1
|
Mannarino L, Ravasio N, D’Incalci M, Marchini S, Masseroli M. In-Silico Identification of Novel Pharmacological Synergisms: The Trabectedin Case. Int J Mol Sci 2024; 25:2059. [PMID: 38396735 PMCID: PMC10888651 DOI: 10.3390/ijms25042059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The in-silico strategy of identifying novel uses for already existing drugs, known as drug repositioning, has enhanced drug discovery. Previous studies have shown a positive correlation between expression changes induced by the anticancer agent trabectedin and those caused by irinotecan, a topoisomerase I inhibitor. Leveraging the availability of transcriptional datasets, we developed a general in-silico drug-repositioning approach that we applied to investigate novel trabectedin synergisms. We set a workflow allowing the identification of genes selectively modulated by a drug and possible novel drug interactions. To show its effectiveness, we selected trabectedin as a case-study drug. We retrieved eight transcriptional cancer datasets including controls and samples treated with trabectedin or its analog lurbinectedin. We compared gene signature associated with each dataset to the 476,251 signatures from the Connectivity Map database. The most significant connections referred to mitomycin-c, topoisomerase II inhibitors, a PKC inhibitor, a Chk1 inhibitor, an antifungal agent, and an antagonist of the glutamate receptor. Genes coherently modulated by the drugs were involved in cell cycle, PPARalpha, and Rho GTPases pathways. Our in-silico approach for drug synergism identification showed that trabectedin modulates specific pathways that are shared with other drugs, suggesting possible synergisms.
Collapse
Affiliation(s)
- Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Nicholas Ravasio
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (M.M.)
| | - Maurizio D’Incalci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Marco Masseroli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (M.M.)
| |
Collapse
|
2
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Atmaca H, Oğuz F, Ilhan S. Trabectedin (ET-743) in prostate cancer: Endoplasmic reticulum stress-induced apoptotic effect. Andrologia 2022; 54:e14599. [PMID: 36168116 DOI: 10.1111/and.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Trabectedin is a chemotherapy agent originating from a tunicate, Ecteinascidia turbinata. In this study, DNA-independent action mechanisms of trabectedin are investigated in prostate cancer (PCa) cells. Cell viability was assessed via XTT assay. Apoptosis was evaluated via flow cytometry. Tetramethylrodamine ethyl ester (TMRE) dye was utilized to determine mitochondrial membrane potential (MMP). Cell cycle distribution was investigated via flow cytometric analysis. Reactive oxygen species (ROS) were monitored using fluorescence CM-H2DCFDA dye. Changes in CHOP, p-eIF2α, GRP78 and p-PERK which are endoplasmic reticulum (ER) stress-involved proteins were investigated via western blot. Trabectedin induced cytotoxicity and cell cycle arrest at the G2/M phase. Trabectedin decreased MMP via ROS generation in PCa cells. ER stress-related proteins CHOP, p-eIF2α, GRP78 and p-PERK were also elevated by trabectedin treatment indicating the induction of ER stress-induced apoptosis. The results of this study show that trabectedin may be an effective chemotherapeutic for PCa.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Ferdi Oğuz
- Section of Molecular Biology, Department of Biology, Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
4
|
Ferrari A, Chiaravalli S, Bergamaschi L, Nigro O, Livellara V, Sironi G, Gasparini P, Pasquali S, Zaffaroni N, Stacchiotti S, Morosi C, Massimino M, Casanova M. Trabectedin-irinotecan, a potentially promising combination in relapsed desmoplastic small round cell tumor: report of two cases. J Chemother 2022; 35:163-167. [PMID: 35470779 DOI: 10.1080/1120009x.2022.2067706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effective new drugs are urgently needed for desmoplastic small round cell tumor (DSRCT), an extremely rare and aggressive disease with a generally poor prognosis. We describe two heavily-pretreated young patients with advanced-stage DSRCT given third-line treatment with a combination of trabectedin and irinotecan, based on our preclinical data demonstrating its effect on patient-derived xenografts. This trabectedin-irinotecan treatment showed a limited toxicity. One patient had a mixed response (overall stable disease), the other a complete tumor remission. This is the first report of preliminary findings to suggest that combining trabectedin and irinotecan is worth further investigating as a potentially valuable chemotherapy for DSRCT.
