1
|
Hou W, Xu XL, Huang LJ, Zhang ZY, Zhou ZN, Wang JY, Ouyang X, Xin SY, Zhang ZY, Xiong Y, Huang H, Lan JX. Bioactivities and Action Mechanisms of Ellipticine Derivatives Reported Prior to 2023. Chem Biodivers 2024; 21:e202400210. [PMID: 38433548 DOI: 10.1002/cbdv.202400210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xin-Liang Xu
- Department of Pharmacy, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, 342400, P. R. China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yi Xiong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, P. R. China
| |
Collapse
|
2
|
Cagatay E, Akyildiz V, Ergun Y, Kayali HA. Synthesis of Murrayaquinone-A Derivatives and Investigation of Potential Anticancer Properties. Chem Biodivers 2021; 18:e2100348. [PMID: 34459087 DOI: 10.1002/cbdv.202100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022]
Abstract
A series of novel murrayaquinone a derivatives were synthesized and their anti-cancer activity were evaluated on healthy colon cell lines (CCD-18Co), primary (Caco-2) and metastatic (DLD-1) colon cancer cell lines. The results showed that the cytotoxicity of murrayaquinone molecules is significantly high even in micromolar levels. The DNA binding, cell cycle arrest and metabolic activity studies of these molecules were also carried out and the results showed that these molecules induce apoptosis. In conclusion, the data support further studies on murrayaquinone derivatives toward selection of a candidate for cancer treatment.
Collapse
Affiliation(s)
- Elcin Cagatay
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Turkey.,Izmir Biomedicine and Genome Center, 35340, Izmir, Turkey
| | - Volkan Akyildiz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yavuz Ergun
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160, Izmir, Turkey
| | - Hulya Ayar Kayali
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Turkey.,Izmir Biomedicine and Genome Center, 35340, Izmir, Turkey.,Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160, Izmir, Turkey
| |
Collapse
|
3
|
Pham MQ, Le TTH, Do TL, Pham THM, Pham QL, Nguyen PH, To DC. Identification of Cytotoxic Constituents from the Whole Plant of Isodon ternifolius. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new oxygenated spiroketone, isodonspiroketone (1), and 4 known ones (2-5) were isolated from the whole plant of Isodon ternifolius (D.Don) Kudô. The structure of isodonspiroketone (1) was determined by nuclear magnetic resonance, mass spectroscopy, and circular dichroism spectral data. Compound 3 has not been previously isolated from I. ternifolius. Their cytotoxic activities were evaluated against A549, HepG2, and MDA-MB-231 cancer cell lines in vitro. New compound (isodonspiroketone, 1) showed moderate cytotoxic activities against A549, HepG2, and MDA-MB-231 cancer cell lines with half-maximal inhibitory concentration values of 23.84 ± 2.73, 27.77 ± 3.01, and 17.26 ± 1.61 μM, respectively; meanwhile, the others were inactive.
Collapse
Affiliation(s)
- Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi-Thuy-Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tien-Lam Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi-Hong-Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quoc-Long Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dao-Cuong To
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hoang Ngan, Cau Giay district, Hanoi, Vietnam
| |
Collapse
|
4
|
Tao S, Meng S, Zheng X, Xie L. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer. Mol Med Rep 2017; 15:1143-1148. [PMID: 28138703 PMCID: PMC5367361 DOI: 10.3892/mmr.2017.6141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Ellipticine, an alkaloid isolated from Apocyanaceae plants, has been demonstrated to exhibit antitumor activity in several cancers. However, the effect and the mechanisms underlying its action have not been investigated in human bladder cancer cells. The aim of the present study was to investigate the effect and mechanism of ellipticine on the behavior of T-24 bladder cancer cells. T-24 cells were treated with varying concentrations and durations of ellipticine. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell motility was analyzed by Transwell migration assay. Flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the cell cycle and signaling pathways involved. The results demonstrated that ellipticine suppressed proliferation and inhibited the migration ability of T-24 bladder cancer cells in a dose- and time-dependent manner, and resulted in G2/M cell cycle arrest. The mechanism of this action was demonstrated to be due to ellipticine-triggered activation of the ATM serine/threonine kinase pathway. These data therefore suggest that ellipticine may be effective towards treating human bladder cancer.
