1
|
Vihlborg P, Lundberg O, Pettersson-Pablo P, Johansson N, Bryngelsson IL, Stjernbrandt A, Graff P. Blood biomarkers for occupational hand-arm vibration exposure. Toxicol Ind Health 2024; 40:432-440. [PMID: 38743488 PMCID: PMC11755968 DOI: 10.1177/07482337241253996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Hand-arm vibration is a common occupational exposure that causes neurological impairment, myalgia, and vibration-induced Raynaud's phenomena or vibration white fingers (VWF). The pathological mechanism is largely unknown, though several mechanisms have been proposed, involving both immunological vascular damage and defective neural responses. The aim of this study was to test whether the substances interleukin-33 (IL-33), macrophage-derived chemokine (MDC), interleukin-10 (IL-10), endothelin-1 (ET-1), C-C motif chemokine ligand 20 (CCL20), calcitonin, and thromboxane (TXA2) changed before and after occupational hand-arm vibration exposure. 38 full-time shift workers exposed to hand-arm vibration were recruited. All the participants underwent medical examinations regarding symptoms of Raynaud's phenomena. In 29 of the participants, the concentration of IL-33, MDC, IL-10, ET-1, CCL20, calcitonin, and TXA2 was measured before and after a workday. There was a significant increase in ET-1 and calcitonin concentration and a decrease in the CCL20 concentration after the work shift in all participants. In the group suffering from VWF, but not in the non-VWF group, MDC was statistically significantly lower before the work shift (p = .023). The VWF group also showed a significant increase in MDC after the work shift. Exposure to occupational hand-arm vibration is associated with changes in ET-1, calcitonin, and MDC concentration in subjects suffering from vibration white fingers, suggesting a role of these biomarkers in the pathophysiology of this condition.
Collapse
Affiliation(s)
- Per Vihlborg
- Department of Geriatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Oscar Lundberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paul Pettersson-Pablo
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | - Niclas Johansson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Albin Stjernbrandt
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Pål Graff
- Department of Chemical Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
2
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Gu M, Wang S, Di A, Wu D, Hai C, Liu X, Bai C, Su G, Yang L, Li G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. Int J Mol Sci 2023; 24:ijms24098120. [PMID: 37175828 PMCID: PMC10178895 DOI: 10.3390/ijms24098120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Myostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Song Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Kruszewski M, Aksenov MO. Association of Myostatin Gene Polymorphisms with Strength and Muscle Mass in Athletes: A Systematic Review and Meta-Analysis of the MSTN rs1805086 Mutation. Genes (Basel) 2022; 13:2055. [PMID: 36360291 PMCID: PMC9690375 DOI: 10.3390/genes13112055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Polymorphism (rs1805086), c.458A>G, p.Lys(K)153Arg(R), (K153R) of the myostatin gene (MSTN) has been associated with a skeletal muscle phenotype (hypertrophic response in muscles due to strength training). However, there are not enough reliable data to demonstrate whether MSTN rs1805086 K and R allelic variants are valid genetic factors that can affect the strength phenotype of athletes' skeletal muscles. The aim is to conduct a systematic review and meta-analysis of the association of MSTN rs1805086 polymorphism with the strength phenotype of athletes. This study analyzed 71 research articles on MSTN and performed a meta-analysis of MSTN K153R rs1805086 polymorphism in strength-oriented athletes and a control (non-athletes) group. It was found that athletes in the strength-oriented athlete group had a higher frequency of the R minor variant than that in the control group (OR = 2.02, P = 0.05). Thus, the obtained results convincingly demonstrate that there is an association between the studied polymorphism and strength phenotype of athletes; therefore, further studies on this association are scientifically warranted.
Collapse
Affiliation(s)
- Marek Kruszewski
- Department of Physical Education, Faculty of Individual Sports, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warszawa, Poland
| | - Maksim Olegovich Aksenov
- Academic Department of Physical Education, Plekhanov Russian University of Economics, Moscow 117997, Russia
- Department of Physical Education Theory, Faculty of Physical Training, Sport and Tourism, Banzarov Buryat State University, Ulan-Ude 670000, Russia
| |
Collapse
|
5
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
6
|
Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. J Clin Med 2021; 11:jcm11010097. [PMID: 35011838 PMCID: PMC8745511 DOI: 10.3390/jcm11010097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Resistance training and protein supplementation are expected to exert the greatest effect in counteracting muscle-wasting conditions. Myokines might play a key role, but this remains to be elucidated. The aim of this study (NCT03815201) was to examine the effects of a resistance training program with post-exercise leucine-enriched protein supplementation on sarcopenia and frailty status and on the plasma myokine concentrations of post-hospitalized older adults. A total of 41 participants were included in this 12-week resistance training intervention and randomized either to the placebo group or the protein group. Sarcopenia, frailty, body composition and blood-based myokines were measured at baseline and after 12 weeks. Both groups improved in terms of physical performance (p < 0.005) and frailty (p < 0.07) following the resistance training intervention, but without any difference between groups. Myokine concentrations did not change after the intervention in either group. Changes in myostatin concentrations were associated with greater improvements in appendicular skeletal muscle mass at the end of the intervention (p < 0.05). In conclusion, the implementation of resistance training programs after hospitalization in older adults should be prioritized to combat sarcopenia and frailty immediately. The results regarding myostatin should be taken as preliminary findings.
Collapse
|
7
|
Spradlin RA, Vassilakos G, Matheny MK, Jones NC, Goldman JL, Lei H, Barton ER. Deletion of muscle Igf1 exacerbates disuse atrophy weakness in mice. J Appl Physiol (1985) 2021; 131:881-894. [PMID: 34292789 DOI: 10.1152/japplphysiol.00090.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy occurs as a result of prolonged periods of reduced mechanical stimulation associated with injury or disease. The growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and load sensing pathways can both aid in recovery from disuse through their shared downstream signaling, but their relative contributions to these processes are not fully understood. The goal of this study was to determine whether reduced muscle IGF-1 altered the response to disuse and reloading. Adult male mice with inducible muscle-specific IGF-1 deletion (MID) induced 1 wk before suspension and age-matched controls (CON) were subjected to hindlimb suspension and reloading. Analysis of muscle force, morphology, gene expression, signaling, and tissue weights was performed in nonsuspended (NS) mice, and those suspended for 7 days or reloaded following suspension for 3, 7, and 14 days. MID mice displayed diminished IGF-1 protein levels and muscle atrophy before suspension. Muscles from suspended CON mice displayed a similar extent of atrophy and depletion of IGF-1, yet combined loss of load and IGF-1 was not additive with respect to muscle mass. In contrast, soleus force generation capacity was diminished to the greatest extent when both suspension and IGF-1 deletion occurred. Recovery of mass, force, and gene expression patterns following suspension were similar in CON and MID mice, even though IGF-1 levels increased only in muscles from CON mice. Diminished strength in disuse atrophy is exacerbated with the loss of muscle IGF-1 production, whereas recovery of mass and strength upon reloading can occur even IGF-1 is low.NEW & NOTEWORTHY A mouse model with skeletal muscle-specific inducible deletion of Igf1 was used to address the importance of this growth factor for the consequences of disuse atrophy. Rapid and equivalent loss of IGF-I and mass occurred with deletion or disuse. Decrements in strength were most severe with combined loss of load and IGF-1. Return of mass and strength upon reloading was independent of IGF-1.
