 69:579-83. [PMID: 20173658 DOI: 10.1097/ta.0b013e3181c451f4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Myostatin (GDF-8) is known as a potent inhibitor of muscle growth and development, and myostatin is also expressed early in the fracture healing process. The purpose of this study was to test the hypothesis that a new myostatin inhibitor, a recombinant myostatin propeptide, can enhance the repair and regeneration of both muscle and bone in cases of deep penetrant injury. METHODS We used a fibula osteotomy model with associated damage to lateral compartment muscles (fibularis longus and brevis) in mice to test the hypothesis that blocking active myostatin with systemic injections of a recombinant myostatin propeptide would improve muscle and bone repair. Mice were assigned to two treatment groups after undergoing a fibula osteotomy: those receiving either vehicle (saline) or recombinant myostatin propeptide (20 mg/kg). Mice received one injection on the day of surgery, another injection 5 days after surgery, and a third injection 10 days after surgery. Mice were killed 15 days after the osteotomy procedure. Bone repair was assessed using microcomputed tomography (micro-CT) and histologic evaluation of the fracture callus. Muscle healing was assessed using Masson trichrome staining of the injury site, and image analysis was used to quantify the degree of fibrosis and muscle regeneration. RESULTS Three propeptide injections over a period of 15 days increased body mass by 7% and increased muscle mass by almost 20% (p < 0.001). Micro-CT analysis of the osteotomy site shows that by 15 days postosteotomy, bony callus tissue was observed bridging the osteotomy gap in 80% of the propeptide-treated mice but only 40% of the control (vehicle)-treated mice (p < 0.01). Micro-CT quantification shows that bone volume of the fracture callus was increased by ∼ 30% (p < 0.05) with propeptide treatment, and the increase in bone volume was accompanied by a significant increase in cartilage area (p = 0.01). Propeptide treatment significantly decreased the fraction of fibrous tissue in the wound site and increased the fraction of muscle relative to fibrous tissue by 20% (p < 0.01). CONCLUSIONS Blocking myostatin signaling in the injured limb improves fracture healing and enhances muscle regeneration. These data suggest that myostatin inhibitors may be effective for improving wound repair in cases of orthopaedic trauma and extremity injury.
Collapse
|
30
|
Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R, Underwood KW, Pearsall RS, Lachey JL. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J Appl Physiol (1985) 2010; 109:635-42. [PMID: 20466801 DOI: 10.1152/japplphysiol.00866.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This is the first report that inhibition of negative regulators of skeletal muscle by a soluble form of activin type IIB receptor (ACE-031) increases muscle mass independent of fiber-type expression. This finding is distinct from the effects of selective pharmacological inhibition of myostatin (GDF-8), which predominantly targets type II fibers. In our study 8-wk-old C57BL/6 mice were treated with ACE-031 or vehicle control for 28 days. By the end of treatment, mean body weight of the ACE-031 group was 16% greater than that of the control group, and wet weights of soleus, plantaris, gastrocnemius, and extensor digitorum longus muscles increased by 33, 44, 46 and 26%, respectively (P<0.05). Soleus fiber-type distribution was unchanged with ACE-031 administration, and mean fiber cross-sectional area increased by 22 and 28% (P<0.05) in type I and II fibers, respectively. In the plantaris, a predominantly type II fiber muscle, mean fiber cross-sectional area increased by 57% with ACE-031 treatment. Analysis of myosin heavy chain (MHC) isoform transcripts by real-time PCR indicated no change in transcript levels in the soleus, but a decline in MHC I and IIa in the plantaris. In contrast, electrophoretic separation of total soleus and plantaris protein indicated that there was no change in the proportion of MHC isoforms in either muscle. Thus these data provide optimism that ACE-031 may be a viable therapeutic in the treatment of musculoskeletal diseases. Future studies should be undertaken to confirm that the observed effects are not age dependent or due to the relatively short study duration.
Collapse
Affiliation(s)
- Samuel M Cadena
- Acceleron Pharma Inc., 128 Sidney St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci U S A 2009; 106:7479-84. [PMID: 19383783 DOI: 10.1073/pnas.0811129106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.
