1
|
Xu J, He W, Xiao N, Xie L. Repetitive Acinetobacter baumannii pneumonia induces infection tolerance in mice. Microb Pathog 2024; 197:107009. [PMID: 39395746 DOI: 10.1016/j.micpath.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Some long-term hospitalized patients with lung infections exhibit pathogen tolerance. To investigate whether long-term chronic infection can induce tolerance, we constructed a mouse model of pneumonia in which mice were infected once, twice, or three times with Acinetobacter baumannii. The results revealed that the inflammatory factor levels decreased in the lung lavage fluid and that pathological damage to the lung tissue was alleviated in the mice infected three times. Flow cytometry and transcriptome analysis of mouse lung tissue revealed that the expression of genes related to T cell activation, differentiation, and regulation and the proportion and number of regulatory T cells and immune suppression-related genes, such as Ctla4, Tigit, Slamf8, ICOS, and IDO1, were increased in mice infected three times. These findings show that repeated A. baumannii infections can induce tolerance, which may be mediated by immune suppression involving regulatory T cells.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital (PLA Medical School), Beijing, China.
| | - Wanxue He
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital (PLA Medical School), Beijing, China.
| |
Collapse
|
2
|
Xu J, Xiao N, Zhou D, Xie L. Disease tolerance: a protective mechanism of lung infections. Front Cell Infect Microbiol 2023; 13:1037850. [PMID: 37207185 PMCID: PMC10189053 DOI: 10.3389/fcimb.2023.1037850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
Resistance and tolerance are two important strategies employed by the host immune response to defend against pathogens. Multidrug-resistant bacteria affect the resistance mechanisms involved in pathogen clearance. Disease tolerance, defined as the ability to reduce the negative impact of infection on the host, might be a new research direction for the treatment of infections. The lungs are highly susceptible to infections and thus are important for understanding host tolerance and its precise mechanisms. This review focuses on the factors that induce lung disease tolerance, cell and molecular mechanisms involved in tissue damage control, and the relationship between disease tolerance and sepsis immunoparalysis. Understanding the exact mechanism of lung disease tolerance could allow better assessment of the immune status of patients and provide new ideas for the treatment of infections.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| |
Collapse
|
3
|
Qin Y, Sun X, Shao X, Hu MX, Feng J, Chen Z, Sun J, Zhou Z, Duan Y, Cheng C. Lipopolysaccharide Preconditioning Induces an Anti-inflammatory Phenotype in BV2 Microglia. Cell Mol Neurobiol 2016; 36:1269-1277. [PMID: 27048218 PMCID: PMC11482333 DOI: 10.1007/s10571-015-0324-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 01/06/2023]
Abstract
Increasing evidence indicates that endotoxin tolerance is an essential immune-homeostatic response to repeated exposure to lipopolysaccharide (LPS) that induces a state of altered responsiveness in macrophage, resulting in repression of pro-inflammatory gene expression and increased expression of factors that mediate the resolution of inflammation. In this study, quantitative real-time polymerase chain reaction and Western blot for M1 and M2 markers were performed to characterize phenotypic changes of BV2 microglia. We found that the cytokine and chemokine expression during endotoxin tolerance were mostly similar to those found during M2 polarization. We further examined the expression of M1 and M2 markers in CD11b+ BV2 by double immunofluorescent staining. The expression of M2 markers (CD206) increased, whereas the expression of M1 (CD54) markers reduced during endotoxin tolerance. Moreover, expression of different transcription factor, known for their function in the regulation of pro- and anti-inflammatory reaction, was also different. Our data demonstrate that repeat LPS treatment activates a differentiation program that leads to microglial polarization toward M2-like phenotype.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaolei Sun
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaoyi Shao
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Ming Xia Hu