Collapse
Affiliation(s)
- Ray A Spradlin
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Michael K Matheny
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
| | - Nathan C Jones
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Jessica L Goldman
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Hanqin Lei
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Role of Myokines in Myositis Pathogenesis and Their Potential to be New Therapeutic Targets in Idiopathic Inflammatory Myopathies. J Immunol Res 2020; 2020:9079083. [PMID: 32775472 PMCID: PMC7396002 DOI: 10.1155/2020/9079083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIM) represent a heterogeneous group of autoimmune diseases whose treatment is often a challenge. Many patients, even after immunosuppressive therapy, do not respond to treatment, so new alternatives have been sought for this. Therefore, other signaling pathways that could contribute to the pathogenesis of myositis have been investigated, such as the expression of myokines in skeletal muscle in response to the inflammatory process. In this review, we will refer to these muscle cytokines that are overexpressed or downregulated in skeletal muscle in patients with various forms of IIM, thus being able to contribute to the maintenance of the autoimmune process. Some muscle cytokines, through their antagonistic action, may be a helpful contributor to the disease modulation, and thus, they could represent personalized treatment targets. Here, we consider the main myokines involved in the pathogenesis of myositis, expressing our view on the possibility of using them as potential therapeutic targets: interleukins IL-6, IL-15, and IL-18; chemokines CXCL10, CCL2, CCL3, CCL4, CCL5, and CCL20; myostatin; follistatin; decorin; osteonectin; and insulin-like 6. An interesting topic regarding the complex connection between myokines and noninflammatory pathways implied in IIM has also been briefly described, because it is an important scientific approach to the pathogenesis of IIM and can be a therapeutic alternative to be considered, especially for the patients who do not respond to immunosuppressive treatment.
Collapse
|
9
|
Das DK, Graham ZA, Cardozo CP. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol (Oxf) 2020; 228:e13367. [PMID: 31442362 DOI: 10.1111/apha.13367] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022]
Abstract
Myokines are molecules produced and secreted by skeletal muscle to act in an auto-, para- and endocrine manner to alter physiological function of target tissues. The growing number of effects of myokines on metabolism of distant tissues provides a compelling case for crosstalk between skeletal muscle and other tissues and organs to regulate metabolic homoeostasis. In this review, we summarize and discuss the current knowledge regarding the impact on metabolism of several canonical and recently identified myokines. We focus specifically on myostatin, β-aminoisobutyric acid, interleukin-15, meteorin-like and myonectin, and discuss how these myokines are induced and regulated as well as their overall function. We also review how these myokines may serve as potential prognostic biomarkers that reflect whole-body metabolism and how they may be attractive therapeutic targets for treating muscle and metabolic diseases.
Collapse
Affiliation(s)
- Dibash K. Das
- National Center for the Medical Consequences of Spinal Cord Injury James J. Peters VA Medical Center Bronx NY USA
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA
| | - Zachary A. Graham
- Birmingham VA Medical Center University of Alabama‐Birmingham Birmingham AL USA
- Department of Cell, Developmental, and Integrative Biology University of Alabama‐Birmingham Birmingham AL USA
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury James J. Peters VA Medical Center Bronx NY USA
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA
- Department of Rehabilitation Medicine Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
10
|
Hassan Qomi M, Arshadi S, Banayifar A, Kazemzadeh Y. Effects of Eight Weeks of Resistance Training on Muscle Myostatin Gene Expression and Insulin Resistance in Male Wistar Rats with Type 2 Diabetes. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep 2018; 38:BSR20180742. [PMID: 30201688 PMCID: PMC6239268 DOI: 10.1042/bsr20180742] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
Myostatin gene (MSTN) can inhibit the proliferation of myoblast, which in turn promotes muscle growth and inhibits adipocyte differentiation in livestock. MSTN mutation may lead to muscle hypertrophy or double-muscled (DM) phenotype. MSTN mutation animal, such as sheep, dog, and rabbit have been generated through CRISPR/Cas9 technology. However, goats with promising MSTN mutation have not been generated. We designed two sgRNAs loci targetting exon3 of MSTN gene to destroy the MSTN cysteines knots. We got seven goats from seven recipients, in which six were MSTN knocked-out (KO) goats, with a mutation rate of 85.7%. Destroyed cysteine knots caused MSTN structure inactivation. The average body weight gain (BWG) per day of MSTN KO goats was significantly higher than that of wild-type (WT) goats. MSTN KO goats showed abnormal sugar, fat, and protein metabolism compared with wild-type controls (MSTN+/+). Inheritance of mutations was observed in offspring of MSTN KO goats by PCR analysis.
Collapse
|
12
|
Naddaf E, Barohn RJ, Dimachkie MM. Inclusion Body Myositis: Update on Pathogenesis and Treatment. Neurotherapeutics 2018; 15:995-1005. [PMID: 30136253 PMCID: PMC6277289 DOI: 10.1007/s13311-018-0658-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inclusion body myositis is the most common acquired myopathy after the age of 50. It is characterized by progressive asymmetric weakness predominantly affecting the quadriceps and/or finger flexors. Loss of ambulation and dysphagia are major complications of the disease. Inclusion body myositis can be associated with cytosolic 5'-nucleotidase 1A antibodies. Muscle biopsy usually shows inflammatory cells surrounding and invading non-necrotic muscle fibers, rimmed vacuoles, congophilic inclusions, and protein aggregates. Disease pathogenesis remains poorly understood and consists of an interplay between inflammatory and degenerative pathways. Antigen-driven, clonally restricted, cytotoxic T cells represent a main feature of the inflammatory component, whereas abnormal protein homeostasis with protein misfolding, aggregation, and dysfunctional protein disposal is the hallmark of the degenerative component. Inclusion body myositis remains refractory to treatment. Better understanding of the disease pathogenesis led to the identification of novel therapeutic targets, addressing both the inflammatory and degenerative pathways.