Collapse
|
32
|
Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y, Adams V, Schuler G. Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model. Eur J Heart Fail 2009; 11:342-8. [PMID: 19218333 DOI: 10.1093/eurjhf/hfp020] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS In late-stage chronic heart failure (CHF), elevated cytokines and cachexia are often observed. Several studies have shown that exercise training exerts beneficial effects on skeletal muscle in this setting. Furthermore, it has been shown that the expression of myostatin, a key regulator of skeletal muscle mass, is increased in a variety of cachectic states. This study aimed to investigate the expression of myostatin in CHF, the influence of exercise training on myostatin levels, and regulation of myostatin by tumour necrosis factor-alpha (TNF-alpha). METHODS AND RESULTS In an animal model of CHF (LAD-ligation model), protein expression of myostatin was elevated 2.4-fold in the skeletal muscle and more than four-times in the myocardium, compared with control (Co). Exercise training on a treadmill over 4 weeks led to a significant reduction in myostatin protein expression in the skeletal muscle and the myocardium of CHF animals, with values returning to baseline levels. In differentiated C2C12 cells, TNF-alpha induced the expression of myostatin through a p38MAPK-dependent pathway involving nuclear factor kappa-B (NF-kappaB). The increased TNF-alpha mRNA levels in the skeletal muscle of CHF animals correlated significantly with myostatin expression. CONCLUSION These alterations in myostatin expression in the skeletal and heart muscle following exercise training could help to explain the beneficial anti-catabolic effects of exercise training in CHF.
Collapse
Affiliation(s)
- Karsten Lenk
- Clinic of Cardiology, University Leipzig-Heart Center Leipzig, Strümpellstrasse 39, D-04289 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Genovese JA, Spadaccio C, Rivello HG, Toyoda Y, Patel AN. Electrostimulated bone marrow human mesenchymal stem cells produce follistatin. Cytotherapy 2009; 11:448-56. [DOI: 10.1080/14653240902960445] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Abstract
Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy. The cornerstones of current treatment include corticosteroids for skeletal muscle weakness, afterload reduction for cardiomyopathy, and noninvasive ventilation for respiratory failure. With these interventions, patients are walking and living longer. However, the current status is still far from adequate. Increased private and federal funding of studies in Duchenne muscular dystrophy has led to a large number of novel agents with propitious therapeutic potential. These include agents that modify dystrophin expression, increase muscle growth and regeneration, and modulate inflammatory responses. Many of these agents are already in clinical trials. Challenges to the development of additional novel therapeutics exist, including lack of validated animal models and lack of adequate biomarkers as surrogate endpoints. However, these challenges are not insurmountable and the next decade will likely see meaningful, new treatment options introduced into the clinical care of patients with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kathryn R Wagner
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
| |
Collapse
|
35
|
Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 2008; 37:297-308. [PMID: 18661258 DOI: 10.1007/s00726-008-0150-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
The effects of timed ingestion of high-quality protein before and after resistance exercise are not well known. In this study, young men were randomized to protein (n = 11), placebo (n = 10) and control (n = 10) groups. Muscle cross-sectional area by MRI and muscle forces were analyzed before and after 21 weeks of either heavy resistance training (RT) or control period. Muscle biopsies were taken before, and 1 and 48 h after 5 x 10 repetition leg press exercise (RE) as well as 21 weeks after RT. Protein (15 g of whey both before and after exercise) or non-energetic placebo were provided to subjects in the context of both single RE bout (acute responses) as well as each RE workout twice a week throughout the 21-week-RT. Protein intake increased (P < or = 0.05) RT-induced muscle cross-sectional area enlargement and cell-cycle kinase cdk2 mRNA expression in the vastus lateralis muscle suggesting higher proliferating cell activation response with protein supplementation. Moreover, protein intake seemed to prevent 1 h post-RE decrease in myostatin and myogenin mRNA expression but did not affect activin receptor IIb, p21, FLRG, MAFbx or MyoD expression. In conclusion, protein intake close to resistance exercise workout may alter mRNA expression in a manner advantageous for muscle hypertrophy.
Collapse
|
36
|
Furalyov VA, Kravchenko IV, Khotchenkov VP, Popov VO. siRNAs targeting mouse myostatin. BIOCHEMISTRY (MOSCOW) 2008; 73:342-5. [PMID: 18393772 DOI: 10.1134/s0006297908030164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eight different mouse myostatin small interfering RNA (siRNAs) were synthesized and tested. Five siRNAs showed a pronounced biological effect reducing myostatin mRNA content. For two of them, the myostatin mRNA level was reduced 3- and 4-fold, respectively. The obtained siRNAs can be used for study of biological effects of myostatin, both in vitro and in vivo.
