1
|
Mottola F, Finelli R, Feola V, Leisegang K, Rocco L. Small Supernumerary Marker Chromosome (sSMC) 15 in Male Primary Infertility: A Case Study. Case Rep Med 2025; 2025:9935363. [PMID: 40313645 PMCID: PMC12043387 DOI: 10.1155/carm/9935363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
This case report describes a 39-year-old phenotypically normal male patient of a married couple with primary infertility presenting as candidates for assisted reproductive techniques. The medical history of the couple is unremarkable, with both partners phenotypically normal. Semen analysis revealed oligoasthenzoospermia (OAT), 15% sperm DNA fragmentation and 4% aneuploidies in the sperm nuclei. Genetic analysis showed no Y chromosome of cystic fibrosis transmembrane conductance regulator gene mutations. Karyotype analysis in the male partner revealed a small supernumerary marker chromosome (sSMC) derived from chromosome 15, specifically inverted and duplicated (inv dup(15)) corresponding to the 15q11.2 region but lacking the Prader-Willi/Angelman syndrome critical region (PWACR). Further investigations revealed that 35% of the patient's spermatozoa carried the sSMC(15). This case study highlights the potential association between the presence of an inv dup(15) sSMC, without the involvement of the PWACR, and male infertility. sSMC(15) may disrupt spermatogenesis and contribute to oligoasthenozoospermia in males with primary infertility. Further research into the association of mechanism mechanisms of male infertility related to the 15q11.2 region is warranted.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | | | - Veronica Feola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of Western Cape, Bellville 7535, South Africa
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| |
Collapse
|
2
|
Liehr T, Ziegler M, Person L, Kankel S, Padutsch N, Weise A, Weimer JP, Williams H, Ferreira S, Melo JB, Carreira IM. Small supernumerary marker chromosomes derived from human chromosome 11. Front Genet 2023; 14:1293652. [PMID: 38174048 PMCID: PMC10763568 DOI: 10.3389/fgene.2023.1293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: With only 39 reported cases in the literature, carriers of a small supernumerary marker chromosome (sSMC) derived from chromosome 11 represent an extremely rare cytogenomic condition. Methods: Herein, we present a review of reported sSMC(11), add 18 previously unpublished cases, and closely review eight cases classified as 'centromere-near partial trisomy 11' and a further four suited cases from DECIPHER. Results and discussion: Based on these data, we deduced the borders of the pericentric regions associated with clinical symptoms into a range of 2.63 and 0.96 Mb for chromosome 11 short (p) and long (q) arms, respectively. In addition, the minimal pericentric region of chromosome 11 without triplo-sensitive genes was narrowed to positions 47.68 and 60.52 Mb (GRCh37). Furthermore, there are apparent differences in the presentation of signs and symptoms in carriers of larger sSMCs derived from chromosome 11 when the partial trisomy is derived from different chromosome arms. However, the number of informative sSMC(11) cases remains low, with overlapping presentation between p- and q-arm-imbalances. In addition, uniparental disomy (UPD) of 'normal' chromosome 11 needs to be considered in the evaluation of sSMC(11) carriers, as imprinting may be an influencing factor, although no such cases have been reported. Comprehensively, prenatal sSMC(11) cases remain a diagnostic and prognostic challenge.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Monika Ziegler
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Luisa Person
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jörg Paul Weimer
- Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, University Kiel, Kiel, Germany
| | | | - Susana Ferreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana B. Melo
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Carreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Molecular delineation of de novo small supernumerary marker chromosomes in prenatal diagnosis, a retrospective study. Taiwan J Obstet Gynecol 2023; 62:94-100. [PMID: 36720559 DOI: 10.1016/j.tjog.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To define the genotype-phenotype correlation of small supernumerary marker chromosomes (sSMCs) and conduct precise genetic counseling, we retrospectively searched and reviewed de novo sSMCs cases detected during prenatal diagnosis at The First Affiliated Hospital of Zhengzhou University. MATERIALS AND METHODS Chromosome karyotypes of 20,314 cases of amniotic fluid from pregnant women were performed. For 16 samples with de novo sSMCs, 10 were subjected to single-nucleotide polymorphism (SNP) array or low-coverage massively parallel copy number variation sequencing (CNV-seq) analysis. RESULTS Among the 10 sSMCs cases, two sSMCs derived from chromosome 9, and three sSMCs derived from chromosomes 12, 18 and 22. The remaining 5 cases were not identified by SNP array or CNV-seq because they lacked euchromatin or had a low proportion of mosaicism. Four of them with a karyotype of 47,XN,+mar presented normal molecular cytogenetic results (seq[hg19] 46,XN), and the remaining patient with a karyotype of 46,XN,+mar presented with Turner syndrome (seq[hg19] 45,X). Five sSMCs samples were mosaics of all 16 cases. CONCLUSION Considering the variable origins of sSMCs, further genetic testing of sSMCs should be performed by SNP array or CNV-seq. Detailed molecular characterization would allow precise genetic counseling for prenatal diagnosis.