Collapse
Affiliation(s)
- Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Nigro
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Virginia Livellara
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sironi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Morosi
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Trabectedin and irinotecan combination regresses a cisplatinum-resistant osteosarcoma in a patient-derived orthotopic xenograft nude-mouse model. Biochem Biophys Res Commun 2019; 513:326-331. [PMID: 30955860 DOI: 10.1016/j.bbrc.2019.03.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Recurrent osteosarcoma is a chemotherapy-resistant disease. Individualized precision therapy is needed for this disease. Toward this goal, we have developed the patient-derived othotopic xenograft (PDOX) mouse model of all major cancer types including osteosarcoma. Synergistic efficacy of trabectedin (TRAB) and irinotecan (IRT) has been reported in Ewing's sarcoma, soft-tissue sarcoma, and ovarian cancer. However, the efficacy of this combination on osteosarcoma is not known. The goal of present study was to determine the efficacy of the TRAB and IRT combination on cisplatinum (CDDP)-resistant osteosarcoma PDOX. The osteosarcoma PDOX models were randomized into five treatment groups of six mice: Untreated control; CDDP alone; TRAB alone; IRT alone; and TRAB and the IRT combination. Tumor size and body weight were measured during the 14 days of treatment. Tumor growth was regressed only by the TRAB-IRT combination. Tumors treated with the TRAB-IRT combination had the most tumor necrosis with degenerative change. The present study demonstrates the power of the PDOX model to identify a novel effective treatment strategy of the TRAB and IRT combination for chemotherapy-resistant osteosarcoma.
Collapse
|
6
|
Martinez-Cruzado L, Tornin J, Rodriguez A, Santos L, Allonca E, Fernandez-Garcia MT, Astudillo A, Garcia-Pedrero JM, Rodriguez R. Trabectedin and Campthotecin Synergistically Eliminate Cancer Stem Cells in Cell-of-Origin Sarcoma Models. Neoplasia 2017; 19:460-470. [PMID: 28494349 PMCID: PMC5421973 DOI: 10.1016/j.neo.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Trabectedin has been approved for second-line treatment of soft tissue sarcomas. However, its efficacy to target sarcoma initiating cells has not been addressed yet. Here, we used pioneer models of myxoid/round cell liposarcoma (MRCLS) and undifferentiated pleomorphic sarcoma (UPS) developed from transformed human mesenchymal stromal/stem cells (MSCs) to evaluate the effect of trabectedin in the cell type responsible for initiating sarcomagenesis and their derived cancer stem cells (CSC) subpopulations. We found that low nanomolar concentrations of trabectedin efficiently inhibited the growth of sarcoma-initiating cells, induced cell cycle arrest, DNA damage and apoptosis. Interestingly, trabectedin treatment repressed the expression of multiple genes responsible for the development of the CSC phenotype, including pluripotency factors, CSC markers and related signaling pathways. Accordingly, trabectedin induced apoptosis and reduced the survival of CSC-enriched tumorsphere cultures with the same efficiency that inhibits the growth of bulk tumor population. In vivo, trabectedin significantly reduced the mitotic index of MRCLS xenografts and inhibited tumor growth at a similar extent to that observed in doxorubicin-treated tumors. Combination of trabectedin with campthotecin (CPT), a chemotherapeutic drug that shows a robust anti-tumor activity when combined with alkylating agents, resulted in a very strong synergistic inhibition of tumor cell growth and highly increased DNA damage and apoptosis induction. Importantly, the enhanced anti-tumor activity of this combination was also observed in CSC subpopulations. These data suggest that trabectedin and CPT combination may constitute a novel strategy to effectively target both the cell-of-origin and CSC subpopulations in sarcoma.
Collapse
Affiliation(s)
- Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aida Rodriguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias
| | - Laura Santos
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias
| | - Eva Allonca
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER en oncología (CIBERONC), Madrid, Spain
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER en oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
7
|
Trabectedin Followed by Irinotecan Can Stabilize Disease in Advanced Translocation-Positive Sarcomas with Acceptable Toxicity. Sarcoma 2016; 2016:7461783. [PMID: 27843394 PMCID: PMC5098094 DOI: 10.1155/2016/7461783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/04/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022] Open
Abstract
Background. Preclinical data indicate that trabectedin followed by irinotecan has strong synergistic effects on Ewing sarcoma. This is presumably due to hypersensitization of the tumor cells to the camptothecin as an effect of trabectedin in addition to synergistic suppression of EWS-FLI1 downstream targets. A strong effect was also reported in a human rhabdomyosarcoma xenograft. Procedure. Twelve patients with end-stage refractory translocation-positive sarcomas were treated with trabectedin followed by irinotecan within a compassionate use program. Eight patients had Ewing sarcoma and four patients had other translocation-positive sarcomas. Results. Three-month survival rate was 0.75 after the start of this therapy. One patient achieved a partial response according to RECIST criteria, five had stable disease, and the remaining six progressed through therapy. The majority of patients experienced significant hematological toxicity (grades 3 and 4). Reversible liver toxicity and diarrhea also occurred. Conclusions. Our experience with the combination of trabectedin followed with irinotecan in patients with advanced sarcomas showed promising results in controlling refractory solid tumors. While the hematological toxicity was significant, it was reversible. Quality of life during therapy was maintained. These observations encourage a larger clinical trial.