Collapse
Affiliation(s)
- Elie Naddaf
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Richard J Barohn
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA
| | - Mazen M Dimachkie
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA.
| |
Collapse
|
13
|
Liu X, Bauman WA, Cardozo CP. Myostatin inhibits glucose uptake via suppression of insulin-dependent and -independent signaling pathways in myoblasts. Physiol Rep 2018; 6:e13837. [PMID: 30252210 PMCID: PMC6121119 DOI: 10.14814/phy2.13837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The glucose transporter 4 (Glut4) mediates insulin-dependent glucose uptake. Glut4 expression levels are correlated with whole-body glucose homeostasis. Insulin signaling is known to recruit Glut4 to the cell surface. Expression of Glut4 is subject to tissue-specific hormonal and metabolic regulation. The molecular mechanisms regulating skeletal muscle Glut4 expression remain to be elucidated. Myostatin (Mstn) is reported to be involved in the regulation of energy metabolism. While elevated Mstn levels in muscle are associated with obesity and type-2 diabetes in both human and mouse models, Mstn null mice exhibit immunity to dietary-induced obesity and insulin resistance. The molecular mechanisms by which Mstn initiates the development of insulin resistance and disorders of glucose disposal are not well delineated. Here we investigated effects of Mstn on insulin action in C2C12 cells. Mstn significantly reduced basal and insulin-induced IRS-1 tyrosine (Tyr495) phosphorylation, and expression and activation of PI3K, associated with diminished AKT phosphorylation and elevated GSK3β phosphorylation at Ser9. In addition, Mstn inhibited Glut4 mRNA and protein expression, and reduced insulin-induced Glut4 membrane translocation and glucose uptake. Conversely, SB431542, a Smad2/3 inhibitor, significantly increased cellular response to insulin. Mstn decreased AMP-activated protein kinase (AMPK) activity accompanied by reduced Glut4 gene expression and glucose uptake, which were partially reversed by AICAR, an AMPK activator. These data suggest that Mstn inhibits Glut4 expression and insulin-induced Glut4 integration into cytoplasmic membranes and glucose uptake and that these changes are mediated by direct insulin-desensitizing effect and indirect suppression of AMPK activation.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| |
Collapse
|
14
|
Lin YS, Lin FY, Hsiao YH. Myostatin Is Associated With Cognitive Decline in an Animal Model of Alzheimer's Disease. Mol Neurobiol 2018; 56:1984-1991. [PMID: 29982981 DOI: 10.1007/s12035-018-1201-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Abstract
With aging, there are progressive functional declines in multiple organ systems. One of the major physiological problems observed in aged people is skeletal muscle loss. This age-related muscle loss causes muscle weakness and disability, which in turn might reduce the quality of life in older adults and lead to the progression of several diseases, particularly Alzheimer's disease (AD). Some researchers have hypothesized that loss of muscle mass and strength is linked to the risk of developing AD. In addition, unintended weight loss often occurs in AD patients and might reflect dementia severity. However, the causal relationship between muscle atrophy and cognitive deficits in AD is unclear. We found that double transgenic amyloid precursor protein and presenilin 1 (APP/PS1) mice that co-express APP and PS1 at older ages exhibited lower body weight and lean tissue mass than sex- and age-matched wild-type (WT) mice. In addition, muscle atrophy and the extent of memory decline were strongly correlated in APP/PS1 mice. Myostatin levels in the gastrocnemius (GAS) muscle of 12-month-old APP/PS1 mice were elevated. We determined that the cellular and molecular mechanism of muscle atrophy was through the ubiquitin-proteasome pathway. Furthermore, myostatin knockdown in the GAS muscles increased grip strength and muscle mass, leading to memory improvement in myostatin short-hairpin RNA-treated APP/PS1 mice. We conclude that high-level myostatin expression might mediate or trigger muscle atrophy and cognitive deficits.
Collapse
Affiliation(s)
- Yung-Shuen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fang-Yu Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Kabak B, Belviranli M, Okudan N. Irisin and myostatin responses to acute high-intensity interval exercise in humans. Horm Mol Biol Clin Investig 2018; 35:/j/hmbci.ahead-of-print/hmbci-2018-0008/hmbci-2018-0008.xml. [PMID: 29558345 DOI: 10.1515/hmbci-2018-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/28/2018] [Indexed: 01/07/2023]
Abstract
Background The purpose of this study was to investigate irisin and myostatin responses to acute high-intensity interval exercise. Materials and methods Ten male professional kick-boxers aged between 18 and 24 years and 10 sedentary males with similar age and body weight participated in the present study. Participants performed 4 × 30-s Wingate test separated with 4 min of rest. Blood samples were taken immediately before and after exercise, and 3 and 6 h of recovery. Results and conclusion At rest, irisin levels were higher in the kick-boxers (p < 0.05). Immediately after the exercise, irisin levels were decreased in both groups (p < 0.05). A trend toward a return to baseline appeared after 3 h of recovery in the kick-boxers (p < 0.05). At rest, myostatin concentrations were not different between the groups (p > 0.05). Immediately after the exercise, myostatin levels were increased in both groups (p < 0.05). A trend toward a return to baseline appeared after 3 h of recovery in the kick-boxers (p < 0.05). Acute high-intensity interval exercise decreased irisin levels and increased myostatin levels.