Collapse
|
4
|
Zhou L, Zheng Z, Wu L, Xu C, Wu H, Xu X, Tang S. Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array. Mol Cytogenet 2020; 13:19. [PMID: 32514314 PMCID: PMC7251855 DOI: 10.1186/s13039-020-00486-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Defining the phenotype-genotype correlation of small supernumerary marker chromosomes (sSMCs) remains a challenge in prenatal diagnosis. We karyotyped 20,481 amniotic fluid samples from pregnant women and explored the molecular characteristics of sSMCs using a single nucleotide polymorphism (SNP) array. Results Out of the 20,481 samples, 15 abnormal karyotypes with sSMC were detected (frequency: 0.073%) and the chromosomal origin was successfully identified by SNP array in 14 of them. The origin of sSMCs were mainly acrocentric-derived chromosomes and the Y chromosome. Two cases of sSMC combined with uniparental disomy (UPD) were detected, UPD(1) and UPD(22). More than half of the cases of sSMC involved mosaicism (8/15) and pathogenicity (9/15) in prenatal diagnosis. A higher prevalence of mosaicism for non-acrocentric chromosomes than acrocentric chromosomes was also revealed. One sSMC derived from chromosome 3 with a neocentromere revealed a 24.99-Mb pathogenic gain of the 3q26.31q29 region on the SNP array, which presented as an abnormal ultrasound indicating nasal bone hypoplasia. Conclusion The clinical phenotypes of sSMCs are variable and so further genetic testing and parental karyotype analysis are needed to confirm the characteristics of sSMCs. The SNP array used here allows a detailed characterisation of the sSMC and establishes a stronger genotype-phenotype correlation, thus allowing detailed genetic counselling for prenatal diagnosis.
Collapse
Affiliation(s)
- Lili Zhou
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Zhaoke Zheng
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Lianpeng Wu
- Key laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 People's Republic of China
| | - Chenyang Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Hao Wu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Xueqin Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China
| | - Shaohua Tang
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000 People's Republic of China.,Key laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 People's Republic of China
| |
Collapse
|
5
|
Hu X, Li L, Zhang H, Hu Z, Li L, Sun M, Liu R. Prenatal diagnosis of a de novo tetrasomy 15q24.3-25.3: Case report and literature review. J Clin Lab Anal 2020; 34:e23288. [PMID: 32185823 PMCID: PMC7370735 DOI: 10.1002/jcla.23288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Terminal duplication on chromosome 15q is a rare chromosomal variation. Affected individuals show similar features such as growth dysplasia or the development of frontal bossing, body deformities, facial abnormalities, and genitourinary or cardiovascular disorders. However, it is not yet clear whether such 15q repeats lead to identifiable patterns of clinical abnormalities. Therefore, the purpose of this study was to analyze the prenatal diagnostic results and clinical manifestations of a fetus with 15q duplication and to summarize the literature. METHODS The case was a fetus at 28 weeks of gestation. The risk of Down syndrome from second-trimester screening was 1/140. Prenatal ultrasound and amniocentesis were performed, and chromosomal microarray analysis (CMA) was used for genetic analysis. RESULTS The fetus had abnormal clinical features, including intracardiac echogenic focus in the left ventricle, an aberrant right subclavian artery, and growth delay. The fetal chromosomal karyotype was 46,XX,15q?,12q?,21pstk+, and CMA revealed a 10.163 Mb duplication at 15q24.3-q25.3. The couple chose to terminate the pregnancy after careful consideration. CONCLUSIONS The combination and rational application of cytogenetics technology and molecular genetics technology such as CMA will open up the field of clinical application and provide useful genetic counseling for parents of fetuses carrying such chromosomal duplications.