Collapse
|
8
|
Ahn JH, Yang YI, Lee KT, Choi JH. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J Cancer Res Clin Oncol 2015; 141:255-68. [PMID: 25216701 DOI: 10.1007/s00432-014-1819-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Ecklonia cava is an abundant brown alga and has been reported to possess various bioactive compounds having anti-inflammatory effect. However, the anticancer effects of dieckol, a major active compound in E. cava, are poorly understood. In the present study, we investigated the anti-tumor activity of dieckol and its molecular mechanism in ovarian cancer cells and in a xenograft mouse model . METHODS MTT assay, PI staining, and PI and Annexin double staining were performed to study cell cytotoxicity, cell cycle distribution, and apoptosis. We also investigated reactive oxygen species (ROS) production and protein expression using flow cytometry and Western blot analysis, respectively. Anti-tumor effects of dieckol were evaluated in SKOV3 tumor xenograft model. RESULTS We found that the E. cava extract and its phlorotannins have cytotoxic effects on A2780 and SKOV3 ovarian cancer cells. Dieckol induced the apoptosis of SKOV3 cells and suppressed tumor growth without any significant adverse effect in the SKOV3-bearing mouse model. Dieckol triggered the activation of caspase-8, caspase-9, and caspase-3, and pretreatment with caspase inhibitors neutralized the pro-apoptotic activity of dieckol. Furthermore, treatment with dieckol caused mitochondrial dysfunction and suppressed the levels of anti-apoptotic proteins. We further demonstrated that dieckol induced an increase in intracellular ROS, and the antioxidant N-acetyl-L-cysteine (NAC) significantly reversed the caspase activation, cytochrome c release, Bcl-2 downregulation, and apoptosis that were caused by dieckol. Moreover, dieckol inhibited the activity of AKT and p38, and overexpression of AKT and p38, at least in part, reversed dieckol-induced apoptosis in SKOV3 cells. CONCLUSION These data suggest that dieckol suppresses ovarian cancer cell growth by inducing caspase-dependent apoptosis via ROS production and the regulation of AKT and p38 signaling.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
9
|
Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014; 768:84-97. [PMID: 24685981 DOI: 10.1016/j.mrfmmm.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents particularly if the process is selective to cancer cells. Marine natural products have become important sources in the discovery of antitumour drugs, especially when recent technological and methodological advances have increased the scope of investigations of marine organisms. A high number of individual compounds from diverse organisms have induced apoptosis in several tumour cell lines via a number of mechanisms. Here, we review the effects of selected marine natural products and their synthetic derivatives on apoptosis signalling pathways in association with their pharmacological properties. Providing an outlook into the future, we also examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials.
Collapse
Affiliation(s)
- Rima Beesoo
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius; Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Vidushi Neergheen-Bhujun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Ranjeet Bhagooli
- Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Theeshan Bahorun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius.