Collapse
Affiliation(s)
- V A Furalyov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, Russia
| | | | | | | |
Collapse
|
37
|
Li ZB, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem 2008; 283:19371-8. [PMID: 18453534 DOI: 10.1074/jbc.m802585200] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle fibrosis is a major pathological hallmark of chronic myopathies in which myofibers are replaced by progressive deposition of collagen and other extracellular matrix proteins produced by muscle fibroblasts. Recent studies have shown that in the absence of the endogenous muscle growth regulator myostatin, regeneration of muscle is enhanced, and muscle fibrosis is correspondingly reduced. We now demonstrate that myostatin not only regulates the growth of myocytes but also directly regulates muscle fibroblasts. Our results show that myostatin stimulates the proliferation of muscle fibroblasts and the production of extracellular matrix proteins both in vitro and in vivo. Further, muscle fibroblasts express myostatin and its putative receptor activin receptor IIB. Proliferation of muscle fibroblasts, induced by myostatin, involves the activation of Smad, p38 MAPK and Akt pathways. These results expand our understanding of the function of myostatin in muscle tissue and provide a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Zhao Bo Li
- Department of Neurology and Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
38
|
Hough CL, Needham DM. The role of future longitudinal studies in ICU survivors: understanding determinants and pathophysiology of weakness and neuromuscular dysfunction. Curr Opin Crit Care 2008; 13:489-96. [PMID: 17762224 DOI: 10.1097/mcc.0b013e3282efea3a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to discuss the pathophysiology and determinants of muscle weakness and neuromuscular dysfunction after critical illness, and to offer thoughts regarding the role of future longitudinal studies in this area. RECENT FINDINGS While recent studies support the finding that neuromuscular dysfunction is common and important after critical illness, reversible risk factors and approaches to prevention and treatment remain unproven. Pathophysiologic studies implicate disease and treatment associated factors in the development of nerve and muscle damage during critical illness; these factors may provide targets for future studies. SUMMARY Additional studies with improved methodology that address epidemiology and that test interventions are needed to understand and to improve neuromuscular function after critical illness.
Collapse
Affiliation(s)
- Catherine L Hough
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
39
|
Fedoruk MN, Rupert JL. Myostatin inhibition: a potential performance enhancement strategy? Scand J Med Sci Sports 2008; 18:123-31. [DOI: 10.1111/j.1600-0838.2007.00759.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Stolz LE, Li D, Qadri A, Jalenak M, Klaman LD, Tobin JF. Administration of myostatin does not alter fat mass in adult mice. Diabetes Obes Metab 2008; 10:135-42. [PMID: 18190427 DOI: 10.1111/j.1463-1326.2006.00672.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Myostatin, a member of the TGF-beta superfamily, is produced by skeletal muscle and acts as a negative regulator of muscle mass. It has also been suggested that low-dose administration of myostatin (2 mug/day) in rodents can reduce fat mass without altering muscle mass. In the current study, we attempted to further explore the effects of myostatin on adipocytes and its potential to reduce fat mass, since myostatin administration could potentially be a useful strategy to treat obesity and its complications in humans. METHODS Purified myostatin protein was examined for its effects on adipogenesis and lipolysis in differentiated 3T3-L1 adipocytes as well as for effects on fat mass in wild-type, myostatin null and obese mice. RESULTS While myostatin was capable of inhibiting adipogenesis in 3T3-L1 cells, it did not alter lipolysis in fully differentiated adipocytes. Importantly, pharmacological administration of myostatin over a range of doses (2-120 mug/day) did not affect fat mass in wild-type or genetically obese (ob/ob, db/db) mice, although muscle mass was significantly reduced at the highest myostatin dose. CONCLUSIONS Our results suggest that myostatin does not reduce adipose stores in adult animals. Contrary to prior indications, pharmacological administration of myostatin does not appear to be an effective strategy to treat obesity in vivo.