Collapse
Affiliation(s)
- Xiaonan Hu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Leilei Li
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Hongguo Zhang
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Zhuming Hu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Linlin Li
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Meiling Sun
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
6
|
Stembalska A, Gil J, Laczmanska I, Sasiadek M. Clinical Observation of a Child with Prenatally Diagnosed De Novo Partial Trisomy of Chromosome 20. Fetal Pediatr Pathol 2019; 38:245-256. [PMID: 30893560 DOI: 10.1080/15513815.2019.1576818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Small supernumerary marker chromosomes (sSMCs) represent a group of structural chromosome rearrangements that cannot be characterized by conventional cytogenetic analysis, but can be identified by microarray studies. sSMCs are observed in approximately 0.075% of prenatal cytogenetic tests with clinical pathology in no more than 30% of sSMCS carriers. CASE We present a boy who was diagnosed prenatally with a partial trisomy of chromosome 20. An increased nuchal translucency NT >99%tile, fetal neck cysts and abnormalities of the lumbosacral spine were observed in prenatal screening. After birth, facial dysmorphism, small male genitalia and defects of the vertebrae were observed. In the fourth year of life, dysmorphic features, brachydactyly, small male genitalia, short stature, psychomotor delay, hyperactivity as well as conductive hearing loss became apparent. CONCLUSION Partial trisomy of chromosome 20, covering the region 20q21→20q23, results in serious clinical complications, including dysmorphic features and delay in psychomotor development.
Collapse
Affiliation(s)
| | - Justyna Gil
- a Department of Genetics, Wroclaw Medical University , Wroclaw , Poland
| | | | - Maria Sasiadek
- a Department of Genetics, Wroclaw Medical University , Wroclaw , Poland
| |
Collapse
|
7
|
Retrospectively investigating the 12-year experience of prenatal diagnosis of small supernumerary marker chromosomes through array comparative genomic hybridization. Taiwan J Obstet Gynecol 2019; 58:139-144. [PMID: 30638468 DOI: 10.1016/j.tjog.2018.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study retrospectively evaluated the incidences of small supernumerary marker chromosomes (sSMCs) in prenatal diagnoses and detected with gain of pathogenic copy number variation through array comparative genomic hybridization (CGH) in a laboratory in Taiwan. MATERIALS AND METHODS We retrospectively searched and reviewed the sSMC cases detected during prenatal diagnoses in the Youthgene medical laboratory, between 2004 and 2015 and used array CGH to successfully analyze 45 of 47,XN,+mar or 47,XN + mar/46,XN. RESULTS A total of 68,087 cases of amniocentesis were analyzed, of which 59 were identified as sSMCs. The overall frequency of sSMCs was 0.087%, and 7 of 45 sSMCs were identified with gain of pathogenic copy number variation (CNV). CONCLUSION Array CGH offers useful tools that can be used to detect small fragments of chromosomal abnormalities and sSMC origins in prenatal diagnosis. In this study, we successfully used array CGH to detect 7 out of 45 sSMCs, which were identified with gain in pathogenic CNV.