| |
Collapse
|
10
|
Kawano M, Mabuchi S, Kishimoto T, Hisamatsu T, Matsumoto Y, Sasano T, Takahashi R, Sawada K, Takahashi K, Takahashi T, Hamasaki T, Kimura T. Combination treatment with trabectedin and irinotecan or topotecan has synergistic effects against ovarian clear cell carcinoma cells. Int J Gynecol Cancer 2014; 24:829-37. [PMID: 24844217 DOI: 10.1097/igc.0000000000000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the chemotherapeutic agents that produce the strongest synergistic effects when combined with trabectedin against ovarian clear cell carcinoma (CCC), which is regarded as an aggressive chemoresistant histological subtype. METHODS Using 4 human CCC cell lines (RMG1, RMG2, KOC7C, and HAC2), the cytotoxicities of trabectedin, SN-38, topotecan, doxorubicin, cisplatin, and paclitaxel as single agents were first assessed using the MTS assay. Then, the cytotoxicities of combination treatments involving trabectedin and 1 of the other 4 agents were evaluated by isobologram analysis to examine whether these combinations displayed synergistic, additive, or antagonistic effects. The antitumor activities of the combination treatments were also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines, which were derived from the parental CCC cells by continuously exposing them to cisplatin or paclitaxel. Finally, we determined the effect of everolimus on the antitumor efficacy of trabectedin-based combination chemotherapy. RESULTS Concurrent exposure to trabectedin and SN-38 or topotecan resulted in synergistic interactions in all 4 CCC cell lines. Among the tested combinations, trabectedin plus SN-38 was the most effective cytotoxic regimen. The combination of trabectedin plus SN-38 also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Treatment with everolimus significantly enhanced the antitumor activity of trabectedin plus SN-38 or topotecan. CONCLUSIONS Combination treatment with trabectedin and SN-38 displays the greatest cytotoxic effect against ovarian CCC. Our in vitro study provides the rationale for future clinical trials of trabectedin plus irinotecan with or without everolimus in patients with ovarian CCC in both the front-line chemotherapy setting and as a second-line treatment of recurrent CCC that had previously been treated with cisplatin or paclitaxel.
Collapse
Affiliation(s)
- Mahiru Kawano
- *Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka; †Department of Obstetrics and Gynecology, Yamagata University Graduate School of Medicine, Yamagata; and ‡Department of Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Del Campo JM, Muñoz-Couselo E, Diaz de Corcuera I, Oaknin A. Trabectedin combined with liposomal doxorubicin in women with relapsed ovarian cancer. Expert Rev Anticancer Ther 2014; 10:795-805. [DOI: 10.1586/era.10.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Grohar PJ, Segars LE, Yeung C, Pommier Y, D'Incalci M, Mendoza A, Helman LJ. Dual targeting of EWS-FLI1 activity and the associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing sarcoma cell growth. Clin Cancer Res 2013; 20:1190-203. [PMID: 24277455 PMCID: PMC5510643 DOI: 10.1158/1078-0432.ccr-13-0901] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The goal of this study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy. EXPERIMENTAL DESIGN We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppression that also targets the drug-associated DNA damage to Ewing sarcoma cells. RESULTS We demonstrate by siRNA experiments that EWS-FLI1 drives the expression of the Werner syndrome protein (WRN) in Ewing sarcoma cells. Because WRN-deficient cells are known to be hypersensitive to camptothecins, we utilize trabectedin to block EWS-FLI1 activity, suppress WRN expression, and selectively sensitize Ewing sarcoma cells to the DNA-damaging effects of SN38. We show that trabectedin and SN38 are synergistic, demonstrate an increase in DNA double-strand breaks, an accumulation of cells in S-phase and a low picomolar IC50. In addition, SN38 cooperates with trabectedin to augment the suppression of EWS-FLI1 downstream targets, leading to an improved therapeutic index in vivo. These effects translate into the marked regression of two Ewing sarcoma xenografts at a fraction of the dose of camptothecin used in other xenograft studies. CONCLUSIONS These results provide the basis and rationale for translating this drug combination to the clinic. In addition, the study highlights an approach that utilizes a targeted agent to interfere with an oncogenic transcription factor and then exploits the resulting changes in gene expression to develop a molecularly targeted combination therapy.
Collapse
Affiliation(s)
- Patrick J Grohar
- Authors' Affiliations: Monroe Carrell Jr. Children's Hospital at Vanderbilt and the Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Molecular Oncology Section, Pediatric Oncology Branch; Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and Istituto di Ricerche Farmacologiche "Mario Negri" -IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Atmaca H, Bozkurt E, Uzunoglu S, Uslu R, Karaca B. A diverse induction of apoptosis by trabectedin in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) breast cancer cells. Toxicol Lett 2013; 221:128-36. [PMID: 23792433 DOI: 10.1016/j.toxlet.2013.06.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
Trabectedin (Yondelis, ET-743), a semi synthetic tetrahydroisoquinoline alkaloid that was originally derived from the marine tunicate Ecteinascidia turbinata. The objective of this study was to investigate whether trabectedin mediated apoptosis shows any diversity in human breast cancer cell lines with different genotypes. Trabectedin induced cytotoxicity and apoptosis in both breast cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL-R2/DR5, FAS/TNFRSF6, TNF RI/TNFRSF1A, and FADD were significantly increased by 2.6-, 3.1-, 1.7-, 11.2- and 4.0-fold by trabectedin treatment in MCF-7 cells. However, in MDA-MB-453 cells, the mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, Smac/DIABLO, and Cleaved Caspase-3 expressions were induced by 4.2-, 3.6-, 4.8-, 4.5-, and 4.4-fold, and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 4.8- and 5.2-fold in MDA-MB-453 cells. Moreover, trabectedin treatment increased the generation of ROS in both breast cancer cells. We have shown that trabectedin causes selective activation of extrinsic and intrinsic apoptotic pathways in two genotypically different breast cancer cells. This preliminary data might guide clinicians to choose appropriate combination agents with trabectedin based on different molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Harika Atmaca
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140 Muradiye, Manisa, Turkey.