Collapse
Affiliation(s)
- Shuixiang Tao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shuai Meng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
5
|
7-formyl-10-methylisoellipticine, a novel ellipticine derivative, induces mitochondrial reactive oxygen species (ROS) and shows anti-leukaemic activity in mice. Invest New Drugs 2015; 34:15-23. [DOI: 10.1007/s10637-015-0302-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/01/2015] [Indexed: 01/05/2023]
|
6
|
Rizza P, Pellegrino M, Caruso A, Iacopetta D, Sinicropi MS, Rault S, Lancelot JC, El-Kashef H, Lesnard A, Rochais C, Dallemagne P, Saturnino C, Giordano F, Catalano S, Andò S. 3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. Eur J Med Chem 2015; 107:275-87. [PMID: 26599533 DOI: 10.1016/j.ejmech.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
A series of unknown 3-(alkyl(dialkyl)amino)benzofuro[2,3-f]quinazolin-1(2H)-ones 4-17 has been synthesized as new ellipticine analogs, in which the carbazole moiety and the pyridine ring were replaced by a dibenzofuran residue and a pyrimidine ring, respectively. The synthesis of these benzofuroquinazolinones 4-17 was performed in a simple one-pot reaction using 3-aminodibenzofuran or its 2-methoxy derivative, as starting materials. From 3-(dipropylamino)-5-methoxybenzofuro[2,3-f] quinazolin-1(2H)-one (13), we prepared 3-(dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (18), referred to as DPA-HBFQ-1. The cytotoxic activities of all the synthesized compounds, tested in different human breast cancer cell lines, revealed that DPA-HBFQ-1 was the most active compound. In particular, the latter was able to inhibit anchorage-dependent and -independent cell growth and to induce apoptosis in estrogen receptor alpha (ERα)-positive and -negative breast cancer cells. It did not affect proliferation and apoptotic responses in MCF-10A normal breast epithelial cells. The observed effects have been ascribed to an enhanced p21(Cip1/WAF1) expression in a p53-dependent manner of tumor suppressor and to a selective inhibition of human topoisomerase II. In addition, DPA-HBFQ-1 exerted growth inhibitory effects also in other cancer cell lines, even though with a lower cytotoxic activity. Our results indicate DPA-HBFQ-1 as a good candidate to be useful as cancer therapeutic agent, particularly for breast cancer.
Collapse
Affiliation(s)
- Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy.
| | - Sylvain Rault
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France.
| | - Jean Charles Lancelot
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Aurelien Lesnard
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Christophe Rochais
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Patrick Dallemagne
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy.
| |
Collapse
|
7
|
Stiborová M, Černá V, Moserová M, Mrízová I, Arlt VM, Frei E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes. Int J Mol Sci 2014; 16:284-306. [PMID: 25547492 PMCID: PMC4307247 DOI: 10.3390/ijms16010284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022] Open
Abstract
Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Iveta Mrízová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
9
|
Aspidosperma subincanum I. characterisation, extraction of an uleine-enriched fraction and potential health hazard due to the contaminant ellipticine. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells--an in vitro and in silico study. Tumour Biol 2013; 35:723-37. [PMID: 23982874 DOI: 10.1007/s13277-013-1099-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023] Open
Abstract
Targeting breast cancer stem cells (BCSCs) offers a promising strategy for breast cancer treatment. We examined the plant alkaloid ellipticine for its efficacy to inhibit the expression of aldehyde dehydrogenase 1 class A1 (ALDH1A1)-positive BCSCs by in vitro and in silico methods. At 3 mM concentration, ellipticine decreased the expression of ALDH1A1-positive BCSCs by 62% (p = 0.073) in the MCF7 cell line and by 53% (p = 0.024) in the SUM159 cell line compared to vehicle-treated cultures. Ellipticine significantly reduced the formation of mammospheres, whereas paclitaxel enhanced mammosphere formation in both the treated cell lines. Interestingly, when treated with a combination of ellipticine and paclitaxel, the percentage of ALDH1A1-positive BCSCs dropped by several fold in vitro. A homology model of Homo sapiens ALDH1A1 was built using the crystal structure of NAD-bound sheep liver class I aldehyde dehydrogenase [PDB ID: 1BXS] as a template. Molecular simulation and docking studies revealed that the amino acids Asn-117 and Asn-121, Glu-249, Cys-302, and Gln-350, present in the active site of human ALDH1A1, played a vital role in interacting with the drug. The present study suggests that ellipticine reduces the proliferation and self-renewal ability of ALDH1A1-positive BCSCs and can be used in combination with a cytotoxic drug like paclitaxel for potential targeting of BCSCs.