Collapse
Affiliation(s)
- L E Stolz
- Department of Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | | | |
Collapse
|
41
|
Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Potential Use of Gene Transfer in Athletic Performance Enhancement. Mol Ther 2007; 15:1751-66. [PMID: 17680029 DOI: 10.1038/sj.mt.6300278] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After only a short history of three decades from concept to practice, gene therapy has recently been shown to have potential to treat serious human diseases. Despite this success, gene therapy remains in the realm of experimental medicine, and much additional preclinical and clinical study will be necessary for proving the efficacy and safety of this approach in the treatment of diseases in humans. However, a potential complicating factor is that advances in gene transfer technology could be misused to enhance athletic performance in sports, in a practice termed "gene doping". Moreover, gene doping could be a precursor to a broader controversial agenda of human "genetic enhancement" with the potential for a significant long-term impact on society. This review addresses the possible ways in which knowledge and experience gained in gene therapy in animals and humans may be abused for enhancing sporting prowess. We provide an overview of recent progress in gene therapy, with potential application to gene doping and with the major focus on candidate performance-enhancement genes. We also discuss the current status of preclinical studies and of clinical trials that use these genes for therapeutic purposes. Current knowledge about the association between the natural "genetic make-up" of humans and their physical characteristics and performance potential is also presented. We address issues associated with the safety of gene transfer technologies in humans, especially when used outside a strictly controlled clinical setting, and the obstacles to translating gene transfer strategies from animal studies to humans. We also address the need for development and implementation of measures to prevent abuse of gene transfer technologies, and to pursue research on strategies for its detection in order to discourage this malpractice among athletes.
Collapse
Affiliation(s)
- Anna Baoutina
- National Measurement Institute, Pymble, New South Wales, Australia.
| | | | | | | |
Collapse
|
42
|
Cohn RD, Liang HY, Shetty R, Abraham T, Wagner KR. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord 2007; 17:290-6. [PMID: 17336525 PMCID: PMC2562651 DOI: 10.1016/j.nmd.2007.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/06/2006] [Accepted: 01/16/2007] [Indexed: 11/18/2022]
Abstract
Myostatin is a negative regulator of muscle growth. Loss of myostatin has been shown to cause increase in skeletal muscle size and improve skeletal muscle function and fibrosis in the dystrophin-deficient mdx muscular dystrophy mouse model. We evaluated whether lack of myostatin has an impact on cardiac muscle growth and fibrosis in vivo. Using genetically modified mice we assessed whether myostatin absence induces similar beneficial effects on cardiac function and fibrosis. Cardiac mass and ejection fraction were measured in wild-type, myostatin-null, mdx and double mutant mdx/myostatin-null mice by high resolution echocardiography. Heart mass, myocyte area and extent of cardiac fibrosis were determined post mortem. Myostatin-null mice do not demonstrate ventricular hypertrophy when compared to wild-type mice as shown by echocardiography (ventricular mass 0.69+/-0.01 vs. 0.69+/-0.018 g) and morphometric analyses including heart/body weight ratio (5.39+/-0.45 vs. 5.62+/-0.58 mg/g) and cardiomyocyte area 113.67+/-1.5, 116.85+/-1.9 microm(2)). Moreover, absence of myostatin does not attenuate cardiac fibrosis in the dystrophin-deficient mdx mouse (12.2% vs. 12%). The physiological role of myostatin in cardiac muscle appears significantly different than that in skeletal muscle as it does not induce cardiac hypertrophy and does not modulate cardiac fibrosis in mdx mice.
Collapse
Affiliation(s)
- Ronald D Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
43
|
Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette JF. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics 2007; 8:63. [PMID: 17331240 PMCID: PMC1831773 DOI: 10.1186/1471-2164-8-63] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 03/01/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM) cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM) animals (n = 3 per group) in the semitendinosus muscle (hypertrophied in DM animals) at 260 days of fetal development (when the biochemical differentiation of muscle is intensive). A heterologous microarray (human and murine oligonucleotide sequences) of around 6,000 genes expressed in muscle was used. RESULTS Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change), and according to the presence of one or two functional myostatin allele(s). They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2) and decreased adipocyte differentiation (down-regulation of C1QTNF3). The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue) is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B). CONCLUSION Thus, the myostatin loss-of-function mutation affected several physiological processes involved in the development and determination of the functional characteristics of muscle tissue.