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jinrong Feng
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhan Chen
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jie Sun
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhou Zhou
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yinong Duan
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chun Cheng
- Department of Pathology, Medical College, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Bonney S, Hughes K, Eckle T. Anesthetic cardioprotection: the role of adenosine. Curr Pharm Des 2015; 20:5690-5. [PMID: 24502579 DOI: 10.2174/1381612820666140204102524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022]
Abstract
Brief periods of cardiac ischemia and reperfusion exert a protective effect against subsequent longer ischemic periods, a phenomenon coined ischemic preconditioning. Similarly, repeated brief episodes of coronary occlusion and reperfusion at the onset of reperfusion, called post-conditioning, dramatically reduce infarct sizes. Interestingly, both effects can be achieved by the administration of any volatile anesthetic. In fact, cardio-protection by volatile anesthetics is an older phenomenon than ischemic pre- or post-conditioning. Although the mechanism through which anesthetics can mimic ischemic pre- or post-conditioning is still unknown, adenosine generation and signaling are the most redundant triggers in ischemic pre- or post-conditioning. In fact, adenosine signaling has been implicated in isoflurane-mediated cardioprotection. Adenosine acts via four receptors designated as A1, A2a, A2b, and A3. Cardioprotection has been associated with all subtypes, although the role of each remains controversial. Much of the controversy stems from the abundance of receptor agonists and antagonists that are, in fact, capable of interacting with multiple receptor subtypes. Recently, more specific receptor agonists and new genetic animal models have become available paving way towards new discoveries. As such, the adenosine A2b receptor was shown to be the only one of the adenosine receptors whose cardiac expression is induced by ischemia in both mice and humans and whose function is implicated in ischemic pre- or post-conditioning. In the current review, we will focus on adenosine signaling in the context of anesthetic cardioprotection and will highlight new discoveries, which could lead to new therapeutic concepts to treat myocardial ischemia using anesthetic preconditioning.
Collapse
Affiliation(s)
| | | | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045.
| |
Collapse
|
5
|
IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell Mol Immunol 2015; 13:170-9. [PMID: 25640654 PMCID: PMC4786624 DOI: 10.1038/cmi.2015.02] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/03/2015] [Accepted: 01/03/2015] [Indexed: 01/12/2023] Open
Abstract
The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model.
Collapse
|
6
|
Soriano RN, Ravanelli MI, Batalhao ME, Carnio EC, Branco LG. Glucocorticoids downregulate systemic nitric oxide synthesis and counteract overexpression of hepatic heme oxygenase-1 during endotoxin tolerance. Can J Physiol Pharmacol 2013; 91:861-5. [DOI: 10.1139/cjpp-2013-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme oxygenase (HO)-1 has antioxidant and cytoprotective properties if properly expressed, whereas nitric oxide (NO) impairs tissue perfusion when greatly increased in the blood circulation. Here we hypothesized that the NO and HO-1 systems are altered during lipopolysaccharide (LPS) tolerance, and that glucocorticoids are crucial modulators of systemic NO production and hepatic HO-1 expression during this intriguing phenomenon of cellular reprogramming. Adrenalectomized (ADX) rats with or without administration of dexamethasone (DEX) were challenged with LPS for 3 consecutive days. The plasma levels of corticosterone and nitrate (NOx), and expression of HO-1 protein were assessed. During tolerance, corticosterone levels were elevated, NOx reduced, and HO-1 overexpressed. ADX rats challenged with LPS for 3 consecutive days exhibited a ∼9-fold increase in NOx and a ∼6-fold increase in HO-1, reverted by DEX. Our findings strongly support the fact that glucocorticoids downregulate systemic NO synthesis and counteract hepatic HO-1 overexpression during LPS tolerance.