Collapse
|
11
|
Sahu U, Sidhar H, Ghate PS, Advirao GM, Raghavan SC, Giri RK. A Novel Anticancer Agent, 8-Methoxypyrimido[4',5':4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways. PLoS One 2013; 8:e66430. [PMID: 23824039 PMCID: PMC3688904 DOI: 10.1371/journal.pone.0066430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/05/2013] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4',5':4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Upasana Sahu
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Himakshi Sidhar
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pankaj S. Ghate
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Gopal M. Advirao
- Department of Biochemistry, Kuvempu University, Davanagere, Karnataka, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ranjit K. Giri
- Division of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
12
|
Vélez C, Cox O, Rosado-Berrios CA, Molina D, Arroyo L, Carro S, Filikov A, Kumar V, Malhotra SV, Cordero M, Zayas B. Novel Nitrobenzazolo[3,2- a]quinolinium Salts Induce Cell Death through a Mechanism Involving DNA Damage, Cell Cycle Changes, and Mitochondrial Permeabilization. OPEN JOURNAL OF APOPTOSIS 2013; 2:13-22. [PMID: 25243104 PMCID: PMC4169051 DOI: 10.4236/ojapo.2013.22002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study reports the capacity of three nitro substituted benzazolo[3,2-a]quinolinium salts NBQs: NBQ 95 (NSC-763304), NBQ 38 (NSC 763305), and NBQ 97 (NSC-763306) as potential antitumor agents. NBQ's are unnatural alkaloids possessing a positive charge that could facilitate interaction with cell organelles. The anticancer activities of these compounds were evaluated through the National Cancer Institute (NCI) 60 cell line screening which represents diverse histologies. The screening was performed at 10 µM on all cell lines. Results from the NCI screening indicated cytotoxicity activity on six cell lines. In order to explore a possible mechanism of action, a detailed biological activity study of NBQ 95 and NBQ 38 was performed on A431 human epidermoid carcinoma cells to determine an apoptotic pathway involving, cell cycle changes, DNA fragmentation, mutations, mitochondrial membrane permeabilization and caspases activation. DNA fragmentation, cell cycle effects, mutagenesis, mitochondrial permeabilization and activation of caspases were determined by fluorimetry and differential imaging. Our data showed that A431 growth was inhibited with an average IC50 of 30 µM. In terms of the mechanism, these compounds interacted with DNA causing fragmentation and cell cycle arrest at sub G0/G1 stage. Mutagenesis was higher for NBQ 38 and moderate for NBQ 95 Mitochon-drial permeabilization was observed with NBQ 38 and slightly for NBQ 95. Both compounds caused activation of Caspases 3 and 7 suggesting an apoptotic cell death pathway through an intrinsic mechanism. This study reports evidence of the toxicity of these novel compounds with overlapping structural and mechanistic similarities to ellipticine, a known anti-tumor compound.
Collapse
Affiliation(s)
| | - Osvaldo Cox
- Universidad Metropolitana, San Juan, Puerto Rico
| | | | | | - Luz Arroyo
- Universidad Metropolitana, San Juan, Puerto Rico
| | - Sujey Carro
- University of North Carolina, Chapel Hill, USA
| | - Anton Filikov
- Laboratory of Synthetic Chemistry-SAIC, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Vineet Kumar
- Laboratory of Synthetic Chemistry-SAIC, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Sanjay V. Malhotra
- Laboratory of Synthetic Chemistry-SAIC, Frederick National Laboratory for Cancer Research, Frederick, USA
| | | | | |
Collapse
|
13
|
Andrews WJ, Panova T, Normand C, Gadal O, Tikhonova IG, Panov KI. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J Biol Chem 2013; 288:4567-82. [PMID: 23293027 DOI: 10.1074/jbc.m112.411611] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription by RNA polymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC(50) in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity. We have shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis.