Collapse
|
8
|
Conconi D, Villa N, Redaelli S, Sala E, Crosti F, Maitz S, Rigoldi M, Parini R, Dalprà L, Lavitrano M, Roversi G. Familiar unbalanced complex rearrangements involving 13 p-arm: description of two cases. Mol Cytogenet 2018; 11:52. [PMID: 30202443 PMCID: PMC6127936 DOI: 10.1186/s13039-018-0400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background Copy number variations (CNVs) are largely known today, but their position is rarely established by fluorescence in situ hybridization (FISH) or karyotype analysis. Case presentation We described two families with copy number gain in which FISH analysis with the specific subtelomeric probe of chromosome 4q and 7q evidenced a third signal at band 13p11.2. Genomic study by array comparative genomic hybridization defined the triple dose segment. In the first case, the duplicate tract is free of known genes, in the second one it contained three expressed genes. Conclusions The CNV localization on the short arm of an acrocentric chromosome could explain the lack of phenotypic effect, being known the regulatory role of heterochromatin in the position-effect silencing. Furthermore, we would like to underline the importance of using complementary techniques such as FISH and array-CGH to obtain a better definition of genomic rearrangements.
Collapse
Affiliation(s)
- Donatella Conconi
- 1School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Villa
- 2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Serena Redaelli
- 1School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Sala
- 2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Francesca Crosti
- 2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Silva Maitz
- 3Pediatric Genetic Unit, Pediatric Department of Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, San Gerardo Hospital, Monza, Italy
| | - Miriam Rigoldi
- 2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Rossella Parini
- 4Pediatric Department of Monza Brianza per il Bambino e la sua Mamma (MBBM) Foundation, San Gerardo Hospital, Monza, Italy
| | - Leda Dalprà
- 1School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | | | - Gaia Roversi
- 1School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,2Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
9
|
Grochowski CM, Gu S, Yuan B, Tcw J, Brennand KJ, Sebat J, Malhotra D, McCarthy S, Rudolph U, Lindstrand A, Chong Z, Levy DL, Lupski JR, Carvalho CMB. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Hum Mutat 2018; 39:939-946. [PMID: 29696747 PMCID: PMC5995661 DOI: 10.1002/humu.23537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation.
Collapse
Affiliation(s)
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Julia Tcw
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristen J Brennand
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, Department of Psychiatry, University of California at San Diego, San Diego, California
| | | | - Shane McCarthy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Zechen Chong
- Department of Genetics and the Informatics Institute, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Deborah L Levy
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Psychology Research Laboratory, McLean Hospital, Belmont, Massachusetts
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Poot M. Neocentromeres to the Rescue of Acentric Chromosome Fragments. Mol Syndromol 2017; 8:279-281. [PMID: 29230156 DOI: 10.1159/000481332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 11/19/2022] Open
|
11
|
Cannarella R, Mattina T, Condorelli RA, Mongioì LM, Pandini G, La Vignera S, Calogero AE. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function. Endocr Connect 2017; 6:528-539. [PMID: 28899882 PMCID: PMC5597972 DOI: 10.1530/ec-17-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R), mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05). Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15) (p10q26.2) karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Giuseppe Pandini
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| |
Collapse
|
12
|
Olszewska M, Wanowska E, Kishore A, Huleyuk N, Georgiadis AP, Yatsenko AN, Mikula M, Zastavna D, Wiland E, Kurpisz M. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient. Sci Rep 2015; 5:17408. [PMID: 26616419 PMCID: PMC4663790 DOI: 10.1038/srep17408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/28/2015] [Indexed: 11/12/2022] Open
Abstract
Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC+) and spermatozoa with normal chromosome complement (sSMC−), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC+ to sSMC− spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 − 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient’s sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Elzbieta Wanowska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Archana Kishore
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Andrew P Georgiadis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Mariya Mikula
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
13
|
Xu H, Xiao B, Ji X, Hu Q, Chen Y, Qiu W. Nonmosaic tetrasomy 15q25.2 → qter identified with SNP microarray in a patient with characteristic facial appearance and review of the literature. Eur J Med Genet 2014; 57:329-33. [DOI: 10.1016/j.ejmg.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
14
|