Collapse
Affiliation(s)
- Isabelle Cassar-Malek
- Equipe Croissance et Métabolisme du Muscle, Unité de Recherche sur les Herbivores, UR1213, INRA Theix, 63122 Saint-Genès-Champanelle, France
| | - Florent Passelaigue
- Equipe Croissance et Métabolisme du Muscle, Unité de Recherche sur les Herbivores, UR1213, INRA Theix, 63122 Saint-Genès-Champanelle, France
| | - Carine Bernard
- Equipe Croissance et Métabolisme du Muscle, Unité de Recherche sur les Herbivores, UR1213, INRA Theix, 63122 Saint-Genès-Champanelle, France
| | - Jean Léger
- PT transcriptome, Ouest Génopole, Institut du Thorax, Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cedex, France Faculté de Médecine 1, rue Gaston Veil, 44035 Nantes cedex, France
| | - Jean-François Hocquette
- Equipe Croissance et Métabolisme du Muscle, Unité de Recherche sur les Herbivores, UR1213, INRA Theix, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
44
|
Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, Rizo L, Mendell JR, Gage FH, Cleveland DW, Kaspar BK. Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006; 103:19546-51. [PMID: 17164329 PMCID: PMC1748262 DOI: 10.1073/pnas.0609411103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive paralysis arising from the premature death of motor neurons. An inherited form is caused by a dominant mutation in the ubiquitously expressed superoxide dismutase (SOD1). SOD1 mutant expression within motor neurons is a determinant of onset and early disease, and mutant accumulation within microglia accelerates disease progression. Muscle also is a likely primary source for toxicity, because retraction of motor axons from synaptic connections to muscle is among the earliest presymptomatic events. To test involvement of muscle in ALS, viral delivery of transcription-mediated siRNA is shown to suppress mutant SOD1 accumulation within muscle alone but to be insufficient to maintain grip strength, whereas delivery to both motor neurons and muscle is sufficient. Use of a deletable mutant gene to diminish mutant SOD1 from muscle did not affect onset or survival. Finally, follistatin expression encoded by adeno-associated virus chronically inhibited myostatin and produced sustained increases in muscle mass, myofiber number, and fiber diameter, but these increases did not affect survival. Thus, SOD1-mutant-mediated damage within muscles is not a significant contributor to non-cell-autonomous pathogenesis in ALS, and enhancing muscle mass and strength provides no benefit in slowing disease onset or progression.
Collapse
Affiliation(s)
- Timothy M. Miller
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Soo H. Kim
- Ohio State University, Columbus, OH 43210
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Koji Yamanaka
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Mark Hester
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Priya Umapathi
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Hannah Arnson
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Liza Rizo
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Jerry R. Mendell
- Ohio State University, Columbus, OH 43210
- Columbus Children's Research Institute, Columbus, OH 43205; and
| | - Fred H. Gage
- The Salk Institute for Biological Studies, La Jolla, CA 92186
| | - Don W. Cleveland
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail:
| | - Brian K. Kaspar
- Ohio State University, Columbus, OH 43210
- Columbus Children's Research Institute, Columbus, OH 43205; and
- **To whom correspondence may be addressed at:
Columbus Children's Research Institute, Ohio State University, 700 Children's Drive, WA 3022, Columbus, OH 43205. E-mail:
| |
Collapse
|
45
|
Mendias CL, Marcin JE, Calerdon DR, Faulkner JA. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol (1985) 2006; 101:898-905. [PMID: 16709649 PMCID: PMC4088255 DOI: 10.1152/japplphysiol.00126.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (P(o)), but decrease the specific P(o) (sP(o)) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type (MSTN(+/+)), heterozygous-null (MSTN(+/-)), and homozygous-null (MSTN(-/-)) adult male mice were determined. For EDL muscles, the P(o) of both MSTN(+/-) and MSTN(-/-) mice were greater than the P(o) of MSTN(+/+) mice. For soleus muscles, the P(o) of MSTN(-/-) mice was greater than that of MSTN(+/+) mice. The sP(o) of EDL muscles of MSTN(-/-) mice was less than that of MSTN(+/+) mice. For soleus muscles, however, no difference in sP(o) was observed. Following two lengthening contractions, EDL muscles from MSTN(-/-) mice had a greater force deficit than that of MSTN(+/+) or MSTN(+/-) mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - James E Marcin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Daniel R Calerdon
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor
| | - John A Faulkner
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|