Collapse
Affiliation(s)
- William J Andrews
- School of Biological Sciences, The Queen’s University Belfast, Belfast BT9 7BL, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Hossain MA, Wongsrikaew N, Yoo GW, Han J, Shin CG. Cytotoxic effects of polymethoxyflavones isolated from Kaempferia parviflora. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2026-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology 2012; 302:233-41. [PMID: 22917556 DOI: 10.1016/j.tox.2012.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 11/24/2022]
Abstract
Ellipticine is an antineoplastic agent considered a pro-drug, the pharmacological and genotoxic effects of which are dependent on cytochrome P450 (CYP)- and/or peroxidase-mediated activation to covalent DNA adducts. We investigated whether ellipticine-DNA adducts are formed in human hepatic microsomes and human hepatocytes. We then identified which human CYPs oxidize ellipticine to metabolites forming DNA adducts and the effect of cytochrome b(5) on this oxidation. 13-Hydroxyellipticine, the metabolite forming the major ellipticine-DNA adduct, was generated mainly by CYP3A4 and 1A1, followed by CYP2D6>2C19>1B1>1A2>2E1 and >2C9. Cytochrome b(5) increased formation of this metabolite by human CYPs, predominantly by CYP1A1, 3A4, 1A2 and 2C19. Formation of 12-hydroxyellipticine is generated mainly by CYP2C19, followed by CYP2C9>3A4>2D6>2E1 and >2A6. Other CYPs were less active (CYP2C8 and 2B6) or did not oxidize ellipticine to this metabolite (CYP1A1, 1A2 and 1B1). CYP2D6 was the most efficient enzyme generating ellipticine N(2)-oxide. CYP3A4 and 1A1 in the presence of cytochrome b(5) are mainly responsible for bioactivation of ellipticine to DNA adduct 1 (formed by ellipticine-13-ylium from 13-hydroxyellipticine), while 12-hydroxyellipticine generated during the CYP2C19-mediated ellipticine oxidation is the predominant metabolite forming ellipticine-12-ylium that generates ellipticine-DNA adduct 2. These ellipticine-DNA adducts were also generated by human hepatic microsomes and in primary human hepatocytes exposed to ellipticine. Ellipticine is toxic to these hepatocytes, decreasing their viability; the IC(50) value of ellipticine in these cells was 0.7 μM. In liver CYP3A4 is the predominant ellipticine activating CYP species, which is expected to result in efficient metabolism after oral ingestion of ellipticine in humans.
Collapse
|
16
|
Kizek R, Adam V, Hrabeta J, Eckschlager T, Smutny S, Burda JV, Frei E, Stiborova M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol Ther 2012; 133:26-39. [DOI: 10.1016/j.pharmthera.2011.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/22/2011] [Indexed: 12/21/2022]
|
17
|
Kim JY, Lee SG, Chung JY, Kim YJ, Park JE, Koh H, Han MS, Park YC, Yoo YH, Kim JM. Ellipticine induces apoptosis in human endometrial cancer cells: The potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology 2011; 289:91-102. [DOI: 10.1016/j.tox.2011.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022]
|
18
|
The growth suppressing effects of girinimbine on HepG2 involve induction of apoptosis and cell cycle arrest. Molecules 2011; 16:7155-70. [PMID: 21862957 PMCID: PMC6264672 DOI: 10.3390/molecules16087155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/06/2011] [Accepted: 08/03/2011] [Indexed: 01/07/2023] Open
Abstract
Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
Collapse
|
19
|
Ottinger S, Klöppel A, Rausch V, Liu L, Kallifatidis G, Gross W, Gebhard MM, Brümmer F, Herr I. Targeting of pancreatic and prostate cancer stem cell characteristics by Crambe crambe marine sponge extract. Int J Cancer 2011; 130:1671-81. [PMID: 21544815 DOI: 10.1002/ijc.26168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/27/2011] [Indexed: 01/11/2023]
Abstract
Cancer stem cells (CSCs) are suggested as reason for resistance of tumors toward conventional tumor therapy including pancreatic and advanced prostate cancer. New therapeutic agents are urgently needed for targeting of CSCs. Marine sponges harbor novel and undefined compounds with antineoplastic activity but their potential to eliminate CSC characteristics is not examined so far. We collected 10 marine sponges and one freshwater sponge by diving at the seaside and prepared crude methanolic extracts. The effect to established pancreatic and prostate CSC lines was evaluated by analysis of apoptosis, cell cycle, side population, colony and spheroid formation, migratory potential in vitro and tumorigenicity in vivo. While each sponge extract at a 1:10 dilution efficiently diminished viability, Crambe crambe marine sponge extract (CR) still strongly reduced viability