Spittel H, Kubek F, Kreskowski K, Ziegler M, Klein E, Hamid AB, Kosyakova N, Radhakrishnan G, Junge A, Kozlowski P, Schulze B, Martin T, Huhle D, Mehnert K, Rodríguez L, Ergun MA, Sarri C, Militaru M, Stipoljev F, Tittelbach H, Vasheghani F, de Bello Cioffi M, Hussein SS, Fan X, Volleth M, Liehr T. Mitotic stability of small supernumerary marker chromosomes: a study based on 93 immortalized cell lines. Cytogenet Genome Res 2014; 142:151-60. [PMID: 24714101 DOI: 10.1159/000360776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 11/19/2022] Open
Abstract
Small supernumerary marker chromosomes (sSMC) are known for being present in mosaic form as 47,+mar/46 in >50% of the cases with this kind of extra chromosomes. However, no detailed studies have been done for the mitotic stability of sSMC so far, mainly due to the lack of a corresponding in vitro model system. Recently, we established an sSMC-cell bank (Else Kröner-Fresenius-sSMC-cellbank) with >150 cell lines. Therefore, 93 selected sSMC cases were studied here for the presence of the corresponding marker chromosomes before and after Epstein-Barr virus-induced immortalization. The obtained results showed that dicentric inverted duplicated-shaped sSMC are by far more stable in vitro than monocentric centric minute- or ring-shaped sSMC. Simultaneously, a review of the literature revealed that a comparable shape-dependent mitotic stability can be found in vivo in sSMC carriers. Additionally, a possible impact of the age of the sSMC carrier on mitotic stability was found: sSMC cell lines established from patients between 10-20 years of age were predominantly mitotically unstable. The latter finding was independent of the sSMC shape. The present study shows that in vitro models can lead to new and exciting insights into the biology of this genetically and clinically heterogeneous patient group.
Collapse
Affiliation(s)
- Hannes Spittel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Malvestiti F, De Toffol S, Grimi B, Chinetti S, Marcato L, Agrati C, Di Meco AM, Frascoli G, Trotta A, Malvestiti B, Ruggeri A, Dulcetti F, Maggi F, Simoni G, Grati FR. De novo
small supernumerary marker chromosomes detected on 143 000 consecutive prenatal diagnoses: chromosomal distribution, frequencies, and characterization combining molecular cytogenetics approaches. Prenat Diagn 2014; 34:460-8. [DOI: 10.1002/pd.4330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Francesca Malvestiti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Simona De Toffol
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Beatrice Grimi
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Sara Chinetti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Livia Marcato
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Cristina Agrati
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Maria Di Meco
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Giuditta Frascoli
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Trotta
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Barbara Malvestiti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Ruggeri
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Francesca Dulcetti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Federico Maggi
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Giuseppe Simoni
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Francesca Romana Grati
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| |
Collapse
|
16
|
Rao KP, Belogolovkin V. Marker chromosomes. Fetal Pediatr Pathol 2013; 32:97-112. [PMID: 22587446 DOI: 10.3109/15513815.2012.681425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Kiran Prabhaker Rao
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | | |
Collapse
|
17
|
Villa N, Bentivegna A, Ertel A, Redaelli S, Colombo C, Nacinovich R, Broggi F, Lissoni S, Bungaro S, Addya S, Fortina P, Dalprà L. A de novo supernumerary genomic discontinuous ring chromosome 21 in a child with mild intellectual disability. Am J Med Genet A 2011; 155A:1425-31. [PMID: 21574245 DOI: 10.1002/ajmg.a.34010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022]
Abstract
Small supernumerary marker chromosomes (sSMCs) are structurally abnormal extra chromosomes that cannot be unambiguously identified or characterized by conventional banding techniques alone, and they are generally equal in size or smaller than chromosome 20 of the same metaphase spread. Small supernumerary ring chromosomes (sSRCs), a smaller class of marker chromosomes, comprise about 10% of the cases. For various reasons these marker chromosomes have been the most difficult to characterize; although specific syndromes have not yet been defined, 60% of cases are associated with an abnormal phenotype. The chromosomal material involved, the degree and tissutal distribution of mosaicism, and the possible presence of uniparental disomy, are the important factors determining whether or not the ring chromosome will give rise to symptoms. Using conventional and molecular cytogenetics approaches we identified a de novo chromosome 21 sSRC in a child with speech delay and mild intellectual disability. By using aCGH analysis and SNP arrays, we report the presence of two discontinuous regions of chromosome 21 and the paternal origin of the sSRC. A thorough neuropsychiatric evaluation is also provided. Only few other cases of complex discontinuous ring chromosomes have been described in detail.