Collapse
Affiliation(s)
- Banu Kabak
- Turkish Republic Ministry of Youth and Sports, Department of Health, Ankara, Turkey
| | - Muaz Belviranli
- Selçuk University, Faculty of Medicine, Department of Physiology, Division of Sports Physiology, Konya, Turkey, Phone: +90 332 224 47 31, Fax: +90 332 224 48 08
| | - Nilsel Okudan
- Selçuk University, Faculty of Medicine, Department of Physiology, Division of Sports Physiology, Konya, Turkey
| |
Collapse
|
16
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
17
|
Kovanecz I, Masouminia M, Gelfand R, Vernet D, Rajfer J, Gonzalez-Cadavid NF. Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in the penile and vascular smooth muscle. Int J Impot Res 2017; 29:194-201. [PMID: 28539643 DOI: 10.1038/ijir.2017.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Myostatin is present in striated myofibers but, except for myometrial cells, has not been reported within smooth muscle cells (SMC). We investigated in the rat whether myostatin is present in SMC within the penis and the vascular wall and, if so, whether it is transcriptionally expressed and associated with the loss of corporal SMC occurring in certain forms of erectile dysfunction (ED). Myostatin protein was detected by immunohistochemistry/fluorescence and western blots in the perineal striated muscles, and also in the SMC of the penile corpora, arteries and veins, and aorta. Myostatin was found in corporal SMC cultures, and its transcriptional expression (and its receptor) was shown there by DNA microarrays. Myostatin protein was measured by western blots in the penile shaft of rats subjected to bilateral cavernosal nerve resection (BCNR), that were left untreated, or treated (45 days) with muscle-derived stem cells (MDSC), or concurrent daily low-dose sildenafil. Myostatin was not increased by BCNR (compared with sham operated animals), but over expressed after treatment with MDSC. This was reduced by concurrent sildenafil. The presence of myostatin in corporal and vascular SMC, and its overexpression in the corpora by MDSC therapy, may have relevance for the stem cell treatment of corporal fibrosis and ED.
Collapse
Affiliation(s)
- I Kovanecz
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Masouminia
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - R Gelfand
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - D Vernet
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - J Rajfer
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - N F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
18
|
Palandra J, Quazi A, Fitz L, Rong H, Morris C, Neubert H. Quantitative measurements of GDF-8 using immunoaffinity LC-MS/MS. Proteomics Clin Appl 2016; 10:597-604. [DOI: 10.1002/prca.201500112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joe Palandra
- Pfizer Worldwide Research & Development; Andover MA USA
| | - Amira Quazi
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Lori Fitz
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Haojing Rong
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Carl Morris
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | | |
Collapse
|
19
|
Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit Rev Clin Lab Sci 2015; 52:180-90. [PMID: 26042993 DOI: 10.3109/10408363.2015.1023429] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.
Collapse
Affiliation(s)
- Se Eun Park
- a Division of Endocrinology and Metabolism, Department of Internal Medicine , Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine , Seoul , South Korea and
| | | | | |
Collapse
|
20
|
Hu Y, Liu H, Shan Y, Ji G, Xu W, Shu J, Li H. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development. Gene 2015; 567:235-43. [PMID: 25943637 DOI: 10.1016/j.gene.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/05/2023]
Abstract
Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.
Collapse
Affiliation(s)
- Yan Hu
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Hongxiang Liu
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Yanju Shan
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Gaige Ji
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Wenjuan Xu
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Jingting Shu
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China
| | - Huifang Li
- Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu 225003, China.
| |
Collapse
|
21
|
Askanas V, Engel WK, Nogalska A. Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:633-43. [PMID: 25241263 DOI: 10.1016/j.bbadis.2014.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/13/2023]
Abstract
Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease in which aging appears to be a key risk factor. In this review we focus on several cellular molecular mechanisms responsible for multiprotein aggregation and accumulations within s-IBM muscle fibers, and their possible consequences. Those include mechanisms leading to: a) accumulation in the form of aggregates within the muscle fibers, of several proteins, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; and b) protein misfolding and aggregation, including evidence of abnormal myoproteostasis, such as increased protein transcription, inadequate protein disposal, and abnormal posttranslational modifications of proteins. Pathogenic importance of our recently demonstrated abnormal mitophagy is also discussed. The intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with aging, are also discussed. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA.
| | - W King Engel
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| | - Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| |
Collapse
|
22
|
Abstract
Polycystic ovary syndrome (PCOS), a heterogeneous and chronic condition, today affects about 5% of women of reproductive age. PCOS is strongly associated with states of insulin resistance and hyperinsulinemia. Risk factors include genetics, metabolic profiles, and the in utero environment. Long-term consequences of PCOS include metabolic complications such as diabetes, obesity, and cardiovascular disease. Dysregulation of insulin action is closely linked to the pathogenesis of PCOS. However, whether insulin resistance is the causative factor in the development of PCOS remains to be ascertained. Moreover, the mechanism by which insulin resistance may lead to reproductive dysfunction requires further elucidation.
Collapse
Affiliation(s)
- Anindita Nandi
- Division of Endocrinology and Metabolism, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, NY 10003, USA
| | - Zijian Chen
- Division of Endocrinology and Metabolism, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, NY 10003, USA
| | - Ronak Patel
- Division of Endocrinology and Metabolism, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, NY 10003, USA
| | - Leonid Poretsky
- Division of Endocrinology and Metabolism, Department of Medicine, Gerald J. Friedman Diabetes Institute, Beth Israel Medical Center, Albert Einstein College of Medicine, 317 East 17th Street, 7th Floor, New York, NY 10003, USA.
| |
Collapse
|
23
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1130] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
24
|
Newton JR, De Santis C, Jerry DR. The gene expression response of the catadromous perciform barramundi Lates calcarifer to an acute heat stress. JOURNAL OF FISH BIOLOGY 2012; 81:81-93. [PMID: 22747805 DOI: 10.1111/j.1095-8649.2012.03310.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The acute heat-shock response of the tropical estuarine fish species barramundi Lates calcarifer as indicated by the expression of genes within stress (hsp 90AA, hsp 90AB, hsp 70 and hsc 70), metabolic (cisy, cco II and ldh) and growth (igf1 and mstn 1) related pathways was examined following an increase in water temperature from 28 to 36° C over 30 min. Lates calcarifer were maintained at the acute stress temperature of 36° C for 1 h before being returned to 28° C and allowed to recover at this temperature for a further 2 weeks. Muscle tissue sampling over the experimental period allowed for the expression quantification of stress, metabolic and growth-related genes via quantitative real-time polymerase chain reaction (qrt-PCR) where a robust and reliable normalization approach identified both α-tub and Rpl8 as appropriate genes for the analysis of gene expression in response to an acute heat stress. hsp90AA and hsp70 of the inducible heat-shock response pathway showed a massive up-regulation of gene expression in response to heat stress, whilst the constitutive heat-shock genes hsp90AB and hsp70 showed no change over the course of the experiment and a small increase after 2 weeks of recovery, respectively. Of the three genes representing the metabolic pathway (cisy, cco II and ldh) only cco II changed significantly showing a decrease in gene expression, which may suggest a small suppression of aerobic metabolism. igf1 of the growth pathway showed no significant differences in response to an acute heat stress, whilst mstn1 increased at the beginning of the heat stress but returned to basal levels soon after. Overall, the results demonstrate that an acute heat stress in L. calcarifer caused a significant increase in the expression of genes from the stress response pathway and a possible decrease in aerobic metabolism with only relatively minor changes to the growth pathway highlighting the hardy nature of L. calcarifer and its resilience in coping with sudden temperature changes routinely encountered within its natural environment.