of tumor cells at a dilution of 1:1,000 but was less toxic to normal fibroblasts and endothelial cells. CR inhibited self-renewal capacity, apoptosis resistance, and proliferation even in gemcitabine-selected pancreatic cancer cells with acquired therapy resistance and enhanced CSC characteristics. CR pretreatment of tumor cells diminished tumorigenicity of gemcitabine-resistant tumor cells in mice and totally abolished tumor take upon combination with gemcitabine. Our data suggest that CR contains substances, which render standard cancer therapy more effective by targeting of CSC characteristics. Isolation of bioactive metabolites from CR and evaluation in mice are required for development of new CSC-specific chemotherapeutic drugs from a marine sponge.
Collapse
Affiliation(s)
- Sabine Ottinger
- Molecular OncoSurgery, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ellipticine cytotoxicity to cancer cell lines - a comparative study. Interdiscip Toxicol 2011; 4:98-105. [PMID: 21753906 PMCID: PMC3131681 DOI: 10.2478/v10102-011-0017-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 04/20/2011] [Accepted: 04/23/2011] [Indexed: 11/20/2022] Open
Abstract
Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of action. This anticancer agent should be considered a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its cytochrome P450 (CYP)- and/or peroxidase-mediated activation to species forming covalent DNA adducts. Ellipticine can also act as an inhibitor or inducer of biotransformation enzymes, thereby modulating its own metabolism leading to its genotoxic and pharmacological effects. Here, a comparison of the toxicity of ellipticine to human breast adenocarcinoma MCF-7 cells, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells and U87MG glioblastoma cells and mechanisms of its action to these cells were evaluated. Treatment of all cells tested with ellipticine resulted in inhibition of cell growth and proliferation. This effect was associated with formation of two covalent ellipticine-derived DNA adducts, identical to those formed by 13-hydroxy- and 12-hydroxyellipticine, the ellipticine metabolites generated by CYP and peroxidase enzymes, in MCF-7, HL-60, CCRF-CEM, UKF-NB-3, UKF-NB-4 and U87MG cells, but not in neuroblastoma UKF-NB-3 cells. Therefore, DNA adduct formation in most cancer cell lines tested in this comparative study might be the predominant cause of their sensitivity to ellipticine treatment, whereas other mechanisms of ellipticine action also contribute to its cytotoxicity to neuroblastoma UKF-NB-3 cells.
Collapse
|
21
|
Stiborová M, Rupertová M, Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:175-85. [DOI: 10.1016/j.bbapap.2010.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 12/30/2022]
|
22
|
The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem Pharmacol 2009; 77:1466-79. [PMID: 19426684 DOI: 10.1016/j.bcp.2009.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 11/20/2022]
Abstract
Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts mediated by cytochromes P450 and peroxidases. Here, the molecular mechanism of DNA-mediated ellipticine action in human neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cancer cell lines was investigated. Treatment of neuroblastoma cells with ellipticine resulted in apoptosis induction, which was verified by the appearance of DNA fragmentation, and in inhibition of cell growth. These effects were associated with formation of two covalent ellipticine-derived DNA adducts, identical to those formed by the cytochrome P450- and peroxidase-mediated ellipticine metabolites, 13-hydroxy- and 12-hydroxyellipticine. The expression of these enzymes at mRNA and protein levels and their ability to generate ellipticine-DNA adducts in neuroblastoma cells were proven, using the real-time polymerase chain reaction, Western blotting analyses and by analyzing ellipticine-DNA adducts in incubations of this drug with neuroblastoma S9 fractions, enzyme cofactors and DNA. The levels of DNA adducts correlated with toxicity of ellipticine to IMR-32 and UKF-NB-4 cells, but not with that to UKF-NB-3 cells. In addition, hypoxic cell culture conditions resulted in a decrease in ellipticine toxicity to IMR-32 and UKF-NB-4 cells and this correlated with lower levels of DNA adducts. Both these cell lines accumulated in S phase, suggesting that ellipticine-DNA adducts interfere with DNA replication. The results demonstrate that among the multiple modes of ellipticine antitumor action, formation of covalent DNA adducts by ellipticine is the predominant mechanism of cytotoxicity to IMR-32 and UKF-NB-4 neuroblastoma cells.