| | - Emir Bozkurt
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140 Muradiye, Manisa, Turkey
| | - Selim Uzunoglu
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140 Muradiye, Manisa, Turkey
| | - Ruchan Uslu
- Division of Medical Oncology, Tulay Aktas Oncology Hospital, School of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | - Burcak Karaca
- Division of Medical Oncology, Tulay Aktas Oncology Hospital, School of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Vincenzi B, Napolitano A, Frezza AM, Schiavon G, Santini D, Tonini G. Wide-spectrum characterization of trabectedin: biology, clinical activity and future perspectives. Pharmacogenomics 2010; 11:865-78. [DOI: 10.2217/pgs.10.69] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ecteinascidin-743 (trabectedin, Yondelis®; PharmaMar, Madrid, Spain), a 25-year-old antineoplastic alkylating agent, has recently shown unexpected and interesting mechanisms of action. Trabectedin causes perturbation in the transcription of inducible genes (e.g., the multidrug resistance gene MDR1) and interaction with DNA repair mechanisms (e.g., the nucleotide excision repair pathway) owing to drug-related DNA double strand breaks and adduct formation. Trabectedin was the first antineoplastic agent from a marine source (namely, the Caribbean tunicate Ecteinascidia turbinata) to receive marketing authorization. This article summarizes the mechanisms of action, the complex metabolism, the main toxicities, the preclinical and clinical evidences of its antineoplastic effects in different types of cancer and, finally, the future perspectives of this promising drug.
Collapse
Affiliation(s)
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Maria Frezza
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gaia Schiavon
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
15
|
|
16
|
|
17
|
Christinat A, Leyvraz S. Role of trabectedin in the treatment of soft tissue sarcoma. Onco Targets Ther 2009; 2:105-13. [PMID: 20616899 PMCID: PMC2886331 DOI: 10.2147/ott.s4454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Indexed: 01/17/2023] Open
Abstract
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%–8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.
Collapse
Affiliation(s)
- Alexandre Christinat
- Centre Pluridisciplinaire d'Oncologie, University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
18
|
Abstract
Drug discovery from marine natural products has enjoyed a renaissance in the past few years. Ziconotide (Prialt; Elan Pharmaceuticals), a peptide originally discovered in a tropical cone snail, was the first marine-derived compound to be approved in the United States in December 2004 for the treatment of pain. Then, in October 2007, trabectedin (Yondelis; PharmaMar) became the first marine anticancer drug to be approved in the European Union. Here, we review the history of drug discovery from marine natural products, and by describing selected examples, we examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Providing an outlook into the future, we also examine the advances that may further expand the promise of drugs from the sea.
Collapse
|
19
|
Mayer AMS, Gustafson KR. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds. Eur J Cancer 2008; 44:2357-87. [PMID: 18701274 PMCID: PMC2629923 DOI: 10.1016/j.ejca.2008.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
20
|
Carter NJ, Keam SJ. Trabectedin : a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 2008; 67:2257-76. [PMID: 17927287 DOI: 10.2165/00003495-200767150-00009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trabectedin (Yondelis); ET-743) is an antineoplastic agent that was originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and is now produced synthetically. It binds to the minor groove of DNA, disrupting the cell cycle and inhibiting cell proliferation. Intravenous trabectedin administered once every 3 weeks is approved as monotherapy in Europe for use in patients with advanced soft tissue sarcoma (STS) after failure of standard therapy with anthracyclines or ifosfamide, or who are unsuited to receive these agents. It also has orphan drug status in STS in the US and in ovarian cancer in the US and Europe, and is under investigation as combination therapy in patients with recurrent ovarian cancer. In clinical trials, trabectedin showed efficacy in the treatment of patients with advanced or metastatic STS, especially those with leiomyosarcoma or liposarcoma, as well as in women with platinum-sensitive advanced or recurrent ovarian cancer. In addition, its tolerability profile was generally manageable. The introduction of trabectedin expands the currently limited range of effective treatment options for patients with advanced or metastatic STS; trabectedin also has the potential to be a beneficial treatment for advanced or recurrent ovarian cancer.