Collapse
Affiliation(s)
- J R Newton
- Aquaculture Genetics Research Program, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
| | | | | |
Collapse
|
25
|
Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 2012; 205:324-40. [PMID: 22340904 DOI: 10.1111/j.1748-1716.2012.02423.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/04/2011] [Accepted: 01/31/2012] [Indexed: 12/11/2022]
Abstract
Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required.
Collapse
Affiliation(s)
- B. Elliott
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - D. Renshaw
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - S. Getting
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - R. Mackenzie
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| |
Collapse
|
26
|
Spassov A, Gredes T, Gedrange T, Lucke S, Pavlovic D, Kunert-Keil C. The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (mdx) mice. Cell Mol Biol Lett 2011; 16:214-25. [PMID: 21327869 PMCID: PMC6275649 DOI: 10.2478/s11658-011-0003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 02/07/2011] [Indexed: 12/16/2022] Open
Abstract
The activities of myogenic regulatory factors (MRF) and muscle growth factors increase in muscle that is undergoing regeneration, and may correspond to some specific changes. Little is known about the role of MRFs in masticatory muscles in mdx mice (the model of Duchenne muscular dystrophy) and particularly about their mRNA expression during the process of muscle regeneration. Using Taqman RT-PCR, we examined the mRNA expression of the MRFs myogenin and MyoD1 (myogenic differentiation 1), and of the muscle growth factors myostatin, IGF1 (insulin-like growth factor) and MGF (mechano-growth factor) in the masseter, temporal and tongue masticatory muscles of mdx mice (n = 6 to 10 per group). The myogenin mRNA expression in the mdx masseter and temporal muscle was found to have increased (P < 0.05), whereas the myostatin mRNA expressions in the mdx masseter (P < 0.005) and tongue (P < 0.05) were found to have diminished compared to those for the controls. The IGF and MGF mRNA amounts in the mdx mice remained unchanged. Inside the mdx animal group, gender-related differences in the mRNA expressions were also found. A higher mRNA expression of myogenin and MyoD1 in the mdx massterer and temporal muscles was found in females in comparison to males, and the level of myostatin was higher in the masseter and tongue muscle (P < 0.001 for all comparisons). Similar gender-related differences were also found within the control groups. This study reveals the intermuscular differences in the mRNA expression pattern of myogenin and myostatin in mdx mice. The existence of these differences implies that dystrophinopathy affects the skeletal muscles differentially. The finding of gender-related differences in the mRNA expression of the examined factors may indicate the importance of hormonal influences on muscle regeneration.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, Faculty of Medicine, University of Greifswald, Rotgerber Str. 8, 17475, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Jespersen JG, Nedergaard A, Andersen LL, Schjerling P, Andersen JL. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining. Scand J Med Sci Sports 2011; 21:215-23. [DOI: 10.1111/j.1600-0838.2009.01044.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Askanas V, Engel WK. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau. Presse Med 2011; 40:e219-35. [PMID: 21392932 DOI: 10.1016/j.lpm.2010.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022] Open
Abstract
The pathogenesis of sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is complex and multifactorial. Both the muscle fiber degeneration and the mononuclear-cell inflammation are components of the s-IBM pathology, but how each relates to the pathogenesis remains unsettled. We consider that the intramuscle fiber degenerative component plays the primary and the major pathogenic role leading to muscle fiber destruction and clinical weakness. In this article we review the newest research advances that provide a better understanding of the s-IBM pathogenesis. Cellular abnormalities occurring in s-IBM muscle fibers are discussed, including: several proteins that are accumulated in the form of aggregates within muscle fibers, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; cellular mechanisms leading to protein misfolding and aggregation, including evidence of their inadequate disposal; pathogenic importance of endoplasmic reticulum stress and the unfolded protein response demonstrated in s-IBM muscle fibers; and decreased deacetylase activity of SIRT1. All these factors are combined with, and perhaps provoked by, an ageing intracellular milieu. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with ageing. Muscle biopsy diagnostic criteria are also described and illustrated.
Collapse
Affiliation(s)
- Valerie Askanas
- University of Southern California Keck School of Medicine, Good Samaritan Hospital, USC Neuromuscular Centre, Department of Neurology, Los Angeles, CA 90017, USA.
| | | |
Collapse
|
29
|
Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc 2011; 42:2023-9. [PMID: 20386333 DOI: 10.1249/mss.0b013e3181e0b9a8] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE There is mounting evidence that skeletal muscle produces and secretes biologically active proteins or "myokines" that facilitate metabolic cross talk between organ systems. The increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Despite these intriguing findings, there have been few studies linking myostatin and insulin resistance. METHODS To explore this relationship in more detail, we quantified myostatin protein in muscle and plasma from 10 insulin-resistant, middle-aged (53.1 ± 5.5 yr) men before and after 6 months of moderate aerobic exercise training (1200 kcal·wk−¹ at 40%-55% VO2peak). To establish a cause-effect relationship, we also injected C57/Bl6 male mice with high physiological levels of recombinant myostatin protein. RESULTS Myostatin protein levels were shown to decrease in muscle (37%, P = 0.042, n = 10) and matching plasma samples (from 28.7 ng·mL−¹ pretraining to 22.8 ng·mL−¹ posttraining, P = 0.003, n = 9) with aerobic exercise. Furthermore, the strong correlation between plasma myostatin levels and insulin sensitivity (R² = 0.82, P < 0.001, n = 9) suggested a cause-effect relationship that was subsequently confirmed by inducing insulin resistance in myostatin-injected mice. A modest increase (44%) in plasma myostatin levels was also associated with significant reductions in the insulin-stimulated phosphorylation of Akt (Thr308) in both muscle and liver of myostatin-treated animals. CONCLUSIONS These findings indicate that both muscle and plasma myostatin protein levels are regulated by aerobic exercise and, furthermore, that myostatin is in the causal pathway of acquired insulin resistance with physical inactivity.