Collapse
Affiliation(s)
- Nicoletta Villa
- Medical Genetics Laboratory, S. Gerardo Hospital, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Balkan M, Isi H, Gedik A, Erdemoğlu M, Budak T. A small supernumerary marker chromosome, derived from chromosome 22, possibly associated with repeated spontaneous abortions. GENETICS AND MOLECULAR RESEARCH 2010; 9:1683-9. [PMID: 20799165 DOI: 10.4238/vol9-3gmr947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report a phenotypically normal couple with repeated spontaneous abortions and without other clinical features. Clinical, hematological, biochemical, and endocrinological aspects of the couple did not reveal any abnormalities. The karyotype of the wife was normal (46,XX), while the husband was found to have an abnormal karyotype, 47,XY,+der(22)mat. The marker chromosome was familial and non-satellite. Although the potential risk of small supernumerary marker chromosomes for spontaneous abortions cannot be defined precisely, marker chromosomes, together with methods used for ascertainment, are also factors to be considered when investigating infertility consequences. Furthermore, identification of the origin of a marker chromosome may provide additional information for patient karyotype-phenotype correlations. Further studies, such as molecular analyses to identify the breakpoint, are necessary for investigating phenotype-genotype correlations and assessment of genetic risks for small secondary chromosomes. The cause of repeated spontaneous abortions in this couple might be the presence of this marker chromosome in the husband. Consequently, we recommended genetic counseling before further pregnancies.
Collapse
Affiliation(s)
- M Balkan
- Department of Medical Biology and Genetic, Medical Faculty, Dicle University, Diyarbakir, Turkey.
| | | | | | | | | |
Collapse
|
19
|
Giardino D, Corti C, Ballarati L, Colombo D, Sala E, Villa N, Piombo G, Pierluigi M, Faravelli F, Guerneri S, Coviello D, Lalatta F, Cavallari U, Bellotti D, Barlati S, Croci G, Franchi F, Savin E, Nocera G, Amico FP, Granata P, Casalone R, Nutini L, Lisi E, Torricelli F, Giussani U, Facchinetti B, Guanti G, Di Giacomo M, Susca FP, Pecile V, Romitti L, Cardarelli L, Racalbuto E, Police MA, Chiodo F, Rodeschini O, Falcone P, Donti E, Grimoldi MG, Martinoli E, Stioui S, Caufin D, Lauricella SA, Tanzariello SA, Voglino G, Lenzini E, Besozzi M, Larizza L, Dalprà L. De novo balanced chromosome rearrangements in prenatal diagnosis. Prenat Diagn 2009; 29:257-65. [PMID: 19248039 DOI: 10.1002/pd.2215] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We surveyed the datasheets of 29 laboratories concerning prenatal diagnosis of de novo apparently balanced chromosome rearrangements to assess the involvement of specific chromosomes, the breakpoints distribution and the impact on the pregnancy outcome. METHOD By means of a questionnaire, data on 269.371 analyses performed from 1983 to 2006 on amniotic fluid, chorionic villus and fetal blood samples were collected. RESULTS A total of 246 balanced anomalies were detected at frequencies of 72% for reciprocal translocations, 18% for Robertsonian translocations, 7% for inversions and 3% for complex chromosome rearrangements. The total frequencies of balanced rearrangements were 0.09%, 0.08% and 0.05% on amniotic fluid, chorionic villus and fetal blood samples. CONCLUSION A preferential involvement of chromosomes 22, 7, 21, 3, 9 and 11 and a less involvement of chromosomes X, 19, 12, 6 and 1 was observed. A nonrandom distribution of the breakpoints across chromosomes was noticed. Association in the location of recurrent breakpoints and fragile sites was observed for chromosomes 11, 7, 10 and 22, while it was not recorded for chromosome 3. The rate of pregnancy termination was about 20%, with frequencies decreasing from complex chromosomal rearrangements (33%), reciprocal translocations (24%) to inversions (11%) and Robertsonian translocations (3%).