Collapse
|
23
|
Fang K, Chen SP, Lin CW, Cheng WC, Huang HT. RETRACTED: Ellipticine-induced apoptosis depends on Akt translocation and signaling in lung epithelial cancer cells. Lung Cancer 2009; 63:227-34. [DOI: 10.1016/j.lungcan.2008.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/23/2008] [Accepted: 05/25/2008] [Indexed: 10/21/2022]
|
24
|
Guzmán EA, Johnson JD, Carrier MK, Meyer CI, Pitts TP, Gunasekera SP, Wright AE. Selective cytotoxic activity of the marine-derived batzelline compounds against pancreatic cancer cell lines. Anticancer Drugs 2009; 20:149-55. [PMID: 19209032 PMCID: PMC3031457 DOI: 10.1097/cad.0b013e32831fa39e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. The prognosis of the disease is very negative, because the cancer will be usually metastasized by the time a patient manifests symptoms. Although combination therapy shows some promise, new drugs to treat the disease are needed. Given our interest in finding new therapies for pancreatic cancer, we sought to determine whether the known cytotoxic activity of the batzellines extended to pancreatic cancer cell lines. The batzellines are pyrroloiminoquinones alkaloids obtained from the deep-water Caribbean sponge Batzella sp (family Esperiopsidae, order Poecilosclerida). We show here that batzellines exhibit selective cytotoxicity towards the pancreatic cancer cell lines AsPC-1, Panc-1, BxPC-3, and MIA PaCa2 compared with the normal African green monkey kidney epithelial cell line Vero. The batzellines cause cytotoxicity by inducing cell cycle arrest that is mediated by their ability to intercalate into DNA and/or inhibit topoisomerase II activity. The cytotoxic abilities of isobatzellines A and C against pancreatic cancer cell lines, their low toxicity against normal cells, and their reported ability to be synthesized makes them interesting compounds with potential chemotherapeutic effects that may merit further research.
Collapse
Affiliation(s)
- Esther A Guzmán
- Center for Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Ft. Pierce, FL 34946, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kim HA, Lee RA, Moon BI, Choe KJ. Ellagic Acid Shows Different Anti-proliferative Effects Between the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. J Breast Cancer 2009. [DOI: 10.4048/jbc.2009.12.2.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| | - Kuk-Jin Choe
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, Korea
| |
Collapse
|
26
|
Xu GW, Mawji IA, Macrae CJ, Koch CA, Datti A, Wrana JL, Dennis JW, Schimmer AD. A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis 2008; 13:413-22. [PMID: 18181020 DOI: 10.1007/s10495-007-0175-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
p53 regulates apoptosis and the cell cycle through actions in the nucleus and cytoplasm. Altering the subcellular localization of p53 can alter its biological function. Therefore, small molecules that change the localization of p53 would be useful chemical probes to understand the influence of subcellular localization on the function of p53. To identify such molecules, a high-content screen for compounds that increased the localization of p53 to the nucleus or cytoplasm was developed, automated, and conducted. With this image-based assay, we identified ellipticine that increased the nuclear localization of GFP-mutant p53 protein but not GFP alone in Saos-2 osteosarcoma cells. In addition, ellipticine increased the nuclear localization of endogenous p53 in HCT116 colon cancer cells with a resultant increase in the transactivation of the p21 promoter. Increased nuclear p53 after ellipticine treatment was not associated with an increase in DNA double stranded breaks, indicating that ellipticine shifts p53 to the nucleus through a mechanism independent of DNA damage. Thus, a chemical biology approach has identified a molecule that shifts the localization of p53 and enhances its nuclear activity.