Collapse
Affiliation(s)
- Dustin S Hittel
- Human Performance Laboratory, Faculty of Kinesiology, Roger Jackson Center for Health and Wellness, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Kawakami E, Kinouchi N, Adachi T, Ohsawa Y, Ishimaru N, Ohuchi H, Sunada Y, Hayashi Y, Tanaka E, Noji S. Atelocollagen-mediated systemic administration of myostatin-targeting siRNA improves muscular atrophy in caveolin-3-deficient mice. Dev Growth Differ 2011; 53:48-54. [DOI: 10.1111/j.1440-169x.2010.01221.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Abstract
Myostatin is a member of the transforming growth factor β superfamily of secreted growth factors that negatively regulates skeletal muscle size. Mice null for the myostatin gene have a dramatically increased mass of individual muscles, reduced adiposity, increased insulin sensitivity, and resistance to obesity. Myostatin inhibition in adult mice also increases muscle mass which raises the possibility that anti-myostatin therapy could be a useful approach for treating diseases such as obesity or diabetes in addition to muscle wasting diseases. In this review I will describe the present state of our understanding of the role of myostatin and the closely related growth factor growth/differentiation factor 11 on metabolism.
Collapse
Affiliation(s)
- Alexandra C McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
32
|
Zeng L, Akasaki Y, Sato K, Ouchi N, Izumiya Y, Walsh K. Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. J Biol Chem 2010; 285:36060-9. [PMID: 20807758 DOI: 10.1074/jbc.m110.160879] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The insulin-like family of factors are involved in the regulation of a variety of physiological processes, but the function of the family member termed insulin-like 6 (Insl6) in skeletal muscle has not been reported. We show that Insl6 is a myokine that is up-regulated in skeletal muscle downstream of Akt signaling and in regenerating muscle in response to cardiotoxin (CTX)-induced injury. In the CTX injury model, myofiber regeneration was improved by the intramuscular or systemic delivery of an adenovirus expressing Insl6. Skeletal muscle-specific Insl6 transgenic mice exhibited normal muscle mass under basal conditions but elevated satellite cell activation and enhanced muscle regeneration in response to CTX injury. The Insl6-mediated regenerative response was associated with reductions in muscle cell apoptosis and reduced serum levels of creatine kinase M. Overexpression of Insl6 stimulated proliferation and reduced apoptosis in cultured myogenic cells. Conversely, knockdown of Insl6 reduced proliferation and increased apoptosis. These data indicate that Insl6 is an injury-regulated myokine that functions as a myogenic regenerative factor.
Collapse
Affiliation(s)
- Ling Zeng
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
33
|
Han DS, Huang HP, Wang TG, Hung MY, Ke JY, Chang KT, Chang HY, Ho YP, Hsieh WY, Yang WS. Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways. J Cell Biochem 2010; 111:564-73. [DOI: 10.1002/jcb.22740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Myostatin Gene Knockdown by Myostatin-specific Short Interfering Hairpin RNAs Increases MyoD Expression in C2C12 Myoblasts*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, Tchistiakova L, Forlow SB, St Ledger K, Burczynski ME, Dorner AJ, Lavallie ER. Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol Cell Endocrinol 2009; 302:26-32. [PMID: 19356623 DOI: 10.1016/j.mce.2008.12.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED Methodological problems, including binding of myostatin to plasma proteins and cross-reactivity of assay reagents with other proteins, have confounded myostatin measurements. Here we describe development of an accurate assay for measuring myostatin concentrations in humans. Monoclonal antibodies that bind to distinct regions of myostatin served as capture and detector antibodies in a sandwich ELISA that used acid treatment to dissociate myostatin from binding proteins. Serum from myostatin-deficient Belgian Blue cattle was used as matrix and recombinant human myostatin as standard. The quantitative range was 0.15-37.50 ng/mL. Intra- and inter-assay CVs in low, mid, and high range were 4.1%, 4.7%, and 7.2%, and 3.9%, 1.6%, and 5.2%, respectively. Myostatin protein was undetectable in sera of Belgian Blue cattle and myostatin knockout mice. Recovery in spiked sera approximated 100%. ActRIIB-Fc or anti-myostatin antibody MYO-029 had no effect on myostatin measurements when assayed at pH 2.5. Myostatin levels were higher in young than older men (mean+/-S.E.M. 8.0+/-0.3 ng/mL vs. 7.0+/-0.4 ng/mL, P=0.03). In men treated with graded doses of testosterone, myostatin levels were significantly higher on day 56 than baseline in both young and older men; changes in myostatin levels were significantly correlated with changes in total and free testosterone in young men. Myostatin levels were not significantly associated with lean body mass in either young or older men. CONCLUSION Myostatin ELISA has the characteristics of a valid assay: nearly 100% recovery, excellent precision, accuracy, and sufficient sensitivity to enable measurement of myostatin concentrations in men and women.
Collapse
Affiliation(s)
- Kishore M Lakshman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Medical Center, 670 Albany Street, Boston, MA 02118, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Geng J, Peng F, Xiong F, Shang Y, Zhao C, Li W, Zhang C. Inhibition of myostatin promotes myogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Cytotherapy 2009; 11:849-63. [DOI: 10.3109/14653240903131632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Yang Z, Zhang J, Cong H, Huang Z, Sun L, Liu C, Tien P. A retrovirus-based system to stably silence GDF-8 expression and enhance myogenic differentiation in human rhabdomyosarcoma cells. J Gene Med 2008; 10:825-33. [PMID: 18563849 DOI: 10.1002/jgm.1216] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myostatin, also called GDF-8, a secreted growth and differentiating factor that belongs to the transforming growth factor-beta superfamily, is a known negative regulator of myogenesis in vivo. Overexpression of GDF-8 contributes to the lack of differentiation in human rhabdomyosarcoma (RMS) cells. We investigated whether a retrovirus-based RNA interference (RNAi) system against GDF-8 expression in human RMS cells would enhance myogenic differentiation. METHODS A retrovirus-based RNAi system was developed that utilized the U6-RNA polymerase III promoter to drive efficient expression and deliver the GDF8-specific short hairpin RNAs (shRNAs) in human RMS cell A204. In this system, the retrovirus vector was integrated into the host cell genome and allowed stable expression of shRNAs. GDF-8 expression was determined by real-time polymerase chain reaction and western blotting analysis. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cell proliferation. Myogenic differentiation markers were monitored by western blotting analysis. Cell cycle and apoptosis was determined by propidium iodide staining and analysed in a flow cytometer. RESULTS In the siGDF8 A204 cell pools, the levels of both GDF-8 mRNA and protein were dramatically reduced by this RNAi system. In differentiation conditions, inhibition of myostatin synthesis led to enhanced cell cycle withdrawal, consequently stimulated myogenic differentiation and increased the rate of tumor cell apoptosis. CONCLUSIONS The results demonstrate that deactivation of myostatin by using retrovirus-based RNAi thus may be useful for therapy in rhabdomyosarcomas.