Collapse
|
21
|
Avallone A, Di Gennaro E, Bruzzese F, Laus G, Delrio P, Caraglia M, Pepe S, Comella P, Budillon A. Synergistic antitumour effect of raltitrexed and 5-fluorouracil plus folinic acid combination in human cancer cells. Anticancer Drugs 2007; 18:781-91. [PMID: 17581300 DOI: 10.1097/cad.0b013e32809ef9b7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
5-Fluorouracil, usually in combination with folinic acid, is widely used in the treatment of both colorectal and head and neck squamous cell cancer patients. Since 5-fluorouracil plus folinic acid and the antifolate thymidylate synthase inhibitor; raltitrexed have distinct mechanisms of action and toxicity profiles, we have evaluated the potential synergistic antitumor interaction between these two agents combined with a sequential schedule of administration in KB (wt-p53) and Cal27 (mut-p53) head and neck squamous cell carcinomas, and LoVo (wt-p53) and HT29 (mut-p53) colorectal cell lines. The combination between a 24-h exposure to raltitrexed followed by a 4-h exposure to 5-fluorouracil plus folinic acid was globally synergistic, as assessed by the median effect principle and combination index. A specific contribution of folinic acid to the cytotoxic effect of the raltitrexed/5-fluorouracil combination was clearly demonstrated by the evaluation of the potentiation factor. In all cell lines, a 1.5- up to 17-fold reduction in the IC50 of both raltitrexed and 5-fluorouracil plus folinic acid was observed in the combination setting compared with the concentrations of the each drug used alone. Moreover, we demonstrated that raltitrexed/5-fluorouracil plus folinic acid induced a distinct S-phase block of the cell cycle, as well as a potentiation of the apoptotic cell death, compared with 5-fluorouracil plus folinic acid or raltitrexed/5-fluorouracil combination. This preclinical work represents, at least to our knowledge, the first demonstration of a synergistic interaction between raltitrexed and 5-fluorouracil modulated by folinic acid, and could represent a rationale for further clinical investigation of raltitrexed/5-fluorouracil plus folinic acid combination.
Collapse
Affiliation(s)
- Antonio Avallone
- National Tumour Institute, Federico II University Medical School, Via M. Semmola, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fayette J, Coquard IR, Alberti L, Boyle H, Méeus P, Decouvelaere AV, Thiesse P, Sunyach MP, Ranchère D, Blay JY. ET-743: a novel agent with activity in soft-tissue sarcomas. Curr Opin Oncol 2006; 18:347-53. [PMID: 16721129 DOI: 10.1097/01.cco.0000228740.70379.3f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW ET-743 (ecteinascidin-743, trabectedin, Yondelis) is a natural marine product that has shown clinical activity in sarcoma. This paper reviews the current knowledge on this compound. RECENT FINDINGS ET-743 interferes with several transcription factors, traps protein from the nucleotide-excision repair system, thus resulting in DNA damage, modulates gene expression, and blocks cells in the G2-M phase. In the clinical setting, after failure of standard treatment, ET-743 at 1.5 mg/m2 in 24 h continuous infusion every 21 days yielded an overall response rate close to 8% and stabilization rates of 30-40%, some lasting beyond 3 years. Leiomyosarcomas, liposarcomas, and synovial sarcomas may be the more sensitive histotypes. The major toxicities of ET-743 are hepatic--through biliary duct destruction--and hematologic. They are not cumulative and a significant number of patients may receive 12 courses or more. In a randomized Phase II study testing weekly ET-743 with treatment every 3 weeks, an improved progression-free survival rate was observed in the 3-weekly arm; the results of the follow-up Phase III trial should be available at the American Society of Clinical Oncology meeting of 2006. Phase I combination studies are in currently progress. SUMMARY ET-743 is a novel active drug for sarcoma which yields prolonged disease-free survival in subsets of patients.
Collapse
Affiliation(s)
- Jérôme Fayette
- Hôpital Edouard Herriot, Service d'oncologie médicale, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|