Collapse
Affiliation(s)
- Renato N. Soriano
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria I. Ravanelli
- Medical School of Ribeirão Preto, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo E. Batalhao
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evelin C. Carnio
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G.S. Branco
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Natarajan S, Kim J, Bouchard J, Cruikshank W, Remick DG. Reducing LPS content in cockroach allergens increases pulmonary cytokine production without increasing inflammation: a randomized laboratory study. BMC Pulm Med 2011; 11:12. [PMID: 21345191 PMCID: PMC3050874 DOI: 10.1186/1471-2466-11-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/23/2011] [Indexed: 01/01/2023] Open
Abstract
Background Endotoxins are ubiquitously present in the environment and constitute a significant component of ambient air. These substances have been shown to modulate the allergic response, however a consensus has yet to be reached whether they attenuate or exacerbate asthmatic responses. The current investigation examined whether reducing the concentration of lipopolysaccharide (LPS) in a house dust extract (HDE) containing high concentrations of both cockroach allergens [1] and LPS would attenuate asthma-like pulmonary inflammation. Methods Mice were sensitized with CRA and challenged with the intact HDE, containing 182 ng of LPS, or an LPS-reduced HDE containing 3 ng LPS, but an equivalent amount of CRA. Multiple parameters of asthma-like pulmonary inflammation were measured. Results Compared to HDE challenged mice, the LPS-reduced HDE challenged mice had significantly reduced TNFα levels in the bronchoalveolar lavage fluid. Plasma levels of IgE and IgG1 were significantly reduced, however no change in CRA-specific IgE was detected. In HDE mice, plasma IgG2a levels were similar to naïve mice, while LPS-reduced HDE mice had significantly greater concentrations. Reduced levels of LPS in the HDE did not decrease eosinophil or neutrophil recruitment into the alveolar space. Equivalent inflammatory cell recruitment occurred despite having generally higher pulmonary concentrations of eotaxins and CXC chemokines in the LPS-reduced HDE group. LPS-reduced HDE challenge induced significantly higher concentrations of IFNγ, and IL-5 and IL-13 in the BAL fluid, but did not decrease airways hyperresponsiveness or airway resistance to methacholine challenge. Conclusion: These data show that reduction of LPS levels in the HDE does not significantly protect against the severity of asthma-like pulmonary inflammation.
Collapse
Affiliation(s)
- Sudha Natarajan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, 720 Harisson Avenue, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
8
|
Everson CA, Thalacker CD, Hogg N. Phagocyte migration and cellular stress induced in liver, lung, and intestine during sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2067-74. [PMID: 18945949 DOI: 10.1152/ajpregu.90623.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sleep is understood to possess recuperative properties and, conversely, sleep loss is associated with disease and shortened life span. Despite these critical attributes, the mechanisms and functions by which sleep and sleep loss impact health still are speculative. One of the most consistent, if largely overlooked, signs of sleep loss in both humans and laboratory rats is a progressive increase in circulating phagocytic cells, mainly neutrophils. The destination, if any, of the increased circulating populations has been unknown and, therefore, its medical significance has been uncertain. The purpose of the present experiment was to determine the content and location of neutrophils in liver and lung tissue of sleep-deprived rats. These are two principal sites affected by neutrophil migration during systemic inflammatory illness. The content of neutrophils in the intestine also was determined. Sleep deprivation in rats was produced for 5 and 10 days by the Bergmann-Rechtschaffen disk method, which has been validated for its high selectivity under freely moving conditions and which was tolerated and accompanied by a deep negative energy balance. Comparison groups included basal conditions and 48 h of sleep recovery after 10 days of sleep loss. Myeloperoxidase (MPO), an enzyme constituent of neutrophils, was extracted from liver, lung, and intestinal tissues, and its activity was determined by spectrophotometry. Leukocytes were located in vasculature and interstitial spaces in the liver and the lung by immunohistochemistry. Heme oxygenase-1, also known as heat shock protein-32 and a marker of cellular stress, and corticosterone also were measured. The results indicate neutrophil migration into extravascular liver and lung tissue concurrent with cell stress and consistent with tissue injury or infection induced by sleep loss. Plasma corticosterone was unchanged. Recovery sleep was marked by increased lung heme oxygenase-1, increased intestinal MPO activity, and abnormally low corticosterone, suggesting ongoing reactive processes as a result of prior sleep deprivation.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Neurology Research 151, VAMC, 5000 West National Ave., Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|