Collapse
Affiliation(s)
- G Wei Xu
- Ontario Cancer Institute, Princess Margaret Hospital, 610 University Ave, M5G 2M9, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vogel S, Kaufmann D, Pojarová M, Müller C, Pfaller T, Kühne S, Bednarski PJ, Angerer EV. Aroyl hydrazones of 2-phenylindole-3-carbaldehydes as novel antimitotic agents. Bioorg Med Chem 2008; 16:6436-47. [DOI: 10.1016/j.bmc.2008.04.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/30/2022]
|
28
|
Bezerra DP, Moura DJ, Rosa RM, de Vasconcellos MC, e Silva ACR, de Moraes MO, Silveira ER, Lima MAS, Henriques JAP, Costa-Lotufo LV, Saffi J. Evaluation of the genotoxicity of piplartine, an alkamide of Piper tuberculatum, in yeast and mammalian V79 cells. Mutat Res 2008; 652:164-74. [PMID: 18372210 DOI: 10.1016/j.mrgentox.2008.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 01/31/2008] [Accepted: 02/04/2008] [Indexed: 05/26/2023]
Abstract
The genus Piper belongs to the Piperaceae family, and includes species of commercial and medicinal importance. Chemical studies on Piper species resulted in the isolation of several biologically active molecules, including alkaloid amides, such as piplartine. This molecule, isolated from Piper tuberculatum, has significant cytotoxic activity against tumor cell lines, and presents antifungal, anti-platelet aggregation, anxiolytic, and antidepressant effects. In order to understand the biological properties of piplartine, this study investigated the genotoxicity and the induction of apoptosis by piplartine in V79 cells and its mutagenic and recombinogenic potential in Saccharomyces cerevisiae. Piplartine induced dose-dependent cytotoxicity in S. cerevisiae cultures in either stationary -- or exponential growth phase. In addition, piplartine was not mutagenic when cells were treated during exponential-growth phase and kept in buffer solution, but it increased the frequencies of point, frameshift, and forward mutations when cells were treated in medium during growth. Piplartine treatment induced DNA strand breaks in V79 cells, as detected by neutral and alkaline comet assay. In cell cycle analysis, piplartine induced G2/M cell cycle arrest, probably as a consequence of the DNA damage induced and repair. Moreover, piplartine treatment induced apoptosis in a dose-dependent manner, as observed by a decrease in mitochondrial membrane potential and an increase in internucleosomal DNA fragmentation. These data suggest that the DNA damage caused by piplartine induces G2/M cell cycle arrest, followed by apoptosis. Moreover, we suggest that cells surviving piplartine-induced DNA damage can accumulate mutations, since this alkaloid was mutagenic and recombinogenic in S. cerevisiae assays.
Collapse
Affiliation(s)
- Daniel Pereira Bezerra
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Darwiche N, El-Banna S, Gali-Muhtasib H. Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development. Expert Opin Drug Discov 2007; 2:361-79. [DOI: 10.1517/17460441.2.3.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2007; 64:1-47. [PMID: 18085328 DOI: 10.1016/s1099-4831(07)64001-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Rault S, Caruso A, Sophie Voisin-Chiret A, Lancelot JC, Stefania Sinicropi M, Garofalo A. Novel and Efficient Synthesis of 5,8-Dimethyl-9H-carbazol-3-ol via a Hydroxydeboronation Reaction. HETEROCYCLES 2007. [DOI: 10.3987/com-07-11113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kuo YC, Kuo PL, Hsu YL, Cho CY, Lin CC. Ellipticine induces apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci 2006; 78:2550-7. [PMID: 16337242 DOI: 10.1016/j.lfs.2005.10.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/06/2005] [Indexed: 11/22/2022]
Abstract
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell.
Collapse
Affiliation(s)
- Yu-Chun Kuo
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|