Collapse
Affiliation(s)
- Daniela Giardino
- Lab Citogenetica Medica e Genetica Molecolare, IRCCS Ist. Auxologico Italiano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kogan JM, Miller E, Ware SM. High resolution SNP based microarray mapping of mosaic supernumerary marker chromosomes 13 and 17: Delineating novel loci for apraxia. Am J Med Genet A 2009; 149A:887-93. [DOI: 10.1002/ajmg.a.32750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Marshall OJ, Chueh AC, Wong LH, Choo KA. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 2008; 82:261-82. [PMID: 18252209 PMCID: PMC2427194 DOI: 10.1016/j.ajhg.2007.11.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.
Collapse
Affiliation(s)
- Owen J. Marshall
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anderly C. Chueh
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee H. Wong
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - K.H. Andy Choo
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
22
|
Mechanisms and consequences of small supernumerary marker chromosomes: from Barbara McClintock to modern genetic-counseling issues. Am J Hum Genet 2008; 82:398-410. [PMID: 18252220 DOI: 10.1016/j.ajhg.2007.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/05/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022] Open
Abstract
Supernumerary marker chromosomes (SMCs) are common, but their molecular content and mechanism of origin are often not precisely characterized. We analyzed all centromere regions to identify the junction between the unique chromosome arm and the pericentromeric repeats. A molecular-ruler clone panel for each chromosome arm was developed and used for the design of a custom oligonucleotide array. Of 27 nonsatellited SMCs analyzed by array comparative genomic hybridization (aCGH) and/or fluorescence in situ hybridization (FISH), seven (approximately 26%) were shown to be unique sequence negative. Of the 20 unique-sequence-positive SMCs, the average unique DNA content was approximately 6.5 Mb (range 0.3-22.2 Mb) and 33 known genes (range 0-149). Of the 14 informative nonacrocentric SMCs, five (approximately 36%) contained unique DNA from both the p and q arms, whereas nine (approximately 64%) contained unique DNA from only one arm. The latter cases are consistent with ring-chromosome formation by centromere misdivision, as first described by McClintock in maize. In one case, a r(4) containing approximately 4.4 Mb of unique DNA from 4p was also present in the proband's mother. However, FISH revealed a cryptic deletion in one chromosome 4 and reduced alpha satellite in the del(4) and r(4), indicating that the mother was a balanced ring and deletion carrier. Our data, and recent reports in the literature, suggest that this "McClintock mechanism" of small-ring formation might be the predominant mechanism of origin. Comprehensive analysis of SMCs by aCGH and FISH can distinguish unique-negative from unique-positive cases, determine the precise gene content, and provide information on mechanism of origin, inheritance, and recurrence risk.
Collapse
|
23
|
Liehr T. Familial small supernumerary marker chromosomes are predominantly inherited via the maternal line. Genet Med 2006; 8:459-62. [PMID: 16845280 DOI: 10.1097/00125817-200607000-00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|