Collapse
Affiliation(s)
- Zhuo Yang
- Molecular Virology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
39
|
Benabdallah BF, Bouchentouf M, Rousseau J, Bigey P, Michaud A, Chapdelaine P, Scherman D, Tremblay JP. Inhibiting myostatin with follistatin improves the success of myoblast transplantation in dystrophic mice. Cell Transplant 2008; 17:337-50. [PMID: 18522236 DOI: 10.3727/096368908784153913] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy is a recessive disease due to a mutation in the dystrophin gene. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the myostatin signal with an antagonist, follistatin. Three different approaches were studied to overexpress follistatin in the muscles of mdx mice transplanted with myoblasts. First, transgenic follistatin/mdx mice were generated; second, a follistatin plasmid was electroporated in mdx muscles, and finally, follistatin was induced in mdx mice muscles by a treatment with a histone deacetylase inhibitor. The three approaches improved the success of the myoblast transplantation. Moreover, fiber hypertrophy was also observed in all muscles, demonstrating that myostatin inhibition by follistatin is a good method to improve myoblast transplantation and muscle function. Myostatin inhibition by follistatin in combination with myoblast transplantation is thus a promising novel therapeutic approach for the treatment of muscle wasting in diseases such as Duchenne muscular dystrophy.
Collapse
|
40
|
Cantini LP, Ferrini MG, Vernet D, Magee TR, Qian A, Gelfand RA, Rajfer J, Gonzalez-Cadavid NF. Profibrotic Role of Myostatin in Peyronie's Disease. J Sex Med 2008; 5:1607-22. [DOI: 10.1111/j.1743-6109.2008.00847.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Stolz LE, Li D, Qadri A, Jalenak M, Klaman LD, Tobin JF. Administration of myostatin does not alter fat mass in adult mice. Diabetes Obes Metab 2008; 10:135-42. [PMID: 18190427 DOI: 10.1111/j.1463-1326.2006.00672.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Myostatin, a member of the TGF-beta superfamily, is produced by skeletal muscle and acts as a negative regulator of muscle mass. It has also been suggested that low-dose administration of myostatin (2 mug/day) in rodents can reduce fat mass without altering muscle mass. In the current study, we attempted to further explore the effects of myostatin on adipocytes and its potential to reduce fat mass, since myostatin administration could potentially be a useful strategy to treat obesity and its complications in humans. METHODS Purified myostatin protein was examined for its effects on adipogenesis and lipolysis in differentiated 3T3-L1 adipocytes as well as for effects on fat mass in wild-type, myostatin null and obese mice. RESULTS While myostatin was capable of inhibiting adipogenesis in 3T3-L1 cells, it did not alter lipolysis in fully differentiated adipocytes. Importantly, pharmacological administration of myostatin over a range of doses (2-120 mug/day) did not affect fat mass in wild-type or genetically obese (ob/ob, db/db) mice, although muscle mass was significantly reduced at the highest myostatin dose. CONCLUSIONS Our results suggest that myostatin does not reduce adipose stores in adult animals. Contrary to prior indications, pharmacological administration of myostatin does not appear to be an effective strategy to treat obesity in vivo.
Collapse
Affiliation(s)
- L E Stolz
- Department of Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zhou H, Hickford J, Fang Q. Variation in the coding region of the myostatin (GDF8) gene in sheep. Mol Cell Probes 2008; 22:67-8. [DOI: 10.1016/j.mcp.2007.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
|
43
|
Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R, Sun LQ. Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther 2007; 15:155-60. [DOI: 10.1038/sj.gt.3303016] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 2007; 19:550-9. [DOI: 10.1097/bor.0b013e3282efdc7c] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Artioli GG, Hirata RDC, Lancha Junior AH. Terapia gênica, doping genético e esporte: fundamentação e implicações para o futuro. REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000500013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A busca pelo desempenho ótimo tem sido uma constante no esporte de alto rendimento. Para tanto, muitos atletas acabam utilizando drogas e métodos ilícitos, os quais podem ter importantes efeitos adversos. A terapia gênica é uma modalidade terapêutica bastante recente na medicina, cujos resultados têm, até o momento, indicado sua eficácia no tratamento de diversas doenças graves. O princípio da terapia gênica consiste na transferência vetorial de materiais genéticos para células-alvo, com o objetivo de suprir os produtos de um gene estruturalmente anormal no genoma do paciente. Recentemente, o potencial para uso indevido da terapia gênica entre atletas tem despertado a atenção de cientistas e de órgãos reguladores de esporte. A transferência de genes que poderiam melhorar o desempenho esportivo por atletas saudáveis, método proibido em 2003, foi denominado de doping genético. Os genes candidatos mais importantes para doping genético são os que codificam para GH, IGF-1, bloqueadores da miostatina, VEGF, endorfinas e encefalinas, eritropoetina, leptina e PPAR-delta. Uma vez inserido no genoma do atleta, o gene se expressaria gerando um produto endógeno capaz de melhorar o desempenho atlético. Assim, os métodos atuais de detecção de doping não são sensíveis a esse tipo de manipulação, o que poderia estimular seu uso indevido entre atletas. Além disso, a terapia gênica ainda apresenta problemas conhecidos de aplicação, como resposta inflamatória e falta de controle da ativação do gene. Em pessoas saudáveis, é provável que tais problemas sejam ainda mais importantes, já que haveria excesso do produto do gene transferido. Há também outros riscos ainda não conhecidos, específicos para cada tipo de gene. Em vista disso, debates sobre o doping genético devem ser iniciados no meio acadêmico e esportivo, para que sejam estudadas medidas de prevenção, controle e detecção do doping genético, evitando assim futuros problemas de uso indevido dessa promissora modalidade terapêutica.
Collapse
|
46
|
Abstract
Cancer cachexia is a debilitating and life-threatening syndrome characterised by anorexia, body weight loss, loss of adipose tissue and skeletal muscle, and accounts for > or = 20% of deaths in neoplastic patients. Cancer cachexia significantly impairs quality of life and response to antineoplastic therapies, increasing the morbidity and mortality of cancer patients. Muscle wasting is the most important phenotypic feature of cancer cachexia and the principle cause of function impairment, fatigue and respiratory complications, and is mainly related to a hyperactivation of muscle proteolytic pathways. Existing therapeutic strategies have proven to be only partially effective. In the last decade, the correction of anorexia, the inhibition of catabolic processes and the stimulation of anabolic pathways in muscle has been attempted pharmacologically, giving encouraging results in animal models and through preliminary clinical trials.
Collapse
Affiliation(s)
- Maurizio Bossola
- Catholic University of the Sacred Heart, Department of Surgery, Largo A. Gemelli, Roma, Italy.
| | | | | |
Collapse
|
47
|
Wojcik S, Nogalska A, McFerrin J, Engel WK, Oledzka G, Askanas V. Myostatin precursor protein is increased and associates with amyloid-beta precursor protein in inclusion-body myositis culture model. Neuropathol Appl Neurobiol 2007; 33:238-42. [PMID: 17359364 DOI: 10.1111/j.1365-2990.2006.00821.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Helterline DL, Garikipati D, Stenkamp DL, Rodgers BD. Embryonic and tissue-specific regulation of myostatin-1 and -2 gene expression in zebrafish. Gen Comp Endocrinol 2007; 151:90-7. [PMID: 17289047 PMCID: PMC2586822 DOI: 10.1016/j.ygcen.2006.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/16/2006] [Accepted: 12/18/2006] [Indexed: 12/22/2022]
Abstract
Myostatin is a member of the TGF-beta superfamily and a potent negative regulator of muscle growth and development in mammals. Its expression is limited primarily to skeletal muscle in mammals, but occurs in many different fish tissues, although quantitative measurements of the embryonic and tissue-specific expression profiles are lacking. A recent phylogenetic analysis of all known myostatin genes identified a novel paralogue in zebrafish, zfMSTN-2, and prompted the reclassification of the entire subfamily to include MSTN-1 and -2 sister clades in the bony fishes. The differential expression profiles of both genes were therefore determined using custom RNA panels generated from pooled (100-150/sampling) embryos at different stages of development and from individual adult tissues. High levels of both transcripts were transiently present at the blastula stage, but were undetectable throughout gastrulation (7 hpf). Levels of zfMSTN-2 peaked during early somitogenesis (11 hpf), returned to basal levels during late somitogenesis and did not begin to rise again until hatching (72 hpf). By contrast, zfMSTN-1 mRNA levels peaked during late somitogenesis (15.5-19 hpf), returned to baseline at 21.5 hpf and eventually rose 25-fold by 72 hpf. In adults, both transcripts were present in a wide variety of tissues, including some not previously known to express myostatin. Expression of zfMSTN-1 was highest in brain, muscle, heart and testes and was 1-3 log orders above that in other tissues. It was also greater than zfMSTN-2 expression in most tissues, nevertheless, levels of both transcripts increased almost 600-fold in spleens of fish subjected to stocking stress. Myostatin expression was also detected in mouse spleens, suggesting that myostatin may influence immune cell development in mammals as well as fish. These studies indicate that zfMSTN-1 and -2 gene expression is differentially regulated in developing fish embryos and in adult tissues. The increased expression of both genes in spleens from stressed fish is further supportive of an immunomodulatory role and may explain increased disease susceptibility associated with stocking stress.
Collapse
Affiliation(s)
- Deri L.I. Helterline
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | - Dilip Garikipati
- School of Molecular Biosciences, Washington State University, USA
| | | | - Buel D. Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
- School of Molecular Biosciences, Washington State University, USA
| |
Collapse
|
49
|
Mukherjee A, Sidis Y, Mahan A, Raher MJ, Xia Y, Rosen ED, Bloch KD, Thomas MK, Schneyer AL. FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults. Proc Natl Acad Sci U S A 2007; 104:1348-53. [PMID: 17229845 PMCID: PMC1783105 DOI: 10.1073/pnas.0607966104] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Activin and myostatin are related members of the TGF-beta growth factor superfamily. FSTL3 (Follistatin-like 3) is an activin and myostatin antagonist whose physiological role in adults remains to be determined. We found that homozygous FSTL3 knockout adults developed a distinct group of metabolic phenotypes, including increased pancreatic islet number and size, beta cell hyperplasia, decreased visceral fat mass, improved glucose tolerance, and enhanced insulin sensitivity, changes that might benefit obese, insulin-resistant patients. The mice also developed hepatic steatosis and mild hypertension but exhibited no alteration of muscle or body weight. This combination of phenotypes appears to arise from increased activin and myostatin bioactivity in specific tissues resulting from the absence of the FSTL3 antagonist. Thus, the enlarged islets and beta cell number likely result from increased activin action. Reduced visceral fat is consistent with a role for increased myostatin action in regulating fat deposition, which, in turn, may be partly responsible for the enhanced glucose tolerance and insulin sensitivity. Our results demonstrate that FSTL3 regulation of activin and myostatin is critical for normal adult metabolic homeostasis, suggesting that pharmacological manipulation of FSTL3 activity might simultaneously reduce visceral adiposity, increase beta cell mass, and improve insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Yin Xia
- *Reproductive Endocrine Unit
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | | | - Melissa K. Thomas
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114; and
| | - Alan L. Schneyer
- *Reproductive Endocrine Unit
- To whom correspondence should be addressed at:
Reproductive Endocrine Unit, BHX-5, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114. E-mail:
| |
Collapse
|
50
|
Nogalska A, Wojcik S, Engel WK, McFerrin J, Askanas V. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol 2006; 204:610-8. [PMID: 17261282 PMCID: PMC1909753 DOI: 10.1016/j.expneurol.2006.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/21/2022]
Abstract
Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Valerie Askanas
- *Corresponding author: Valerie Askanas, MD, PhD, USC Neuromuscular Center, Good Samaritan Hospital, 637 S. Lucas Ave, Los Angeles, CA 90017. Tel. 213-975-9950. Fax.213-975-9955. e-mail:
| |
Collapse
|